

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Wokingham, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

K

Macintosh Human
Interface Guidelines

Thi d t t d ith F M k 4 0 4

K

Apple Computer, Inc.



 1995, Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc. Printed in the
United States of America.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple Macintosh computers.

Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, APDA,
AppleLink, AppleShare, AppleTalk,
EtherTalk, HyperTalk, ImageWriter,
LaserWriter, Macintosh, MultiFinder,
and StyleWriter are trademarks of
Apple Computer, Inc., registered in the
United States and other countries.
BalloonHelp, BalloonWriter, Finder,
PowerBook, QuickDraw, ResEdit,
System 7, and TrueType are trademarks
of Apple Computer, Inc.
Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.
AGFA is a trademark of Agfa-Gevaert.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
HyperCard, MacDraw, MacPaint, and
MacWrite are registered trademarks of
Claris Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Varityper is a registered trademark
of Varityper, Inc.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

ISBN 0-201-62216-5
1 2 3 4 5 6 7 8 9-BA-9695949392
First Printing, November 1992

7

The paper used in this book meets the
EPA standards for recycled fiber.

Thi d t t d ith F M k 4 0 4

iii

Contents

Figures and Tables xiii

Preface

About This Book

xxi

Who Should Read This Book xxi
What’s New in Macintosh Human Interface From Apple xxii
About

Making It Macintosh xxii

What’s in This Book xxii
The Basic Philosophy xxii
The Interface Elements xxiii
Appendixes xxiii

Visual Cues Used in This Book xxiii

Part 1

Fundamentals

Chapter 1

Human Interface Principles

3

The Human Interface Design Principles 4
Metaphors 4
Direct Manipulation 5
See-and-Point 7
Consistency 7
WYSIWYG (What You See Is What You Get) 8
User Control 9
Feedback and Dialog 9
Forgiveness 10
Perceived Stability 11
Aesthetic Integrity 11
Modelessness 12

Additional Issues to Consider 13
Knowledge of Your Audience 13
Accessibility 14

Chapter 2

General Design Considerations

15

Worldwide Compatibility 16
Cultural Values 17
Resources 17

Thi d t t d ith F M k 4 0 4

iv

Language Differences 18
Text Display and Text Editing 19
Default Alignment of Interface Elements 20
Keyboards 22
Fonts 23

Universal Access 24
People With a Physical Disability 25
People With a Visual Disability 25
People With a Hearing Disability 26
People With a Speech or Language Disability 27
People With a Seizure Disorder 27

Collaborative Computing 27
Concern for Other Users 28
User Identification 28
Access Privileges 28
Passwords 29
Data Encryption for Security 30
Clear Communications 30
Displaying the Current State of Data 30
Communicating With Other Environments 31
Network Transparency 31

Chapter 3

Human Interface Design and the Development

Process

33

Design Decisions 34
Features Inspired by Market Pressures 34
Feature Cascade 35
The 80 Percent Solution 35

Managing Complexity 35
Using Progressive Disclosure 35
Implementing Preferences 37

Extending the Interface 38
When to Go Beyond the Guidelines 38
Build on the Existing Interface 39
Don’t Assign New Behaviors to Existing Objects 39
Create a New Interface Element Cautiously 40

Involving Users in the Design Process 41
Define Your Audience 41
Analyze Tasks 41
Build Prototypes 42
Observe Users 42

Ten Steps for Conducting a User Observation 43

v

Part 2

The Interface Elements

Chapter 4

Menus

49

The Menu Bar 52
Menu Behavior 55
Menu Elements 58

Menu Item Names 58
Grouping Items in Menus 60
Menu Dividers 62

Standard Characters and Text Style in Menus 64
Checkmarks and Dashes in Menus 64
The Ellipsis Character in Menus 67
A Diamond Mark in the Application Menu 71
Avoid Nonstandard Marks in Menus 72
Text Styles in Menus 73

Toggled Menu Items 75
Scrolling Menus 78
Hierarchical Menus 79
Pop-Up Menus 82

Standard Pop-Up Menus 87
Type-In Pop-Up Menus 91

Tear-Off Menus and Palettes 92
Tear-Off Menus 93
Palettes 96

Standard Macintosh Menus 98
The Apple Menu 98

About 98
File Menu 99

New 99
Open 101
Close 102
Save 104
Save As 106
Revert 107
Page Setup… 108
Print… 108
Quit 109

The Edit Menu 109
The Clipboard 111
Undo/Redo 113
Cut 114
Copy 115
Paste 115
Clear 117

vi

Select All 117
Show Clipboard/Hide Clipboard 117
Create Publisher… 117
Subscribe To… 118
Publisher/Subscriber Options… 118

The Font Menu 120
The Size Menu 122
The Style Menu 124
The Help Menu 125
The Keyboard Menu 125
The Application Menu 127

Keyboard Equivalents 128

Chapter 5

Windows

131

Window Appearance 134
Document Window Controls 134
Use of Color in Windows 135
Utility Windows 137

Window Behaviors 139
The Active Window 139
Opening Windows 141
Window Display Order 143
Window Positions 146

The Default Position on a Single Screen 147
The Default Position on Multiple Screens 148
Dialog Box and Alert Box Positions 150

Closing a Window 152
Moving a Window 154
Changing the Size of a Window 156
Scrolling a Window 158

Scroll Bars 158
Scrolling With the Scroll Arrows 163
Scrolling With the Gray Area 164
Scrolling by Dragging the Scroll Box 164
Automatic Scrolling 166

The Zoom Box and Window Behavior 168
Splitting a Window 170

Window Pane Behavior 172
One Split per Orientation 173

vii

Chapter 6

Dialog Boxes

175

Modeless Dialog Boxes 178
Modeless Dialog Box Appearance 179
Modeless Dialog Box Behaviors 181

Menu Bar Access 181
Accepting Changes in a Modeless Dialog Box 182
Completing Commands 184

Movable Modal Dialog Boxes 185
Movable Modal Dialog Box Appearance 186
Movable Modal Dialog Box Behaviors 187

Menu Bar Access 187
Modal Dialog Boxes 188

Modal Dialog Box Appearance 190
Modal Dialog Box Behaviors 191

Menu Bar Access 191
Stacking Modal Dialog Boxes 192

Alert Boxes 193
Alert Box Appearance 194
Note Alert Boxes 194
Caution Alert Boxes 195
Stop Alert Boxes 196

Basic Dialog Box Layout 196
Keyboard Navigation in Dialog Boxes 198
Dialog Box Messages 199
Standard File Dialog Boxes 200
Save Changes Alert Box 201

Chapter 7

Controls

203

Standard Toolbox Controls 204
Buttons 204

Button Behavior 205
Button Names 206

Radio Buttons 210
Checkboxes 211

Controls Not Supported by the Macintosh Toolbox 214
Sliders 214
Little Arrows 216
Outline Triangles 218

Other Elements for User Interaction 218
Text Entry Fields 219
Scrolling Lists 220

viii

Chapter 8

Icons

223

Why Icons Work 224
Limitations of Icons 227
Designing Effective Icons 229

Use Appropriate Metaphors 229
Think About Worldwide Compatibility 230
Avoid Text in Icons 230
Design for the Macintosh Display 231
Use a Consistent Light Source 232
Optimize for Your Target Display 232
Maintain a Consistent Visual Appearance in an

Icon Family 233
Use Icon Elements Consistently 233

The Finder Icon Family 234
An Icon Design Process 236
Black-and-White Icons 238
Color Icons 238

Icon Colors 240
The Apple Icon Color Set 240
Degradation of the Color Set Across Monitors 241
Selection Mechanism for Color Icons 241
Color Labeling Mechanism for Color Icons 242

Anti-Aliasing 243
Small Icons 244
Default and Custom Icons 245

Application Icons 246
Document Icons 247
Stationery Pad Icons 248
Query Document Icons 249
Edition Icons 250
Preferences Icons 250
Extension Icons 250
Control Panel Icons 251
Movable Resource Icons 252
Keyboard Icons 252

Chapter 9

Color

257

Color Design of Standard Interface Elements 258
Windows and Dialog Boxes 258
Menus 260
Pointers 260
Highlighting and Selection 260

ix

Color Application Guidelines 261
Match Complexity to the Level of User 261
Design for the Macintosh 262
Design for Black and White First 263
Limit the Number of Colors 264
Colors on Gray 265
Beware of Blue 265
Small Objects 265
Color for Categorizing Information 265

Chapter 10

Behaviors

267

The Pointing Device 268
Mouse Actions 271

Clicking 271
Double-Clicking 272
Pressing 273
Dragging 274

The Keyboard 275
Character Keys 275

Enter 275
Tab 276
Return 276
Delete (or Backspace) 277
Clear 277
Escape 277

Modifier Keys 278
Shift 278
Caps Lock 279
Option 279
Command 280
Control 280

Type-Ahead and Auto-Repeat 280
International Keyboards 281
Arrow Keys 281

Appropriate Uses for the Arrow Keys 281
Moving the Insertion Point 282
Moving the Insertion Point in Empty Documents 282
Using Modifier Keys With Arrow Keys 282

Function Keys 284
Help 285
Forward Delete (Del) 285
Home 285
End 285
Page Up 286
Page Down 286

x

Selecting 286
Selection Methods 288

Selection by Clicking 289
Selection by Dragging 289
Changing a Selection With Shift-Click 289
Changing a Selection With Command-Click 291

Selections in Text 292
Selecting With the Mouse 293
Selecting Ranges 294
Selecting With the Arrow Keys 295

Selections in Graphics 297
Selections in Arrays and Tables 298

Editing Text 300
Inserting Text 300
Deleting Text 300
Replacing a Selection 301
Intelligent Cut and Paste 301
Editing Fields 302

Chapter 11

Language

305

Style 306
Terminology 307

Developer Terms and User Terms 307
Terms That Are Often Misused 308

Click 308
Checkbox 308
Document 308
File 308
Utility Window 309

Labels for Interface Elements 309
Dialog Box Messages 310
User Documentation 313
Online Help Systems 314

Provide Concurrent Help 314
Provide Multiple Levels of Help 314
Assist Users by Answering Their Questions 315
Keep the Help System Simple 316
Design Online Help as an Interactive Coach 316

Balloon Help 316
When to Use a Help Balloon 317
How to Write a Balloon 318
Wording for Specific Balloon Types 319

Buttons With Words 319
Menu Titles 320
Menu Items 320

xi

Radio Buttons 321
Checkboxes 321
Groups of Checkboxes or Radio Buttons 322
Tools in Palettes 323
Window Parts 324
Modal Dialog Box on the Screen 324
Icons 324
Text Entry Boxes 325

Appendix A

Resources

329

Association for Computing Machinery (ACM) 329

Communications of the ACM 329

SIGCHI 329
SIGGRAPH 330
CSCW 330

Human Factors Society 331
Human Factors Society Annual Meeting 331

Human Factors 331
Human Factors Society Bulletin 332

Apple Developer Information 332
APDA 332
Developer Support Center 333
In-House Development Support 333

develop 333

Appendix B

Bibliography

335

Animation 336
Cognitive Psychology and Human Factors 336
Color 337
Environmental Design 338
Graphic and Information Design 339

Graphic Design and Drawing 339
Icons and Symbols 339
Typography 340

History of Human Interface 340
Human-Computer Design 341

Consistency 341
Direct Manipulation 341
Menus 342
Metaphors 342
Product Design 343
Usability Testing 343

xii

User-Centered Design 344
Human-Computer Interaction 344
Language 346
Programming 346
Special Applications 347

Collaborative Computing 347
Hypertext 347
Multimedia 348
Online Documentation and Online Help 348

Universal Access 349
Visual Thinking 349
Worldwide Software 350

Appendix C

Checklist

351

General Considerations 351
Graphic Design 353
Color 353
Icons 354
Windows 354
Dialog Boxes 355
Alert Boxes 357
Scrolling 357
Menus 358
Pop-Up Menus 359
Palettes and Tear-Off Menus 359
Mouse Standards 360
Text 360
Balloon Help 360
Keyboard Equivalents 361
Edition Manager 361
Documentation 362

Glossary

363

Index

373

xiii

Figures and Tables

Chapter 1

Human Interface Principles

3

Figure 1-1

Direct manipulation 6

Figure 1-2

An example of a bad message and an example of a helpful
message 10

Figure 1-3

Don’t use arbitrary graphic elements 12

Chapter 2

General Design Considerations

15

Figure 2-1

Menu bars in different languages 18

Figure 2-2

English and Arabic dialog boxes 20

Figure 2-3

Dialog boxes with display rectangles that are different sizes and
the same size 21

Figure 2-4

Right-to-left alignment of dialog box items 21

Figure 2-5

The Keyboard menu 23

Figure 2-6

The boundaries of a font 24

Figure 2-7

The Sound control panel 26

Figure 2-8

A shutdown message 28

Figure 2-9

The AppleShare connect dialog box 29

Chapter 3

Human Interface Design and the Development Process

33

Figure 3-1

An expanding dialog box 36

Figure 3-2

Directions a window can expand 37

Figure 3-3

An incorrect subpalette indicator 40

Figure 3-4

A better subpalette indicator 40

Chapter 4

Menus

49

Figure 4-1

The standard order of actions 51

Figure 4-2

A menu bar 53

Figure 4-3

Three menu bars 53

Figure 4-4

The Finder menu bar in six languages 54

Figure 4-5

An unavailable menu 55

Figure 4-6

Opening a menu 56

Figure 4-7

A feedback technique 57

Figure 4-8

A typical menu 58

Figure 4-9

A menu with adjectives 59

Figure 4-10

Command names properly capitalized 59

Figure 4-11

Unavailable items aren’t highlighted 60

Figure 4-12

Menus with appropriate groups 61

Figure 4-13

Grouping items in menus 62

Figure 4-14

Standard menu dividers 63

Figure 4-15

An inappropriate menu divider 63

Thi d t t d ith F M k 4 0 4

xiv

Figure 4-16

A menu with text styles and an indicator 64

Figure 4-17

A checkmark to indicate a choice in a mutually exclusive
group 65

Figure 4-18

A checkmark to indicate a choice in an accumulating attribute
group 65

Figure 4-19

Dashes to indicate partial attributes in an accumulating attribute
group 66

Figure 4-20

Several attributes in effect 67

Figure 4-21

The ellipsis character means more information is required 68

Figure 4-22

Don’t use the ellipsis character with a command that doesn’t
require more information 69

Figure 4-23

The absence of the ellipsis character means no more information
is required 70

Figure 4-24

The ellipsis character doesn’t mean an alert box appears 71

Figure 4-25

The Application menu with a notification symbol 72

Figure 4-26

Don’t use arbitrary symbols in menus 72

Figure 4-27

A Style menu with text styles 73

Figure 4-28

The effects of the two states of a Style menu item 74

Figure 4-29

A menu with nonstandard marks and extraneous text styles and a
menu all in plain text style 75

Figure 4-30

A set of toggled menu items 76

Figure 4-31

A single toggled menu item whose name changes 76

Figure 4-32

An ambiguous toggled menu item 77

Figure 4-33

An incorrect use of a checkmark to indicate a state 78

Figure 4-34

A scrolling menu 78

Figure 4-35

The menu scrolling in the other direction 79

Figure 4-36

A hierarchical menu 79

Figure 4-37

Don’t use submenus unnecessarily 80

Figure 4-38

A menu bar on a 9-inch screen with space for more menu
titles 81

Figure 4-39

Examples of submenu titles 81

Figure 4-40

Avoid more than one level of submenus 82

Figure 4-41

A pop-up menu and its parts 83

Figure 4-42

Opening a pop-up menu 84

Figure 4-43

Pop-up menus versus radio buttons 85

Figure 4-44

Pop-up menus versus checkboxes 86

Figure 4-45

Don’t use pop-up menus for commands 87

Figure 4-46

A standard pop-up menu 87

Figure 4-47

Using a pop-up menu 88

Figure 4-48

Correct and incorrect use of fonts in pop-up menus 89

Figure 4-49

Pop-up menu behavior 90

Figure 4-50

A hidden pop-up menu 91

Figure 4-51

A type-in pop-up menu 92

Figure 4-52

A type-in pop-up menu with user’s choice added 92

Figure 4-53

A tools palette and a color palette 93

Figure 4-54

Using a tear-off menu 94

Figure 4-55

A tear-off menu on top of a document window 95

Figure 4-56

Palettes and feedback 96

Figure 4-57

A tool palette with the corresponding pointers 97

Figure 4-58

A tool palette in a window 97

Figure 4-59

An Apple menu 98

Figure 4-60

An About dialog box for an application 99

xv

Figure 4-61

A File menu 99

Figure 4-62

The New command 100

Figure 4-63

The standard file dialog box for opening files 101

Figure 4-64

The save changes alert box 103

Figure 4-65

The correct location of the save changes alert box 104

Figure 4-66

The Save command 105

Figure 4-67

A sample alert box to use when a disk is full 105

Figure 4-68

The Save As command and dialog box 106

Figure 4-69

The Revert command 107

Figure 4-70

A Page Setup dialog box 108

Figure 4-71

A Print dialog box 109

Figure 4-72

A standard Edit menu for an application 110

Figure 4-73

Adding commands to the Edit menu 110

Figure 4-74

A sample Edit menu with Edition Manager commands 111

Figure 4-75

A sample hierarchical Edit menu with Edition Manager
commands 111

Figure 4-76

The Clipboard 112

Figure 4-77

The Undo and Redo commands 114

Figure 4-78

The results of using the Paste command 116

Figure 4-79

The Create Publisher command and dialog box 118

Figure 4-80

The Subscribe To command and dialog box 118

Figure 4-81

The Publisher Options dialog box 119

Figure 4-82

The Subscriber Options dialog box 119

Figure 4-83

A Font menu 121

Figure 4-84

Don’t combine the Font menu with other menus 122

Figure 4-85

A Size menu 122

Figure 4-86

A sample pull-down Size menu and font size dialog box 123

Figure 4-87

A Style menu 124

Figure 4-88

The Help menu 125

Figure 4-89

The Keyboard menu 126

Table 4-1

Apple-reserved keyboard equivalents for all systems 128
Table 4-2 Additional reserved keyboard equivalents for worldwide

systems 128
Table 4-3 Common keyboard equivalents that are not reserved 129

Chapter 5 Windows 131

Figure 5-1 Examples of standard windows 133
Figure 5-2 Standard document window parts 134
Figure 5-3 Windows on a color screen 135
Figure 5-4 Standard window components in color 136
Figure 5-5 Colors that the user can choose for windows 137
Figure 5-6 A utility window 137
Figure 5-7 Make it clear where text will appear 138
Figure 5-8 The active window 139
Figure 5-9 Don’t show a selection in an inactive window 141
Figure 5-10 Appropriate window titles for a series of unnamed windows 142
Figure 5-11 Examples of correct and incorrect window titles 143
Figure 5-12 Display order of document windows and modeless dialog

boxes 144

xvi

Figure 5-13 Adding floating windows to the desktop 145
Figure 5-14 Adding a movable modal dialog box to the desktop 146
Figure 5-15 Window positions on a single screen 147
Figure 5-16 The standard window position on two sizes of screens 148
Figure 5-17 The standard window position on multiple screens 149
Figure 5-18 A window displayed across two screens 150
Figure 5-19 Standard position of an alert box 151
Figure 5-20 Alert box position in relation to the active document window 151
Figure 5-21 Standard alert box position with more than one screen 152
Figure 5-22 The close box 153
Figure 5-23 The save changes alert box 154
Figure 5-24 Moving a window 155
Figure 5-25 Multiple monitors and conceptual work space 156
Figure 5-26 A window growing larger 157
Figure 5-27 Relationship between a window and a document 158
Figure 5-28 The elements of a scroll bar 159
Figure 5-29 Using scroll arrows and the scroll box 159
Figure 5-30 Inactive scroll bars in active and inactive document

windows 160
Figure 5-31 Background between the content and the window frame 161
Figure 5-32 Acceptable additions to the scroll bar region 162
Figure 5-33 Too many controls in the scroll bar 162
Figure 5-34 Scrolling by clicking a scroll arrow 163
Figure 5-35 Scrolling by clicking in the gray area 164
Figure 5-36 Scrolling by dragging the scroll box 165
Figure 5-37 Automatic scrolling 166
Figure 5-38 The zoom box 168
Figure 5-39 The standard state and the user state of a document 169
Figure 5-40 A split window 171
Figure 5-41 Split bar size 171
Figure 5-42 Independent and locked scrolling of window panes 172

Chapter 6 Dialog Boxes 175

Figure 6-1 Examples of dialog box types 177
Figure 6-2 A typical modeless dialog box 178
Figure 6-3 Two open modeless dialog boxes 179
Figure 6-4 The essential elements of a modeless dialog box 180
Figure 6-5 Incorrect absence of a close box in a modeless dialog box 181
Figure 6-6 Provide a place for the user to enter information in a modeless

dialog box 184
Figure 6-7 A typical movable modal dialog box 185
Figure 6-8 The essential elements of a movable modal dialog box 186
Figure 6-9 Close box used incorrectly in a movable modal dialog box 187
Figure 6-10 A Finder movable modal dialog box 187
Figure 6-11 Menu bar access while a movable modal dialog box is

open 188
Figure 6-12 An example of a modal dialog box 189
Figure 6-13 A status dialog box 190
Figure 6-14 The essential elements of a modal dialog box 190

xvii

Figure 6-15 Access to the Edit menu when displaying a modal dialog
box 191

Figure 6-16 Second modal dialog box on top of first one 193
Figure 6-17 The essential elements of an alert box 194
Figure 6-18 An example of a note alert box 195
Figure 6-19 An example of a caution alert box 195
Figure 6-20 An example of a stop alert box 196
Figure 6-21 Recommended spacing of buttons and text in dialog and alert

boxes 197
Figure 6-22 An active scrolling list 198
Figure 6-23 A well-written dialog box message 199
Figure 6-24 The standard file dialog box for opening files 200
Figure 6-25 The save changes alert box 201

Chapter 7 Controls 203

Figure 7-1 Buttons in a dialog box 205
Figure 7-2 A highlighted button 205
Figure 7-3 A dialog box with OK and Cancel buttons 207
Figure 7-4 A dialog box with a Done button instead of an OK button 208
Figure 7-5 A progress indicator that uses a Stop button 209
Figure 7-6 A confirmation alert box with appropriately named button 209
Figure 7-7 Sets of radio buttons 210
Figure 7-8 Radio buttons for selecting the alignment of text 211
Figure 7-9 The General Controls panel 211
Figure 7-10 A set of checkboxes 212
Figure 7-11 A single checkbox in a dialog box 212
Figure 7-12 The Find dialog box 213
Figure 7-13 An example of a slider 214
Figure 7-14 A slider with direction information 215
Figure 7-15 Incorrect use of a scroll bar and correct use of a slider 215
Figure 7-16 Little arrows control 216
Figure 7-17 Content-dependent increment 217
Figure 7-18 Outline triangle control 218
Figure 7-19 A text entry field 219
Figure 7-20 A scrolling list 220

Chapter 8 Icons 223

Figure 8-1 Common icons 224
Figure 8-2 Examples of common traffic symbols 225
Figure 8-3 Examples of commonly-used international symbols 225
Figure 8-4 Symbols are easier to understand than keyboard

commands 226
Figure 8-5 Grouping icons on the desktop 226
Figure 8-6 A confusing image 227
Figure 8-7 Context clarifies the image 227
Figure 8-8 Icons with label text 228
Figure 8-9 A logical and an illogical metaphor 229
Figure 8-10 Localized mailbox icons 230

xviii

Figure 8-11 Avoid text in icons 231
Figure 8-12 Certain shapes don’t work well 231
Figure 8-13 A consistent light source 232
Figure 8-14 Inconsistent light sources 232
Figure 8-15 Design the large icon first and base the small icon

design on it 233
Figure 8-16 Consistent use of icon elements 234
Figure 8-17 An icon family 234
Figure 8-18 Different sizes of icons 235
Table 8-1 Icon display on monitors of different bit depths 235
Figure 8-19 A well-designed icon and its selected version 238
Figure 8-20 A poorly designed icon and its selected version 238
Figure 8-21 Icons with a black outline 239
Figure 8-22 Icons without a black outline 239
Figure 8-23 Standard 256-color palette with icon colors marked 240
Figure 8-24 An example of dithered color in an icon 241
Figure 8-25 Color icons and their selected states 242
Figure 8-26 Color icons and their color-labeled states 243
Figure 8-27 Correct anti-aliasing 243
Figure 8-28 Consistently designed small icons 244
Figure 8-29 Inconsistently designed small icons 245
Figure 8-30 Default application icons 246
Figure 8-31 Custom application icons 246
Figure 8-32 Examples of bad application icons 247
Figure 8-33 Default document icons 247
Figure 8-34 Application icon and document icon with the same

graphic element 247
Figure 8-35 Acceptable and unacceptable custom document icons 248
Figure 8-36 Document icons with standard symbols 248
Figure 8-37 Default stationery pad icons 249
Figure 8-38 Default query document icons 249
Figure 8-39 Default edition icons 250
Figure 8-40 Preferences file icons 250
Figure 8-41 Default extension icons 251
Figure 8-42 Examples of Chooser icons 251
Figure 8-43 Icons for the Color control panel 251
Figure 8-44 Font icons 252
Figure 8-45 A sound icon 252
Figure 8-46 The default keyboard layout and input method icons 253
Figure 8-47 Examples of keyboard icons 253
Figure 8-48 Examples of modification indicators on keyboard icons 254
Table 8-2 Pattern substitutions for colors in keyboard icons 254
Figure 8-49 Enlarged keyboard icons with correct color substitutions 255

Chapter 9 Color 257

Figure 9-1 A colorized window 259
Figure 9-2 A colorized movable modal dialog box 259
Figure 9-3 Color palette and custom color mixing tool 262
Figure 9-4 Design for black-and-white monitors first 263

xix

Figure 9-5 Don’t mimic color effects in black-and-white designs 263
Figure 9-6 A limited palette of colors 264

Chapter 10 Behaviors 267

Figure 10-1 Different pointing devices 268
Figure 10-2 The insertion point and the pointer 269
Table 10-1 Pointers 270
Figure 10-3 A status indicator 271
Figure 10-4 Clicking a button 272
Figure 10-5 Double-clicking to select a word 272
Figure 10-6 Pressing a scroll arrow 273
Figure 10-7 Dragging to move an object 274
Figure 10-8 Using the Tab key to cycle through fields 276
Figure 10-9 Using the Return key to move the insertion point 277
Figure 10-10 A sample confirmation dialog box for the Escape key 278
Figure 10-11 Using Option-drag to make a copy of an object 279
Figure 10-12 Arrow keys 281
Table 10-2 How modifier keys change the movement of the insertion point with

the arrow keys 283
Figure 10-13 The function keys 284
Figure 10-14 Three ways of selecting information 287
Figure 10-15 Selection techniques 288
Figure 10-16 Expanding and shrinking a text selection 290
Figure 10-17 Extending text selections using the addition and fixed-point

methods 290
Figure 10-18 Discontinuous selection within an array 292
Figure 10-19 Text selections 293
Figure 10-20 Selecting with Shift and arrow keys 296
Figure 10-21 Selecting with Option-Shift and arrow keys 296
Figure 10-22 Selection in an object-based graphics document 297
Figure 10-23 Selection in a bitmap-based graphics document 297
Figure 10-24 Field selection in an array 298
Figure 10-25 Column selection in an array 298
Figure 10-26 Range selection in an array 299
Figure 10-27 Discontinuous selection in an array 299
Figure 10-28 Intelligent cut and paste 302

Chapter 11 Language 305

Table 11-1 Translation chart for user documentation 307
Figure 11-1 Proper capitalization of screen elements 309
Figure 11-2 Clear button names 310
Figure 11-3 A poorly written alert box message 311
Figure 11-4 An improved alert box message 311
Figure 11-5 A well-written alert box message 311
Figure 11-6 Correct absence of a colon to introduce a list of options 312
Figure 11-7 Correct use of a colon 312
Table 11-2 Categories of questions for help systems 315
Figure 11-8 A help balloon 316

xx

Figure 11-9 Help balloon for a button 319
Figure 11-10 Help balloon for a menu title 320
Figure 11-11 Help balloon for a menu item 320
Figure 11-12 Help balloon for a selected radio button 321
Figure 11-13 Help balloon for a checkbox 322
Figure 11-14 Help balloon for a group of radio buttons 323
Figure 11-15 Help balloon for a tool palette 323
Figure 11-16 Help balloons for an application icon and a document icon 324
Figure 11-17 Help balloon for a text entry box 325

xxi

P R E F A C E

About This Book

Macintosh Human Interface Guidelines

 describes the way to create products
that optimize the interaction between people and Macintosh computers.
It explains the whys and hows of the Macintosh interface in general terms
and specific details.

Macintosh Human Interface Guidelines

 helps you link the philosophy behind
the Macintosh interface to the actual implementation of interface elements.
Examples from a wide range of Macintosh products show good human
interface design, including individual and iterative examples. These examples
are accompanied by descriptions and discussions of why to follow the
guidelines. This book also contains examples of how

not

 to do human
interface design; they are marked as such and appear with a discussion that
points out what’s inappropriate and how to correct it.

Who Should Read This Book 0

This book is written for people who design and develop products for use
with Macintosh computers. If you are a designer, a human interface
professional, or an engineer, this book contains information you can
use to design and create products that fit the Macintosh model. It provides
background information that can help you plan and make decisions about
your product design.

Even if you don’t design and develop products for the Macintosh, reading
this book will help you to understand the Macintosh interface. This book is
appropriate for managers and planners who are thinking about developing
Macintosh products, as well as people who are interested in human interface
design in general.

This book is written with the assumption that you are familiar with the
concepts and terminology used with Macintosh computers and that you have
used a Macintosh computer and some Macintosh applications.

Thi d t t d ith F M k 4 0 4

xxii

P R E F A C E

What’s New in Macintosh Human Interface From Apple

In previous years, the human interface guidelines were published in
Inside Macintosh, in Human Interface Guidelines: The Apple Desktop Interface,
and in Human Interface Notes. This book contains all the current human
interface guidelines pertaining to all types of products that work with
Macintosh computers.

In the current Inside Macintosh, you’ll find human interface information and
guidelines included in the individual chapters about each topic, such as
the Edition Manager or the Dialog Manager. These chapters also have
technical implementation information about the Macintosh Operating System.
Inside Macintosh doesn’t contain the philosophy of the Macintosh interface or
the rationale about how to use the interface elements properly, so to create
your product, you’ll need Inside Macintosh and this book.

About Making It Macintosh

Making It Macintosh: Macintosh Human Interface Guidelines Companion is a
CD-ROM–based accompaniment to Macintosh Human Interface Guidelines.
Making It Macintosh contains animated examples of common problems
developers encounter when they implement the Macintosh interface, presents
solutions to these problems, and discusses how you can approach similar
problems. You can use Making It Macintosh and Macintosh Human Interface
Guidelines together, or you can consult each separately. For information about
ordering Making It Macintosh, see the back of this book.

What’s in This Book

This book contains three major sections. You can read it from start to finish or
use it as a reference in which to look up specific pieces of information that you
need to know. The paragraphs that follow describe the type of information
you’ll find in each part of the book.

The Basic Philosophy
The first part of this book presents the key design principles and
considerations for developers to keep in mind when creating a product
that works with Macintosh computers. It suggests ways to incorporate
human interface into your product design and decision-making processes.

xxiii

P R E F A C E

It also describes how to involve users in your product design process to
ensure that you’ve built a product that serves your users well and conforms
to the guidelines.

The Interface Elements
The second part of this book defines various parts of the Macintosh interface.
It presents examples of the right and wrong ways to use interface elements
and behaviors and contains specific implementation information you can use
while you’re creating a product. This part of the book also shows how to
combine interface elements with behaviors, aesthetics, and language to create
a superior product.

Appendixes
The appendixes provide additional information about the topics discussed in
this book. Appendix A describes resources such as professional societies and
conferences from which you can get additional information. Appendix B
is a bibliography that presents major works on topics discussed in the book.
Refer to this appendix when you want to find where to get more extensive
information or training on a topic such as color or menus. Appendix C
provides a checklist for you to use when evaluating your product to make
sure it meets the intent and purpose of the Macintosh human interface
guidelines. The glossary, which follows the appendixes, provides definitions
for terms used in the book. At the end of the book is an index, which will help
you locate information about specific topics.

Visual Cues Used in This Book

In this book you’ll find visual cues to certain types of information.

■ This symbol indicates an example of the correct way to use an
interface element.

■ This symbol indicates an example that is OK or is an improvement to a
poor example. It would still be useful to consider making improvements to
this type of example.

■ This symbol indicates an example of the wrong way to use an interface
element. It specifically calls out common mistakes.

■ Boldfaced text indicates that a new term is being defined and that a
definition of the word appears in the glossary.

P A R T O N E

Fundamentals

This part of Macintosh Human Interface Guidelines presents the philosophy and
psychology behind the Macintosh interface. Read this part to learn about the
design principles and considerations that developers can use to create an
excellent human interface. You can find out how to incorporate good human
interface into your design and decision-making processes and how to involve
users throughout the design process. You can also read about how to work
with and go beyond the guidelines while maintaining their spirit and intent.

This part contains the following chapters:

■ Human Interface Principles

■ General Design Considerations

■ Human Interface Design and the Development Process

3

C H A P T E R 1

1

Human Interface Principles 1Figure 1-0
Listing 1-0
Table 1-0

S

,

Z

X

Thi d t t d ith F M k 4 0 4

C H A P T E R 1

Human Interface Principles

4

The Human Interface Design Principles

At Apple Computer, products are designed with a number of basic principles
of human-computer interaction in mind. This chapter discusses the human
interface design principles that describe key considerations for the design
decisions you make for your product.

Having technical knowledge of the Macintosh user interface is a key factor in
product design, but understanding the theories behind the user interface can
help you create an excellent product. This chapter provides a theoretical base
for the wealth of practical information on implementing the Macintosh
interface elements presented in Part Two.

The Human Interface Design Principles 1

This section presents a set of principles useful for designing products for
Macintosh computers. The reason for defining a set of design principles is to
help you build a product that meets the standards of the Macintosh computer.
Also, these principles can help clarify what you can do in order to design a
product based on what is known about people and how they operate in
the world.

You’ll undoubtedly find out that you can’t design in accordance with all of
the principles all of the time. In that type of situation, you’ll have to make a
decision based on which principle or set of principles is most important in the
context of the task you’re solving.

Metaphors 1

You can take advantage of people’s knowledge of the world around them by
using metaphors to convey concepts and features of your application. Use
metaphors involving concrete, familiar ideas and make the metaphors plain,
so that users have a set of expectations to apply to computer environments.
For example, people often use file folders to store paper documents in their
offices. Therefore, it makes sense to people to store computer documents in
computer-generated folders that look like file folders. People can organize
their hard disks in a way that’s analogous to the way they organize their
file cabinets.

Met
ap

hors

S

,

Z

X

C H A P T E R 1

Human Interface Principles

The Human Interface Design Principles

5

1

H
um

an Interface P
rinciples

The desktop is the primary metaphor for the Macintosh interface. It appears
to be a surface on which people can keep tools and documents. Several other
metaphors are integrated into the desktop metaphor. It makes sense in the
context of a desktop environment to include folders and a trash can (even
though most trash cans don’t sit on the desktop). Menus are an extension of
the desktop metaphor. People can connect the idea of making choices from a
computer menu with making choices from a restaurant menu. Although
people don’t keep restaurant menus on the edge of their desks, using the term

menu

 in the computer environment reinforces the idea that people can use
computer menus to make choices.

Metaphors in the computer interface suggest a use for something, but that use
doesn’t define or limit the implementation of the metaphor. For example, a
paper file folder has a limited storage capacity, but a folder on the Macintosh
doesn’t have to be constrained by the same limitations. Computer folders can
hold a limitless number of files (up to the storage capacity of the hardware),
and this is an advantage that the computer can offer. Try to strike a balance
between the metaphor’s suggested use and the ability of the computer to
support and extend the metaphor.

Direct Manipulation 1

Direct manipulation allows people to feel that they are directly controlling the
objects represented by the computer. According to the principle of direct
manipulation, an object on the screen remains visible while a user performs
physical actions on the object. When the user performs operations on the
object, the impact of those operations on the object is immediately visible. For
example, a user can move a file by dragging an icon that represents it from
one location to another or can position a cursor in a text field by directly
clicking the location where the cursor should be placed.

Dire
ct

 M
an

ip
ulat

io
n

C H A P T E R 1

Human Interface Principles

6

The Human Interface Design Principles

Figure 1-1 shows a folder icon being dragged across the desktop as an
example of direct manipulation on the computer.

Figure 1-1

Direct manipulation

In addition to expecting physical results from their actions, users want their
tools to provide feedback. For example, when a drawing tool is moved, a line
appears in the document on which the user is working. Users want to see
what actions are available at any given moment. If grave consequences
might follow from any of those actions, they want to know about those
consequences—before any damage is done and while they can still change
their minds. They want clues that tell them that a particular command is
being carried out, or, if it cannot be carried out, they want to know why
not and what they can do instead. Users also want topics of interest to
be highlighted.

Animation, when used sparingly, is one of the best ways to show a user that a
requested action is being carried out. For example, animated pointers reassure
the user, during a lengthy process such as saving a large document to disk,
that the computer is completing the task without any problems.

C H A P T E R 1

Human Interface Principles

The Human Interface Design Principles

7

1

H
um

an Interface P
rinciples

See-and-Point 1

On the desktop, users perform actions by choosing from alternatives
presented on the screen. Users interact directly with the screen, selecting
objects and performing activities by using a pointing device, typically a
mouse, to point at elements on the desktop.

The Macintosh desktop works according to two fundamental paradigms. Both
paradigms share two basic assumptions: that users can see on the screen what
they’re doing and that users can point at what they see. The paradigms are
based on a general form of user action: noun-then-verb.

In one paradigm, the user selects an object of interest (the noun) and then
chooses the actions to be performed on the object (the verb). All actions
available for the selected object are listed in the menus, so users who are
unsure of what to do next can refresh their memory by scanning through the
menus. At any time, users can choose any available action without having to
remember any particular command or name. For example, a user clicks a
document icon (the noun) and then prints (the verb) the document by
choosing Print from the File menu.

In the second paradigm, the user drags an object (the noun) onto some other
object that has an action (the verb) associated with it. On the desktop, for
example, the user can drag icons to the Trash, to folders, or to disks. The user
doesn’t choose an action from the menus, but it’s clear what happens to one
object when it’s placed on another object. For example, dragging a document
icon to the Trash means that the user wants to discard that document. For this
metaphor to work, the user must recognize what an object such as the Trash is
for, so it is especially important that objects look like what they do in the real
world. If the document icon didn’t look like a piece of paper with text and the
Trash didn’t look like the place to discard something, the interface would be
more difficult to use.

Consistency 1

Consistency in the interface allows people to transfer their knowledge and
skills from one application to any other. Use the standard elements of the
Macintosh interface to ensure consistency within your application and to
benefit from consistency across applications.

Effective applications are consistent in a number of different ways.
Consistency in the visual interface helps people learn and then easily
recognize the graphic language of the interface—for example, once users
know what a checkbox looks like, they don’t have to learn another symbol for
making choices. Consistency in the behavior of the interface means that
people have to learn how to do things such as clicking and pointing only
once; then they can explore new applications or new types of features using

See
 an

d P
oin

t

Consis
te

ncy

C H A P T E R 1

Human Interface Principles

8

The Human Interface Design Principles

skills that they already have. In general, consistency benefits the typical user,
who usually divides working time among several applications, and it benefits
software developers because their users can build on prior experiences with
elements in other applications when learning how to use a new application.

The following are some questions you can ask yourself when thinking about
consistency in your product.

Is your product consistent

■

within itself?

■

with earlier versions of your product?

■

with Macintosh interface standards?

■

in its use of metaphors?

■

with people’s expectations?

Note that the most difficult kind of consistency to achieve is matching
people’s expectations. Because you often face a wide audience and a range of
expertise, it’s difficult to meet the expectations of everyone. You can address
this problem by carefully weighing the consistency issues in the context of
your target audience and their needs.

WYSIWYG (What You See Is What You Get) 1

Don’t hide features in your application by using abstract commands. People
should be able to see what they need when they need it. For example, menus
present lists of commands so that people can see their choices instead of
having to remember and type command names.

People should be able to find all the available features in your application.
If you find a need to initially “hide” features, do it in a way that gives people
information about where they can find more choices. A stepped interface,
by revealing relevant information to users in steps, shows the choice most
users want most of the time while providing a way for the user to get more
choices. For information on stepped interfaces, see the guidelines in the
section “Using Progressive Disclosure” on page 35 in Chapter 3, “Human
Interface Design and the Development Process.”

W
YSIW

YG

C H A P T E R 1

Human Interface Principles

The Human Interface Design Principles

9

1

H
um

an Interface P
rinciples

Make sure that there is no significant difference between what the user sees
on the screen and what the user receives after printing. Let the user be in
charge of both the content and the format (spatial layout as well as font
choices) of the document. When the user makes changes to the document,
quickly and directly display the results; the user shouldn’t have to wait for a
printout or make mental calculations of how the document shown on the
screen will look when it appears on the printed page.

User Control 1

Allow the user, not the computer, to initiate and control actions. People learn
best when they’re actively engaged. Too often, however, the computer acts
and the user merely reacts within a limited set of options. In other instances,
the computer “takes care” of the user, offering only those alternatives that are
judged “good” for the user or that “protect” the user from having to make
detailed decisions. This approach mistakenly puts the computer, not the user,
in control.

The key is to create a balance between providing users with the capabilities
they need to get their work done and preventing them from destroying data.
For situations in which a user may destroy data accidentally, you can help the
user by providing warnings, usually in the form of an alert box, to notify
users of a potentially undesirable situation and still allow them to proceed,
if they confirm that this is what they want. This approach “protects” users but
allows them to remain in control.

Feedback and Dialog 1

Keep users informed about what’s happening with your product. Provide
feedback as they do tasks and make that feedback as immediate as possible.
When a user initiates an action, provide some indicator, visual or auditory
(or both), that your application has received the user’s input and is operating
on it. Provide as much information as possible about how long operations
take. When your application can’t respond to user input because it’s
processing a different task, inform the user of what to expect and describe any
delays, why they occur, and how long they’ll take. Also, tell the user how to
get out of the current situation whenever possible.

Provide direct, simple feedback that people can understand. Most people
would not know what to do if they saw this message “The computer
unexpectedly crashed. ID = 13.” It would be very helpful if the message
spelled out exactly which situation caused the error—for example, not
enough memory was available for the computer to complete the task—so that
the user could understand how to avoid the situation in the future.

Use
r C

ontro
l

Fee
dbac

k a
nd D

ial
og

C H A P T E R 1

Human Interface Principles

10

The Human Interface Design Principles

Figure 1-2 shows an example of a message that doesn’t do anything to help
the user and an example of a message that provides useful and helpful
information to the user.

Figure 1-2

An example of a bad message and an example of a helpful message

Forgiveness 1

You can encourage people to explore your application by building in
forgiveness. Forgiveness means that actions on the computer are generally
reversible. People need to feel that they can try things without damaging the
system; create safety nets for people so that they feel comfortable learning and
using your product.

Always warn people before they initiate a task that will cause irretrievable
data loss. Alert boxes are a good way to warn users of this kind of situation.
Note, however, that when options are presented clearly and feedback is
appropriate and timely, learning how to use a program should be relatively
error-free. This means that frequent alert boxes are a good indication that
something is wrong with the program design.

Forg
ive

nes
s

C H A P T E R 1

Human Interface Principles

The Human Interface Design Principles

11

1

H
um

an Interface P
rinciples

Perceived Stability 1

Computers often introduce a new level of complexity for people. If people are
to cope with this complexity, they need some stable reference points. The
Macintosh interface is designed to provide a computer environment that is
understandable, familiar, and predictable.

To give users a visual sense of stability, the Macintosh interface provides the
desktop, a two-dimensional space on which objects are placed. It also defines
a number of consistent graphics elements (menu bar, window border, and so
on) to maintain the illusion of stability. Note that it is the

perception

 of stability
that you want to preserve, not stability in any strict physical sense.

To give users a conceptual sense of stability, the interface provides a clear,
finite set of objects and a clear, finite set of actions to perform on those objects.
Even when particular actions are unavailable, they are not eliminated from a
display but are merely dimmed.

Aesthetic Integrity 1

Aesthetic integrity means that information is well organized and consistent
with principles of visual design. This means that things look good on the
screen and the display technology is of high quality. Since people spend a lot
of their time working while looking at the computer screen, design your
products to be pleasant to look at on the screen for a long time. You may want
to consider investing some of your resources in a graphic designer; the skills a
graphic designer can bring to your product design are well worth the expense.

Keep the graphics of the display simple. The number of elements and their
behaviors should be limited to enhance the usability of the interface.
Graphics—icons, windows, dialog boxes, and so on—are the basis of effective
human-computer interaction and must be designed with that in mind. Don’t
clutter the screen with too many windows, overload the user with complex
icons, or put dozens of buttons in dialog boxes.

Make sure to follow the graphic language of the interface and don’t
change the meaning of standard items. For example, if you sometimes use
checkboxes for multiple choices and other times for exclusive choices,
you dilute the meaning of the element.

Don’t use arbitrary graphic images to represent concepts. When you add
nonstandard symbols to menus, dialog boxes, or other elements, the meaning
may be clear to you, but to other people the symbols may appear as
something different and distracting. If you need symbols other than standard
ones, use graphic images that convey meaning through representation,
analogy, or metaphor. For more information on designing additional
appropriate symbols, see the section “Extending the Interface” in Chapter 3,
“Human Interface Design and the Development Process,” beginning on
page 38.

Per
ce

ive
d S

ta
bilit

y

Aes
th

et
ic

In
te

grit
y

C H A P T E R 1

Human Interface Principles

12

The Human Interface Design Principles

Figure 1-3 shows an example of how confusing arbitrary symbols can be and
how much clearer a simple menu with standard symbols can be.

Figure 1-3

Don’t use arbitrary graphic elements

In general, match the graphic element with users’ expectations of its behavior.
Push buttons appear as though they push in rather than slide sideways.
Indicators in sliders slide along to change values. These behaviors map
to people’s expectations of how these elements behave.

Give users some control over the look of their computer environments. This
allows them to display their own style and individuality. It also reduces the
burden on the designer of trying to create an interface that appeals to every
user. When a user sets up his or her computer environment in a certain
layout, it should stay that way until the user changes it.

Modelessness 1

For the most part, try to create modeless features that allow people to do
whatever they want when they want to in your application. Avoid using
modes in your application because a mode typically restricts the operations
that the user can perform while it is in effect. It locks the user into one
operation and doesn’t allow the user to work on anything else until that
operation is completed. In contrast, modelessness allows the user to perform
more than one operation at a time and thus gives the user more control over
what he or she can do on the computer and in an application. As much as
possible, you want to preserve the user’s ability to be in control of the task
and the order of operations.

This is not to say that you should never use modes in applications. Sometimes
using a mode is the best way out of a particular problem. Most acceptable
modes fall into one of the following categories:

■

Long-term modes, such as doing word processing as opposed to graphics
editing. In this sense, each application is a mode.

Modele
ss

nes
s

C H A P T E R 1

Human Interface Principles

Additional Issues to Consider

13

1

H
um

an Interface P
rinciples

■

Short-term “spring-loaded” modes, in which the user must constantly do
something to maintain the mode. Examples are holding down the mouse
button to scroll text or holding down the Shift key to extend a text selection.

■

Alert modes, in which the user must rectify an unusual situation before
proceeding. Keep these modes to a minimum.

Other modes are acceptable if they do one of the following:

■

They emulate a familiar real-life situation that is itself modal. For example,
choosing different tools in a graphics application resembles the real-life
choice of physical drawing tools.

■

They change only the attributes of something, not its behavior. The
boldface and underline modes of text entry are examples.

■

They block most other normal operation of the system to emphasize
the modality, as in error conditions incurable through the software
(for example, a dialog box that disables all menu items except Close).

If an application uses modes, there must be a clear visual indicator of the
current mode, and the indicator should be near the object most affected by the
mode. A good example is the changing pointer in many Macintosh graphics
applications; depending on the function (“mode”) the user has selected, the
pointer looks like a pencil, a paintbrush, a spray can, or an eraser. It should
also be very easy for users to get into or out of the mode (such as by clicking a
different palette symbol).

Additional Issues to Consider 1

This section discusses several other issues that are helpful to think about
when you design your product.

Knowledge of Your Audience 1

Identifying and understanding your target audience are among the most
important first steps when you start designing your product. To create a
product that people can and will use, study the people who make up your
target audience.

It’s useful to create scenarios that describe a typical day in the life of a person
you think uses the type of product you’re designing. Think about the different
work spaces, tools, and constraints and limitations that people deal with. You
can also visit actual work places and study how people do their jobs.

Analyze the steps necessary to complete each task you anticipate people
wanting to accomplish. Then design your product to facilitate those tasks,
using a step-by-step approach by thinking of how a person might get from
one place to the next in a logical fashion.

Kno
wled

ge
 of

 A
ud

ien
ce

C H A P T E R 1

Human Interface Principles

14

Additional Issues to Consider

Involve users throughout the design process and observe them working in
their environment. Use people who fit your audience description to test your
prototypes and development products. Listen to their feedback and try to
address their needs in your product. Develop your product with people and
their capabilities, not computers and their capabilities, in mind. For more
information, see the section “Involving Users in the Design Process” in
Chapter 3, “Human Interface Design and the Development Process,”
beginning on page 41.

Accessibility 1

The computer should be accessible to everyone who chooses to use it. There
are likely to be members of your target audience who are different from the
“average” user that you envision. Users will undoubtedly vary in their ages,
styles, and abilities. They may also have physical or cognitive limitations,
linguistic differences, or other differences you need to consider. Identify how
the individuals in your target audience differ and what special needs they
may have.

Make it easy for users to interact with your product using different input
devices and output devices. If you develop specialized hardware and
software for people with physical limitations, work with application
developers so that your products are supported by their software.

Make your application accessible to people around the world by including
support for worldwide capabilities in your designs from the beginning of
your development process. Take stock of the cultural and linguistic needs and
expectations of your target audiences. For more information, see the section
“Worldwide Compatibility” beginning on page 16 in Chapter 2, “General
Design Considerations.”

More information about universal access appears throughout the book where
appropriate. For specific information, see the section “Universal Access”
beginning on page 24 in Chapter 2, “General Design Considerations.”

Acc
es

sib
ilit

y

15

C H A P T E R 2

2

General Design

Considerations 2

Figure 2-0
Listing 2-0
Table 2-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 2

General Design Considerations

16

Worldwide Compatibility

This chapter discusses several areas to consider as you begin your
development process. These considerations cover three broad areas:

■

worldwide compatibility—support for multiple script systems and
multicultural sensitivity to your target audience

■

universal access—provisions for people with disabilities to use your
software by means of alternative input devices or output devices

■

collaborative computing—support for people working in groups on
local networks or people using computers over remote networks

If you are aware of the factors that influence worldwide compatibility,
universal access, and collaborative computing, you can plan ahead. By
incorporating support for these capabilities from the beginning of your
development process, you can save time, money, and development problems
and end up with a product that is immediately useful to a wide range
of people.

Worldwide Compatibility 2

Macintosh system software is designed to address the complex problems
you’ll encounter when you design your applications to be compatible with
regional, linguistic, and writing system differences around the globe. The
Macintosh script management system (which is one or more script systems,
the Script Manager, and other text-handling managers) allows your
application to handle text in many different languages.

It’s much easier to include worldwide compatibility from the beginning
of your development process than to try to incorporate support for script
systems after your product is complete. This may mean that you create your
application so that it is easy to localize, or adapt for use in a specific area.
Localizing software involves translating an application’s menus, dialog boxes,
alert boxes, and content areas into a language or regional dialect.

The following sections outline a number of issues to consider before you
develop software for worldwide use. For a complete description of the issues
and a discussion of technical implementation, see

Inside Macintosh: Text

 and

Inside Macintosh: Overview

. These books discuss the routines that assist you in
developing your application for worldwide use. See

Guide to Macintosh
Software Localization

 (available from APDA) for details on script systems and
the localization process. See the section “APDA” on page 332 in Appendix A,
“Resources,” for information about how to contact APDA.

C H A P T E R 2

General Design Considerations

Worldwide Compatibility

17

2

G
eneral D

esign C
onsiderations

Cultural Values 2

Make sure that visible interface elements can be localized for other regions
around the world. Whenever you design a user interface, consider that
differences exist in the use of color, graphics, calendars, text, and the
representation of time in various regions around the world. For example,
different cultures use different objects to store documents. In the United
States, file folders are flat and have tabs that can indicate the contents of the
folder. In Europe, file folders are more like narrow cardboard boxes. You may
want to localize elements of the user interface, such as graphics or the colors
of text in versions of your application designed for different regions.

Graphics have the potential to enhance your application, but they can
also be offensive. In addition to colors, cultures assign varying values and
characteristics to living creatures, plants, and inanimate objects. For example,
in the United States the owl is a symbol of wisdom and knowledge, whereas
in Central America the owl represents witchcraft and black magic. It’s a good
idea to avoid the use of seasons, holidays, or calendar events in software that
you expect to distribute worldwide. Also avoid using graphics that represent
holidays or seasons, such as Christmas trees, pumpkins, or snow—or be sure
that the symbols can be localized.

Different calendars are used to mark time around the world. The
United States and most of Europe observe time according to the Gregorian
calendar. The traditional Arabic calendar, the Jewish calendar, and the
Chinese calendar are lunar rather than solar. Often time is marked according
to one calendar for business and government purposes and according to
a different calendar for religious events. Make your application flexible in
handling dates; you also may want to provide the user with a way to change
the representation of time. Use the text utilities to handle numbers, dates,
and sorting.

Resources 2

It’s essential to store region-dependent information in resources so that text
the user sees can be translated during localization without modification of
your application’s code. When you create resources, consider text size,
location, and direction. Text size varies in different languages. Also,
depending on the script system, the direction of text may change. Most
Middle Eastern languages read from right to left. Text location within a
window should be easy to change.

C H A P T E R 2

General Design Considerations

18

Worldwide Compatibility

Use the Macintosh script management system to handle these situations.
See

Inside Macintosh: Overview

 and

Inside Macintosh: More Macintosh Toolbox

 for
more information on using resources to store data the user sees.

Language Differences 2

Translating text is a delicate task and can often cause confusion, so be wary
of using colloquial phrases or nonstandard usage and syntax. Carefully
choose your words for command names in menus and for messages in dialog
boxes, alert boxes, and help balloons. When translated, text can become up to
50 percent larger than U.S. English text. Text needs room to grow up, down,
and sideways. Figure 2-1 shows Finder menu bars in several languages.
Compare the different lengths of the menu titles that have the same meaning.

Figure 2-1

Menu bars in different languages

C H A P T E R 2

General Design Considerations

Worldwide Compatibility

19

2

G
eneral D

esign C
onsiderations

Potential grammar problems may arise with error messages and the user
programming structure of languages such as HyperTalk. Use complete
sentences whenever possible. Don’t use phrases that you then concatenate
to create sentences. The word order of messages may become completely
different in translation, rendering such a message nonsensical when
translated. For example, word order in German usually places the verb at the
end of a sentence. See

Inside Macintosh: Text

 for information on technical
implementation.

Text Display and Text Editing 2

Macintosh system software allows users to display different scripts at the
same time. A script system consists of resources that support a writing system
for a human language. Writing systems may differ in the direction in which
their characters and lines flow, the size of the character set used, and whether
certain characters are context dependent. Whenever a user installs a
non-Roman script system, at least two scripts are available, the Roman script
that is present on all Macintosh computers and the non-Roman script.

No matter what level of worldwide text support you provide, it’s important
to avoid four common assumptions:

■

Characters aren’t necessarily 1 byte; they can be 2 bytes.

■

Text isn’t always left-aligned and read from left to right.

■

Text isn’t always read by a person; it may be spoken through a
text-to-speech converter.

■

System and application fonts aren’t always Chicago and Geneva.

For specific instructions on how to handle 2-byte character codes,
cursor controls, multiple sets of numerals, tokens, and highlighting
mixed-directional text, see

Inside Macintosh: Text.

 In addition, see that
book and the chapter on worldwide software in

Inside Macintosh: Overview

for thorough discussions of text display and editing.

C H A P T E R 2

General Design Considerations

20

Worldwide Compatibility

Default Alignment of Interface Elements 2

When dialog boxes are localized, the text in the dialog box may become
longer or shorter. Also, the alignment of controls in the dialog box may
vary with localization. For example, Arabic and Hebrew are written from
right to left, so the alignment of items in an Arabic or a Hebrew dialog box
is generally right to left, just as dialog box items in English or Russian are
generally left to right. Figure 2-2 shows examples of English and Arabic
dialog boxes.

Figure 2-2

English and Arabic dialog boxes

When the alignment of items is reversed, it’s important that the elements
appear vertically aligned. Therefore, when you create dialog box items,
make sure that their display rectangles are the same size. Figure 2-3 shows
examples of the incorrect and correct ways to size display rectangles in a
dialog box.

Find dialog box "English" More Choices dialog box "English"

C H A P T E R 2

General Design Considerations

Worldwide Compatibility

21

2

G
eneral D

esign C
onsiderations

Figure 2-3

Dialog boxes with display rectangles that are different sizes and the

same size

Figure 2-4 shows the same dialog boxes with the alignment of their elements
reversed, as they would appear in a right-to-left script system. This figure
shows that when the controls are reversed, they don’t align properly, which
is why it’s important to create display rectangles of the same size.

Figure 2-4

Right-to-left alignment of dialog box items

Display rectangles

are different sizes.

Display rectangles

are same size.

Controls not

aligned.

Controls correctly

aligned.

C H A P T E R 2

General Design Considerations

22

Worldwide Compatibility

Another common problem occurs when dialog box items are longer than the
boundaries of the dialog box. In this case, when the text direction is reversed,
the text appears outside of the dialog box and isn’t visible on the screen. Be
sure to make your dialog box items shorter than the width of the dialog box.

Keyboards 2

As stated previously, users can install multiple script systems. If the
Operating System determines that all conditions are met, it enables the
script system, making it available to users. A script system can contain more
than one keyboard layout that maps character codes to keys on a physical
keyboard, and it can support more than one attached physical keyboard.
Double-byte scripts contain input methods (which allow users to enter
double-byte characters) and keyboard layouts. See

Inside Macintosh: Text

for information on installing and enabling script systems and keyboard
resources.

The Operating System adds a Keyboard menu when more than one script
system is present or a localizable resource flag is set. This menu simplifies
the user’s access to input methods, keyboards, and scripts. The icon for the
Keyboard menu appears between the icons for the Help menu and the
Application menu. A small keyboard icon appears next to each keyboard
layout name, and the icon of the active keyboard layout appears in the menu
bar. As Figure 2-5 shows, the Keyboard menu displays a list of installed
keyboard layouts for each enabled script system. For double-byte
scripts, the Keyboard menu displays a list of input methods instead of
keyboard layouts.

A keyboard icon represents a localized keyboard layout or an input method.
If you develop keyboards, keyboard resources, or input methods, you
must provide customized icons like these. For detailed guidelines about
how to design a keyboard icon, see “Keyboard Icons” on page 252 in
Chapter 8, “Icons.”

The Keyboard menu groups the keyboard layouts and input methods by
script system. These groups are separated by dotted lines on black-and-white
screens or gray lines on color screens. Figure 2-5 shows an example of the
Keyboard menu with the keyboard icon and layout for the active script
system, and the script boundary area of the menu. Only one keyboard layout
or input method, and one physical keyboard are active at a time; the active
condition is indicated by a checkmark in the menu.

C H A P T E R 2

General Design Considerations

Worldwide Compatibility

23

2

G
eneral D

esign C
onsiderations

Figure 2-5

The Keyboard menu

Fonts 2

When you write software that supports non-Roman scripts, don’t make
assumptions about font sizes; let the user choose them. For example, system
or application fonts may be preset to 12 or 18 points. A font with a resource
ID of 0 is not always set to Chicago, nor are system fonts always Chicago
and Geneva. Use system and application fonts when the user cannot
choose the font, but

don’t

 hard code Roman values. If you must assign
font sizes, use the Script Manager to get a script system’s appropriate fonts
and sizes. Use the proper font names as defined by worldwide system
software. Whenever possible, display font names in the proper script and
font in your Font menu.

Script boundaries

Keyboard layout

for active script

Keyboard icon for

active keyboard layout

C H A P T E R 2

General Design Considerations

24

Universal Access

In some scripts and fonts, diacritical marks may extend beyond the ascent
line. Other fonts, such as Japanese fonts, contain glyphs that extend to the
boundaries of the enclosing rectangle of the font, or to

both

 minimum-y and
maximum-y lines. Leave room for space between lines of text and between
the top and bottom lines of any enclosing rectangle. See

 Inside Macintosh: Text

for more information. Figure 2-6 shows some glyphs that demonstrate the
boundaries you need to allow for in lines of text.

Figure 2-6

The boundaries of a font

Universal Access 2

Providing universal access means creating products that all people can use,
including people who have a disability. Approximately forty-three million
people in the United States alone have some type of disability. Computers
hold tremendous promise for people with many kinds of disabilities. In terms
of increasing productivity and mobility, computers can have a far greater
impact on people with a disability than on other users.

It’s a good idea to build in support for universal access for several reasons.
First, United States law mandates that computer manufacturers that provide
office equipment to their organizations and agencies provide access for users
with a disability. Second, it makes sense to plan ahead and incorporate
support for universal access from the beginning of your design process rather
than having to add it after your product is done.

Maximum y-value

Minimum y-value

Base line

Ascent line

Descent line

Acc
es

sib
ilit

y

C H A P T E R 2

General Design Considerations

Universal Access

25

2

G
eneral D

esign C
onsiderations

When you think about designing for the wide range of abilities in your
target audience, think about increasing the amount of productivity for
the entire audience and be careful not to overcompensate for the special needs
of certain members of the group. Don’t add features for disability access that
get in the way of able users. The features you include should be additional
ways to access the hardware or software, not primary ways of input and
output that make it more difficult for other, nondisabled users.

In general, if you follow the design principles described in Chapter 1,
“Human Interface Principles,” beginning on page 3,

you will meet the needs
of most of your users. This section describes the main categories of disabilities
and gives suggestions for specific design solutions and adaptations you
can make. For more information, contact Apple’s Worldwide Disability
Solutions Group.

People With a Physical Disability 2

People who have a physical disability that requires additional access methods
include individuals with congenital anomalies, spinal cord injuries, or
progressive diseases and individuals who are without the use of a hand or an
arm. People in this group mainly have difficulty with computer input devices,
such as the mouse or keyboard, and with handling storage media.

If you create hardware, make sure that you don’t impose any physical barriers
to storage media that would impede someone with limited or no use of the
hands or arms. For example, a disk drive with a latch would be difficult to
open for a user who interacts with the computer by holding a pencil in
the mouth.

If you can provide a mouse method and an alternative keyboard method for
accomplishing tasks in software or hardware, you can accommodate most
people’s physical needs. (Note that this doesn’t mean you should assign a
keyboard equivalent to every menu item.)

People With a Visual Disability 2

People with a visual disability have the most trouble with the output display,
the screen. Fortunately, the software capability to handle different text sizes
can make it easier to support people with a vision disability. You can design
your software with a “zoom” feature that increases the size of characters or
graphics on the screen.

Color-vision deficiencies create problems for many people. Don’t create
software that uses only color coding to convey important information.
Color coding should always be redundant to other types of cues, such as text,
position, or highlighting. If you allow users to select the colors your software
uses to convey information, they will choose colors that are visually
appropriate for their needs.

C H A P T E R 2

General Design Considerations

26

Universal Access

People With a Hearing Disability 2

People with a hearing disability cannot hear auditory output at normal
volume levels or at all. If important cues are given with sound, they should be
visually available as well. Software should never rely solely on sound to
provide important information. If you don’t automatically supplement all
audible messages with visual cues, allow the user to choose visible messages
instead of audible ones. For example, in the Speaker Volume control in the
Sound control panel, the system beep can be set to 0, which has the effect
of flashing the menu bar instead of playing a sound to notify the user of a
warning condition. Figure 2-7 shows the Sound control panel with its
Speaker Volume control set to flash the menu bar as a visual clue.

Figure 2-7

The Sound control panel

To indicate activity, hardware should have visible lights in addition to
the sound generated by the mechanisms. Hardware that specifically produces
sound should facilitate external amplification. For example, including a jack
for external speakers or headphones allows people to amplify sound to an
appropriate level.

C H A P T E R 2

General Design Considerations

Collaborative Computing

27

2

G
eneral D

esign C
onsiderations

People With a Speech or Language Disability 2

People who have a speech or language disability may have normal to
above-average cognitive ability but no capacity for oral communication.
The speech or language disability may be caused by an injury or a stroke,
for example. These people use computers for augmentative and assistive
communication. For example, they can use a computer to generate speech.
Many people with speech or language disabilities are not able to use the
standard keyboard and mouse because of some associated physical disability.
To address the needs of these people, augmentative and assistive
communications software is designed to be used with a variety of alternative
input devices. Such software communicates with applications, windows,
dialog boxes, and the desktop by

emulating

 keyboard and mouse input. Don’t
create any barriers in your application to this type of communication, such as
designing your application to communicate

directly

 with the hardware
(especially the keyboard and mouse), or the augmentative and assistive
software won’t work with your product.

People With a Seizure Disorder 2

Some people with a seizure disorder are sensitive to certain flicker
frequencies, which may cause them to go into seizure. To avoid this problem,
avoid refresh rates in the range from 10 to 50 Hz. The most problematic part
of this frequency range is from 15 to 30 Hz.

Collaborative Computing 2

Collaborative computing

 is a shared computing environment or application
that facilitates communication and teamwork among groups of people. These
people have specific needs that may have ramifications for your software.

When you design products for use by groups of people, the products should
follow all the standard guidelines and principles of the desktop interface.
There are several additional concerns to consider when you design
collaborative or multiuser interfaces. Your main concern is to ensure a
good user experience for groups of people.

C H A P T E R 2

General Design Considerations

28

Collaborative Computing

Concern for Other Users 2

When people work in groups, sharing information among computers over
networks, usually one person controls some resource that other people are
using simultaneously. A

shared resource

 may be a document with data in it,
an application, a storage medium, or some other resource. The user in control
of the shared resource needs to be aware of the consequences to other current
users, particularly in situations in which the user in control wants to
cease sharing or disconnect other users from the shared resource. Create a
structure that allows clear communication about the shared resource between
the users in a group. Figure 2-8 shows an example of a message that users
receive when they are connected to a file server that is closing down.
Receiving such a message allows them to finish up their work and disconnect
without losing any data.

Figure 2-8

A shutdown message

User Identification 2

When people share information, it is important to be able to identify all the
people who are participating in the collaboration. You should allow the owner
of shared resources to be able to obtain as much information as possible, such
as the name, location, and access privileges, about the people who are using
the shared resource. Finding out that another person is using a machine as a
“guest” provides no useful information and prevents the owner from further
communication in case of a problem or situation that requires it.

Access Privileges 2

Collaborative products typically allow users to share data with other people,
providing different access rights to different people. For example, one user
may want to allow some people to change a document and allow other
people simply to read it. The owner may want to restrict some people from
seeing the document at all.

Fee
dbac

k a
nd D

ial
og

C H A P T E R 2

General Design Considerations

Collaborative Computing

29

2

G
eneral D

esign C
onsiderations

Provide a simple, clear way to assign access privileges to shared information
and then clearly display to users what those assigned privileges are. One
typical problem with multi-user programs is that they have an interface that
makes it easy to provide unintentional access to other users without making
this mistake apparent. Try to avoid this compromised security state by
making it clear to users what information is shared and available to others.

Passwords 2

In addition to access privileges, password schemes often protect shared
resources such as collective data. When you provide a password system,
make the interface to it as clear as possible. Follow these guidelines
concerning passwords:

■

Allow passwords to contain both alphabetic and numeric characters.

■

Allow passwords to be as long as is practical.

■

Never display the password on the screen in clear text, not even while the
user is typing it. A common method of providing feedback to the user is to
display a bullet character for each character that the user types. When the
user edits a password, the Delete key erases one character in a system that
displays a character for each character typed.

■

Provide a way for the user to verify the password when it is entered or
changed. Requiring the user to enter the password two times minimizes
the possibility of a typing error. If a person makes a mistake in entering the
password but doesn’t have to verify it, he or she will then be denied access
to the data.

Figure 2-9 shows the initial dialog box a user sees when connecting to an
AppleShare file server. It shows the password field with bullets in it to
represent typed characters.

Figure 2-9

The AppleShare connect dialog box

C H A P T E R 2

General Design Considerations

30

Collaborative Computing

Data Encryption for Security 2

When people share information with collaborative or networking products,
users need to be able to trust that the information is secure from unwanted
intruders. If data is stored on a communal file server or if it is sent across
network connections, it may easily be inspected by unauthorized users.
Therefore, you should encrypt sensitive data, such as passwords, in some way
to prevent this intrusion from happening. Make sure you let the user know
whether their data has been encrypted or not; they need to know if their data
is protected from other users.

Clear Communications 2
Collaborative computing extends the interface from the realm of
human-to-computer communication to human-to-human communication.
When people communicate over a network, certain aspects of everyday
social interaction, such as voice inflection, gesture, facial expressions, and
body language, are lost. You can enhance people’s ability to communicate
clearly on the computer by supporting the ability to include contextual clues,
including font styles and sizes, punctuation, colors, graphics, sounds,
and animation.

Displaying the Current State of Data 2
When many people work on the same data, it must be clear to everyone what
is happening at all times. Because some data may be visible to more than one
person at a time but editable by only one person, you need to provide a visual
clue about the current state of the data. (Make sure that the visual clue is
accessible to users with a visual disability, particularly if they require the aid
of some kind of special device or software.) The current state of the data may
vary from moment to moment or from session to session. If one person is
editing the data, other people should not be able to edit it at the same time.
It is very important to make clear to all users which information they may
change and which they may not. If you can provide more information to users
about why some information is presently unavailable for change, it will
save them from wasting time trying to change unavailable information,
for example.

C H A P T E R 2

General Design Considerations

Collaborative Computing 31

2
G

eneral D
esign C

onsiderations

When there is a change to data that is visible to more than one user at a time,
display the change immediately. For example, on an AppleShare volume
several people may have windows open that display the contents of the
volume. If one user creates a document on the volume, its icon appears
immediately in all the open windows on the volume. Such feedback is
very important to people who are working cooperatively.

Communicating With Other Environments 2
In collaborative communications, users may be interacting with other kinds of
computers and computing environments. In most cases, these environments
have human-computer interfaces very different from that of the Macintosh
computer, and they may operate in vastly different ways. To whatever extent
possible, Macintosh software should operate according to the user interface
guidelines and should be consistent with other Macintosh applications.

When people working on different kinds of computers or in different
computing environments communicate with one another, be aware that
messages may lose a lot of their contextual clues. For example, if the person
on the receiving end does not have the fonts that the sender has, the message
sent may appear quite different than anticipated. As much as possible, try to
preserve the integrity of communication in order that messages seen by
collaborators are as similar as possible. If you know that some data will be
lost when it migrates from one system to another, notify the user on the
receiving end.

Network Transparency 2
Most collaborative products are based on a number of sophisticated
networking and communications technologies. The details of networking and
data transport can be very complicated, technical, and often arcane. Ideally,
make your product as self-configuring as possible so your users won’t need to
confront the technological details of the network. Also, try to make interacting
with remote resources as simple as using local resources.

Fee
dbac

k a
nd D

ial
og

W
YSIW

YG

33

C H A P T E R 3

3

Human Interface Design and

the Development Process 3

Figure 3-0
Listing 3-0
Table 3-0

Design

Usability Testing

Prototype

Thi d t t d ith F M k 4 0 4

C H A P T E R 3

Human Interface Design and the Development Process

34

Design Decisions

This chapter discusses aspects of the product development process, including
ways you can incorporate human interface design into that process. First, this
chapter presents several issues to consider when deciding on the features you
want to include in your product. Second, this chapter provides suggestions
for how to make your product simple and easy to use; too often, users are
confused by unnecessary complexity in an application. Next, this chapter
describes how to extend the interface when your application requires
functionality that isn’t covered by existing user interface elements. Finally,
this chapter discusses the benefits of involving users throughout the entire
phase of your product development process.

Design Decisions 3

For design decisions regarding features in your application, you need to
weigh the costs, which are not all financial, against the potential benefits.
Every time you add a feature to your application, think about the
following factors:

■

Your application gets larger.

■

Your application gets slower.

■

Your application’s human interface gets more complex.

■

You spend time in development rather than refinement of existing features.

■

Your application becomes more difficult to document.

■

You increase the number of possible user errors.

■

Every new feature can have an impact on an existing feature.

This section presents several additional factors you’ll want to take into
consideration when adding features to your product.

Features Inspired by Market Pressures 3

Remember to think about your users and keep their interests foremost when
making your design decisions. Market pressures can sometimes cause
developers to try to implement features that they feel are necessary, even
when they don’t have the resources to develop those features fully. Because a
good review in the press can make an application successful, developers are
sensitive to meeting the expectations of reviewers as well as their target
audiences. Many times reviews include information on whether or not
applications have certain features and the right number of new features. The
pressure of competition is intense, and developers may often feel that they
must make decisions based on market pressures.

C H A P T E R 3

Human Interface Design and the Development Process

Managing Complexity

35

3

H
um

an Interface D
esign and the D

evelopm
ent P

rocess

Feature Cascade 3

When deciding whether or not to add features to your product, think about
whether the benefits to users of additional capabilities outweigh the
additional development efforts, growth in size, and reduction in running
speed that the features would cost. If you are developing a simple application,
it’s very tempting to include additional features that users claim they want. It
takes a lot of restraint to stick to the original intent of the application. Watch
out for feature cascade, because it can often reduce the overall effectiveness of
and add unwanted complexity to your application.

The 80 Percent Solution 3

During the design process, you may discover problems with your product
design. You can use the 80 percent solution to help determine how to solve
those problems. The 80 percent solution means that your design meets
the needs of at least 80 percent of your users. If you try to design for the
20 percent of your target audience who are power users, your design will not
be usable by the majority of your users. Even though those 20 percent are
likely to have good ideas and probably think a lot like you, the majority of
people may not be like the 20 percent who are elite users of your product.
Involving a broad range of users in your design process will help you find the
80 percent solution.

Managing Complexity 3

The best approach to developing software that is easy to use is to keep the
design as simple as possible. (The general design guideline that simple design
is good design applies directly to the discipline of human-computer
interactions.) The challenge that users desire is to solve their problems using
the tools that you design to facilitate their work. The more you can do to
simplify the interface and your product for your users, the more likely it is
that you will build a product that meets their needs and expectations.

Using Progressive Disclosure 3

Progressive disclosure is one way to reduce the complexity of your designs. It
allows you to present the most common choices to users while initially hiding
more complex choices or additional information. Progressive disclosure helps
you develop your interface so that it is easy for novice users to learn and
includes the features and power that advanced users desire.

Kno
wled

ge
 of

 A
ud

ien
ce

C H A P T E R 3

Human Interface Design and the Development Process

36

Managing Complexity

For dialog boxes, you can implement progressive disclosure and thus reduce
the complexity of your design by presenting only the most common options
in the dialog box that appears initially on the screen. There are a couple of
techniques you can implement to allow users to see more options. The most
standard method of letting users see more choices is including a button
named More Choices in the lower-left corner of the dialog box. When the
user clicks the button, the dialog box expands to display more information
and the button name changes to Fewer Choices. This method is very clear and
predictable. People know how to use buttons, and the labels let people know
right away that they have access to more information if they don’t see
what they’re looking for. Figure 3-1 shows an example of a dialog box that
implements this method of progressive disclosure.

Figure 3-1

An expanding dialog box

If you include a More Choices button in a dialog box, it’s best to extend the
bottom of the window to accommodate the additional information. You could
move a side of the window without causing too much change in the perceived
stability of the window. However, avoid expanding the window
symmetrically in all directions, because this behavior destroys the user’s
initial sense of the window being one object with some of it not visible. In
general, it’s best to keep all controls visible at all times. Also, if the larger state
of the dialog box won’t fit on the screen when the More Choices button is
selected, move the dialog box the minimal amount necessary to make it fit on
the screen. When the user clicks the Fewer Choices button, keep the dialog
box in its new position;

 don’t

 move it back to its original position on the screen.

1.

2 .

Per
ce

ive
d S

ta
bilit

y

C H A P T E R 3

Human Interface Design and the Development Process

Managing Complexity

37

3

H
um

an Interface D
esign and the D

evelopm
ent P

rocess

Figure 3-2 shows the directions in which a window or dialog box can grow to
disclose more information.

Figure 3-2

Directions a window can expand

Implementing Preferences 3

Preference settings are user-defined parameters that your software
remembers from session to session. Preferences can be a way for your
application to offer choices to users about how the application runs.
Preferences often affect the behavior of the application or attributes of the
content created with the application.

OK to expand in these directions.

Don’t do this.

C H A P T E R 3

Human Interface Design and the Development Process

38

Extending the Interface

In order to reduce the complexity of your application, make decisions about
which features to implement as preferences based on what your users really
need. The key is to implement as preferences only those features that your
users find useful. In other words, avoid creating one large dialog box with all
the preferences you can think of. Instead, eliminate the settings that are
special cases of a behavior or an attribute and build in flexible features as a
part of your application.

A preference should be a setting that the user changes

infrequently

. If you
provide choices to users that they will change many times in a work session,
you should implement those choices in a menu or other interface element to
which the user has easy, modeless access. By choosing the right way to
implement a feature, you can give users the flexibility to choose, in their own
language, their preferred method of working.

Extending the Interface 3

This section describes how to extend the Macintosh user interface when your
application needs an element that doesn’t already exist. When a need arises
that can’t be met by the standard elements, you can extend the user interface
by creating combinations of standard elements or new elements. This section
contains information on how to determine when it’s appropriate to go beyond
the guidelines, how to use the existing interface elements to build new
elements, and pitfalls to avoid when you design additional interface elements.

When to Go Beyond the Guidelines 3

People rely on the standard Macintosh user interface for consistency. Don’t
copy other platforms’ user interface elements or behaviors in the Macintosh
because they may confuse users who aren’t familiar with them.

There are times when the standard user interface doesn’t cover the needs
of your application. This is true in the following situations:

■

You are creating a new feature for which no element or behavior
exists. In this case, you can extend the Macintosh user interface in a
prescribed way.

■

An existing element does almost everything you need it to, but a
little modification that improves its function makes the difference to
your application.

Consis
te

ncy

C H A P T E R 3

Human Interface Design and the Development Process

Extending the Interface

39

3

H
um

an Interface D
esign and the D

evelopm
ent P

rocess

The sections that follow present the guidelines that describe how to extend
the Macintosh user interface guidelines.

Build on the Existing Interface 3

When you need to extend the user interface, the best place to begin is with
the already defined visual and behavioral language. Look carefully at the
elements that are defined in this book. Think about what the appearance
means to people (the look) and how they expect the element to behave
(the feel). Visual cues, like the drop shadow and the arrow on a pop-up menu,
are triggers for people. These cues help people recognize elements that they
can use. People also learn to associate certain behaviors with specific
elements. For example, people recognize push buttons by their rounded
rectangle shape. They look for a label that identifies the action the button
causes. This particular appearance distinguishes a push button from other
types of elements. When people click a button, they expect the button to be
highlighted to indicate that the action takes effect. People may also expect that
clicking a button has additional behaviors related to it, including dismissing a
dialog box or changing the content area of the active document. Mixing visual
cues is confusing to users. For example, adding a drop shadow to a push
button makes the push button look like a pop-up menu.

Don’t Assign New Behaviors to Existing Objects 3

The previous section describes how to use elements from the existing user
interface. When you do use existing interface building blocks, use them
in the standard way. Make sure you do

not

change the behavior for standard
elements. When you need a new behavior, design a new element for it.
If elements behave differently in different situations, the interface becomes
unpredictable and harder to figure out.

Consider an example of a palette that includes a subpalette. You might think
of using the ellipsis character to indicate that the palette will display
additional choices. However, using this symbol to indicate a subpalette gives
it a meaning other than the standard meaning. In menus, the ellipsis character
means that the user must provide more information before a command
will operate. It doesn’t mean that more information appears when the
user chooses the item. This incorrect use of the ellipsis character is shown
in Figure 3-3.

Aes
th

et
ic

In
te

grit
y

Per
ce

ive
d S

ta
bilit

y

C H A P T E R 3

Human Interface Design and the Development Process

40

Extending the Interface

Figure 3-3

An incorrect subpalette indicator

A better idea would be to use a right-pointing triangle; using it to indicate a
subpalette would be analogous to using it to indicate a submenu. Figure 3-4
shows a triangle being used to indicate a subpalette.

Figure 3-4

A better subpalette indicator

Create a New Interface Element Cautiously 3

As a general rule, be cautious about creating a new interface element because
you may end up introducing unnecessary complexity to your product.
Before you create a new interface element, make sure that you can’t use
existing elements to achieve the desired result. Involve users during the
design process of the new element, because they can help you tell whether
it’s intuitive or not.

C H A P T E R 3

Human Interface Design and the Development Process

Involving Users in the Design Process

41

3

H
um

an Interface D
esign and the D

evelopm
ent P

rocess

Involving Users in the Design Process 3

The best way to make sure your product meets the needs of your target
audience is by exposing your designs to the scrutiny of users. You can do this
during every phase of the design process to help reveal what works about
your product as well as what needs improvement.

When you give people an opportunity to use your product or a mock-up of it,
they will inevitably find some undiscovered flaws. You can implement
significant changes to your product during its evolution and thereby save
yourself lots of time and money and save your users from frustration. By
identifying and focusing on users’ needs and experiences, you can create
products that are easier to assemble, learn, and use. These improvements can
translate into competitive advantages, increased sales, and enhanced
customer satisfaction.

Define Your Audience 3

There are several steps to involving users in your design process. The first
step, done at the beginning of a project, is to define the users and then do
an analysis of the target audience. You want to determine what these people
are like, how they might use a product like yours, if they have any similar
products, and what features they would desire in your product. By doing
some research on your target audience, you can find out if what you’re
including in or adding to a product is desirable and useful.

Analyze Tasks 3

The second step is to analyze the tasks people will be doing with your
product. You need to do a task analysis for each task you anticipate that your
users will do. Look at how they perform similar tasks without a computer to
help. Then look at how the computer can facilitate the tasks. To help plan
a task analysis, imagine a scenario in which a user uses your product. List
each task a person might perform in that scenario, then break each task apart
into its component steps. This allows you to identify each step that a person
goes through in order to complete the task. Order the steps according to how
people do them. When you feel you have all the steps listed and ordered,
read the list back to someone and see if that person can use the steps you’ve
listed to accomplish the task.

Kno
wled

ge
 of

 A
ud

ien
ce

C H A P T E R 3

Human Interface Design and the Development Process

42

Involving Users in the Design Process

Build Prototypes 3

For the third step, apply the information you’ve collected about your users,
their skills, and the tasks you envision them performing to create a prototype
of your design. Prototyping is the process by which you develop preliminary
versions of your design to verify its workability. You can use a variety of
techniques to construct prototypes of your design. Creating storyboards is
one technique—you draw out the steps your users will go through to
accomplish a task using your product. Another technique is to build a
simulation of the product in prototyping software that animates some
features or demonstrates how the product will work.

Observe Users 3

Once you have a prototype drawn or mocked up, you can begin to show it to
people to get reactions to it. The fourth step, called user observation, lets you
test the workability of your product design by watching and listening
carefully to users as they work with your prototype. Although it is possible to
collect far more elaborate data, observing users is a quick way to obtain an
objective view of your product. Before you do any testing, take time to figure
out what you’re testing and what you’re not. By limiting the scope of the test,
you’re more likely to get information that will help you solve a specific
problem. You can use the information you gather about your target audience
to help you pick participants for your user observation; find people who have
the same demographic background and experience level as the typical user in
your target audience. Your participants will work through one or more
specific tasks. These tasks can be based on the task analyses that you
performed earlier in the design process. After you determine which tasks to
use, write them out as short, simple instructions. Your instructions to the
participants should be clear and complete but should not explain how to do
things you’re trying to test. See the following section, “Ten Steps for
Conducting a User Observation,” for more information about how to conduct
a user observation; it includes a series of sample steps on which you can base
your own user observation.

During the user observation, record what you learn about your design; you’ll
be using this information to revise your prototype. Once you’ve revised your
prototype, conduct a second user observation to test the workability of the
changes you’ve made to your design. Continue this iterative process of
creating prototypes and conducting user observations until you feel confident
that you’ve fully addressed the needs of your target audience.

C H A P T E R 3

Human Interface Design and the Development Process

Involving Users in the Design Process

43

3

H
um

an Interface D
esign and the D

evelopm
ent P

rocess

Ten Steps for Conducting a User Observation 3

The following steps provide guidelines that you can use when conducting
a simple user observation. Remember, this test is not designed as an
experiment, so you will not get quantitative data that can be statistically
analyzed. You can, however, see where people have difficulty using your
product, and you can then use that information to improve your product.

Most of these steps include some explanatory text that contains sample
statements that you can read to the participant. Feel free to modify
the statements to suit your product and the situation.

1. Introduce yourself and describe the purpose of the observation (in
very general terms). Most of the time, you shouldn’t mention what you’ll
be observing.

Set the participant at ease by stressing that you’re trying to find problems
in the product. For example, you could say something like this:

n

“You’re helping us by trying out this product in its early stages.”

n

“We’re looking for places where the product may be difficult to use.”

n

“If you have trouble with some of the tasks,

it’s the product’s fault,

 not
yours. Don’t feel bad; that’s exactly what we’re looking for.”

n

“If we can locate the trouble spots, then we can go back and improve
the product.”

n

“Remember, we’re testing the product, not you.”

2. Tell the participant that it’s OK to quit at any time.

Never leave this step out. Make sure you inform participants that they can
quit at any time if they find themselves becoming uncomfortable.
Participants shouldn’t feel like they’re locked into completing tasks. Say
something like this:

n

“Although I don’t know of any reason for this to happen, if you should
become uncomfortable or find this test objectionable in any way, you are
free to quit at any time.”

3. Talk about the equipment in the room.

Explain the purpose of each piece of equipment (hardware, software, video
camera, tape recorder, microphones, and so forth) and how it will be used
in the test.

4. Explain how to think aloud.

Ask participants to think aloud during the observation, saying what comes
to mind as they work. By listening to participants think and plan, you’ll
be able to examine their expectations for your product as well as their
intentions and their problem-solving strategies. You’ll find that listening to
users as they work provides you with an enormous amount of useful
information that you can get in no other way.

C H A P T E R 3

Human Interface Design and the Development Process

44

Involving Users in the Design Process

Some people feel awkward or self-conscious about thinking aloud. Explain
why you want participants to think aloud and demonstrate how to do it.
For example, you could say something like this:

n

“We have found that we get a great deal of information from these
informal tests if we ask people to think aloud as they work through
the exercises.”

n

“It may be a bit awkward at first, but it’s really very easy once you get
used to it. All you have to do is speak your thoughts as you work. If you
forget to think aloud, I’ll remind you to keep talking. Would you like me
to demonstrate?”

5. Explain that you will not provide help.

It is very important that you allow participants to work with your product
without any interference or extra help. This is the best way to see how
people really interact with the product. For example, if you see a
participant begin to have difficulty and you immediately provide an
answer, you will lose the most valuable information you can gain from
user observation—where users have trouble and how they figure out what
to do.
Of course, there may be situations in which you will have to step in and
provide assistance, but you should decide what those situations will be
before you begin testing. For example, you may decide that you will allow
someone to struggle for at least three minutes before you provide
assistance. Or you may decide that there is a distinct set of problems on
which you will provide help. However, if a participant becomes very
frustrated, it’s better to intervene than have the participant give up
completely.
As a rule of thumb, try not to give your test participants any more
information than the true users of your product will have. Here are some
things you can say to the participant:

n

“As you’re working through the exercises, I won’t be able to provide
help or answer questions. This is because we want to create the most
realistic situation possible.”

n

“Even though I won’t be able to answer your questions, please ask them
anyway. It’s very important that I capture all your questions and
comments. When you’ve finished all the exercises, I’ll answer any
questions you still have.”

6. Describe in general terms what the participant will be doing.

Explain what all the materials are (such as the set of tasks, disks, and a
questionnaire) and the sequence in which the participant will use them.
Give the participant written instructions for the tasks.

C H A P T E R 3

Human Interface Design and the Development Process

Involving Users in the Design Process

45

3

H
um

an Interface D
esign and the D

evelopm
ent P

rocess

If you need to demonstrate your product before the user observation
begins, be sure you don’t demonstrate something you’re trying to test.
For example, if you want to know whether users can figure out how to use
certain tools, don’t show them how to use the tools before the session. Don’t
demonstrate what you want to find out. For example, rather than showing the
participant what the final design outcome looks like and asking an opinion,
you can show before and after screen shots and ask what the participant
observes about each one.

7. Ask if there are any questions before you start; then begin
the observation.

8. During the observation, remember several pointers:

n

Stay alert. It’s very easy to let your mind wander when you’re in the
seventh hour of running subjects. A great deal of the information you
can obtain is subtle.

n

Ask questions or prompt the participant. Make sure you have a
tester protocol that spells out how frequently you prompt and what
you say. Your interruptions shouldn’t be frequent, but when a
participant is hesitating or saying, “Hmmm,” ask what the participant
is thinking about.

n

Be patient; it is very easy to become impatient when someone is taking
a long time. The participant is doing you a favor and is probably
somewhat nervous. Anything you can do to alleviate the participant’s
insecurities and put the participant at ease will provide you with much
richer data.

9. Conclude the observation.

Do the following when the test is over:

n

Explain what you were trying to find out during the test.

n

Answer any remaining questions the participant may have.

n

Discuss any interesting behaviors you would like the participant
to explain.

n

Ask the participants for suggestions on how to improve the product.

10. Use the results.

As you observe, you will see users doing things you may never have
expected them to do. When you see participants making mistakes, your
first instinct may be to blame the mistakes on the participant’s inexperience
or lack of intelligence. This is the wrong focus to take. The purpose of
observing users is to see what parts of your product might be difficult to
use or ineffective. Therefore, if you see a participant struggling or making
mistakes, you should attribute the difficulties to faulty product design, not
to the participant.

C H A P T E R 3

Human Interface Design and the Development Process

46

Involving Users in the Design Process

Be sure to schedule time between your sessions to make notes and review
the session. Jot down any significant points. If you used videotape or audio
cassette tape, mark in your notes the specific parts of the tape that you may
want to review.

To get the most out of your test results, review all your data carefully and
thoroughly (your notes, the videotape or cassette tape, the tasks, and so on).
Look for places where participants had trouble and see if you can determine
how your product could be changed to alleviate the problems. Look for

patterns

 in the participants’ behavior that might tell you whether the product
was understood correctly.

It’s a good idea to keep a record of what you found out during the test. You
don’t need elaborate video equipment; a hand-held video camera will work.
In fact, you don’t even have to use video equipment. You can use a tape
recorder to record what is spoken during the session. The important point is
that you create some kind of objective, factual record of the session that you
refer to later. That way, you’ll have documentation to support your design
decisions and you’ll be able to see trends in users’ behavior. You might want
to write a report that documents the process you used and the results
you found. After you’ve examined the results and summarized the important
findings, fix the problems you found and test the product again. By
testing your product more than once, you’ll see how your changes affect
users’ performance.

P A R T T W O

P
A

R
T

 T
W

O

The Interface Elements 2

The second part of

 Macintosh Human Interface Guidelines

 defines the elements
and behaviors of the Macintosh interface. It presents examples of each
concept and examples of the right and wrong ways to use interface elements
and behaviors. Use this section to find specific implementation information
while you’re creating a product. This part of this book also shows how to
combine the pieces of the interface with behaviors, aesthetics, and language
to create a superior product.

This part contains the following chapters:

■

Menus

■

Windows

■

Dialog Boxes

■

Controls

■

Icons

■

Color

■

Behaviors

■

Language

Thi d t t d ith F M k 4 0 4

49

C H A P T E R 4

4

Menus 4Figure 4-0
Listing 4-0
Table 4-0

MENU

Cafe

ON THE SQUARE

Thi d t t d ith F M k 4 0 4

C H A P T E R 4

Menus

50

This chapter describes the kinds of menus you can implement in your
application—pull-down menus, scrolling menus, hierarchical menus, pop-up
menus, palettes, and tear-off menus. It also describes in detail the appearance
and behavior of these menu types including how menu items should be
worded and what symbols you can use in menus. This chapter defines the
items in the standard menus most applications use and the standard
keyboard equivalents for those menu items.

Menus present lists of menu items—commands, attributes, or states. The user
can browse through menus or choose an item. Menus appear in several forms
in the interface. Pull-down menus are available in the menu bar. Hierarchical
menus include submenus that descend from pull-down menu items. Some
menus can be torn off from the menu bar to become palettes. Pop-up menus
generally appear in dialog boxes. See

Inside Macintosh: Macintosh Toolbox
Essentials

for information about implementing menus in your application.

In the Macintosh interface, people use a specific syntax for completing
actions. First they select an object, then they choose a command to act on
that object. This order of operation occurs in the Finder and in applications.
Figure 4-1 shows this standard syntax.

C H A P T E R 4

Menus

51

4

M
enus

Figure 4-1

The standard order of actions

1.

2.

C H A P T E R 4

Menus

52

The Menu Bar

Menus are based on the principle of see-and-point. People don’t have to
remember command names because they can see all the options at any time
and choose any available option. The menu bar also reflects the principles of
perceived stability and aesthetic integrity. The menu bar provides a stable
location for people to look for commands. It remains at the top of the screen
no matter what the user is doing. To maintain the visual clarity of the
interface, only the menu bar is visible until the user pulls down a menu
to look at its contents. This feature allows people to concentrate on the main
attraction, the content of the screen, while giving them easy access to
the menus. Each application, each desk accessory, and the Finder have
their own menu bars, containing standard menus and their own
application-specific menus.

The Menu Bar 4

The

menu bar

 extends across the top of the screen and contains words and
icons that serve as the title of each menu. It should be visible and always
available to use. Nothing should ever appear on top of the menu bar or
obscure it from view. The menu bar should always contain the standard
menus—the Apple menu, the File menu, the Edit menu, the Help menu, and
the Application menu. The Keyboard menu is an optional standard menu that
appears when the user installs a script system other than the Roman Script
System. The titles of the standard menus never change. (The titles of the
Apple, Help, Keyboard, and Application menus are icons rather than words.)
The standard menus are described in the section “Standard Macintosh
Menus,” beginning on page 98.

You can include as many menus in between these standard menus as are
essential to your application and as fit on the smallest screen on which your
application runs. It’s a good idea to leave some room in the menu bar, both for
localization and for menus added by third-party products such as utilities.
Figure 4-2 shows the menu bar as it looks when the Finder is the current
application, and points out the space you have for application-specific menus.

See
 an

d P
oin

t

C H A P T E R 4

Menus

The Menu Bar

53

4

M
enus

Figure 4-2

A menu bar

The width of the menu bar depends on the screen size of the user’s monitor.
Figure 4-3 shows menu bars of three different widths and how much space is
used by the Finder’s menu titles on each screen.

Figure 4-3

Three menu bars

Standard menus

Application-specific menus

(Finder is current application) Standard menus

13-inch screen

9-inch screen

19-inch screen

C H A P T E R 4

Menus

54

The Menu Bar

Your application’s menu titles should remain constant. This constancy adds to
the user’s sense of perceived stability of the interface and helps users identify
applications when they switch from one to another. For a menu title, use a
word that reflects the category of the commands in each menu. For example,
the Edit menu contains commands that change, or “edit,” a document’s
contents. When you choose menu titles, think about the word lengths in
different languages so that your menu titles will fit in the menu bar even in
the longest case when you localize them. Figure 4-4 shows the Finder menu
bar in six different languages. You can see the variation in the length of
simple menu titles. See

Guide to Macintosh Software Localization

for lists of
standard menu titles in different locales around the world.

Figure 4-4

The Finder menu bar in six languages

Menu titles always remain visible. If

all

 the operations in a given menu are
currently unavailable (that is, the user can’t choose them), dim the title by
drawing it in gray. The user can still open the menu and see the names of the
operations when a menu is dimmed. Figure 4-5 shows a menu bar with an
unavailable menu.

Per
ce

ive
d S

ta
bilit

y

C H A P T E R 4

Menus

Menu Behavior

55

4

M
enus

Figure 4-5

An unavailable menu

The menu bar should be visible at all times to provide a visual anchor
for people and to provide access to menus. If your application can display
screen-sized presentations, you may implement a feature where the
user displays the presentation without the menu bar being shown. If you
do decide to implement this feature, you must provide a way, such as a
keyboard equivalent, for the user to make the menu bar reappear and this
method must be clearly visible on the screen and accessible to users when the
menu bar isn’t. For instance, you could include a button labeled “Menu Bar”
somewhere on the screen so that the user only has to click it to get to
the menu bar.

Menu Behavior 4

When people want to use menus on the Macintosh, they usually select an
object and then choose a menu item. This behavior follows the paradigm of
identifying what the user wants to act on and then specifying the action by
choosing a menu item. To use a menu, the user first positions the pointer on a
menu title and then presses the mouse button. While the mouse button is
down, the application highlights the menu title and displays the menu.
Nothing actually happens until the user chooses a menu item.

See
 an

d P
oin

t

C H A P T E R 4

Menus

56

Menu Behavior

Figure 4-6 shows an example of an open menu.

Figure 4-6

Opening a menu

People can look at menus without having to complete any action.
Sometimes people scan menus to find out what features are available.
Other times, people look for a certain command by some context, such as
looking for the third item with an ellipsis character in a menu. The user can
move the pointer anywhere on the screen (except back into the menu bar)
without losing sight of the menu, as long as the mouse button is down. To
close a pull-down menu, the user returns the pointer to the menu bar, or
moves the pointer away from the menu and releases the mouse button.
Pull-down menus allow people to browse through the features in
an application.

To choose a command, the user drags the pointer down the list of menu items,
and as the pointer appears over each item, it is highlighted. When the user
releases the mouse button while an item is highlighted, the item blinks briefly,
the menu disappears, and the operation associated with the menu item runs.
You must continue to highlight the menu title until the operation is complete.

While an operation generated by a menu item takes place, you need to
provide feedback to the user about what is going on. You can display the
animated watch cursor for immediate feedback if an operation will last only a
short length of time. If the operation takes a bit longer, display a status dialog
box to give the user more feedback about the operation under way. If an
operation takes a long time, be sure to implement it asynchronously so that it
can run in the background. After the operation is completed, return the menu
title to the unhighlighted state. Figure 4-7 shows the use of a cursor change to
provide feedback.

2. Mouse button down1. Pointer in menu title

Fee
dbac

k a
nd D

ial
og

C H A P T E R 4

Menus

Menu Behavior

57

4

M
enus

Figure 4-7

A feedback technique

Keep in mind when you decide your timing issues that people have built-in
expectations about how long they want to wait for an operation to be
completed. Try to provide your users with feedback that lets them know that
the computer is still working.

Sometimes people may switch to a different application to do something else
while waiting for the current operation in your application to finish. In this
case, the user wouldn’t see a cursor change, and it may be best to use a more
visible form of feedback such as a status dialog box. The paragraphs that
follow describe two situations in which different kinds of feedback were
chosen based on the context and the users’ expectations in each situation.

When a Find operation lasts longer than approximately four seconds, the
Finder displays a “Searching” message in a dialog box. For a Find operation,
people typically want to do something with the target of the command, so
they wait for its completion rather than go on to another task. If the search
operation takes more than a few seconds, it’s good to provide additional
feedback that the search is taking place.

When the user chooses Empty Trash, however, the Finder waits
approximately eight seconds, about twice the amount of time for the Find
operation, before displaying the “Emptying Trash” dialog box. The end result
provides the user with a skinny receptacle and more disk space. Users may be
willing to wait for a longer amount of time for the Trash to empty because
they usually aren’t waiting to do something with the result of the command.

The previous paragraphs described typical behavior that occurs when a user
chooses a menu item from a pull-down menu. In the case that a menu item
displays a window that contains editable text, such as a modal dialog box,
make the menu bar active and enable the Edit menu and other appropriate
menus. Don’t continue to highlight the menu title of the item that displayed
the dialog box—as long as the user can use at least one of the menus, you
shouldn’t keep a title highlighted.

1. 2. 3.

C H A P T E R 4

Menus

58

Menu Elements

Menu Elements 4

Menu elements include words or icons that name menu items, keyboard
equivalents, dividers, and marks. Menu items usually apply to the current
selection, although some may apply to the whole document or window.
Figure 4-8 shows an enlarged menu and points out its features.

Figure 4-8

A typical menu

Menu Item Names 4

This section describes the two major categories of menu items—commands
and attributes—and gives examples for you to follow in deciding how to
name menu items for your application.

You can use different parts of speech to name your menu items depending on
what effect they have when the user chooses a specific item. For menu items
that act as commands, use verbs (or verb phrases) that declare the action that
occurs when the user chooses the item. Some examples are Save, which
means

save my file

, and Copy, which means

copy the selected data.

 Your menu
command names should fit into a similar sentence.

Menu title

Command

Divider

Dimmed

(unavailable)

command

Keyboard

equivalent

Ellipsis character

C H A P T E R 4

Menus

Menu Elements

59

4

M
enus

If the item changes an attribute of a selected object, use an adjective (or
adjective phrase) that describes the change. Adjectives in menus

imply

 an
action. They should fit into the sentence “Change the selected object or objects
to . . . ” For example, when people think of choosing a font style such as bold,
they might think, “Change the selected text to bold,” as they choose the
adjective from the menu. Figure 4-9 shows a menu that contains adjectives
as items.

Figure 4-9

A menu with adjectives

Use one word for menu item names when possible. Capitalize the first letter
of the first word of each command and capitalize the important words in
phrases. For more information on the style of language in the interface,
see the section “Style” beginning on page 306 in Chapter 11, “Language.” It
presents the rules for capitalization and usage of language. Figure 4-10 shows
a menu with the items properly capitalized.

Figure 4-10

Command names properly capitalized

C H A P T E R 4

Menus

60

Menu Elements

Menus created using the standard menu definition in the Macintosh Toolbox
display menu items in the system font, which is 12-point Chicago in the
Roman version of system software. The system font for the primary script
system varies depending on the version of localized system software installed
in the user’s computer when multiple script systems are installed. When a
menu item is unavailable, it is displayed in gray letters. When a user moves
the pointer over the dimmed item, it isn’t highlighted. Figure 4-11 shows
this behavior.

Figure 4-11

Unavailable items aren’t highlighted

Grouping Items in Menus 4

The items in a menu should be logically related to each other and to the menu
title. Grouping items in a menu breaks up the menu visually so that it’s easier
to quickly locate items. This technique lends visual clarity to the interface.

Logical grouping of menu items is the most important aspect of arranging
your menus. In general, place the most frequently used menu items at the top
of the menu. Put the least frequently used items at the bottom of the menu.
However, create groups that make sense to the user rather than simply
grouping all the most-used items at the top of the menu.

Dimmed selection

is not highlighted.

Aes
th

et
ic

In
te

grit
y

C H A P T E R 4

Menus

Menu Elements

61

4

M
enus

Group actions together and attributes together in a menu that contains
both types. In a menu that contains a single type of item, group actions or
attributes that are related. For example, in the Edit menu, the commands that
allow a user to do simple text editing are grouped as a set. Group attributes
that are interdependent either as a

mutually exclusive attribute group

 or an

accumulating attribute group.

 The Style menu groups the attribute items that
affect text appearance as an accumulating group that is separated from the
Plain Text item. The Plain Text item turns off all of the other attributes in effect
when it is chosen. Figure 4-12 shows these Edit and Style menus with
appropriate groupings of items.

Figure 4-12

Menus with appropriate groups

Attribute group

Action group

C H A P T E R 4

Menus

62

Menu Elements

How many dividers to use is partially an aesthetic decision. Remember
that the Macintosh interface relies on aesthetic integrity as a means of good
communication. Figure 4-13 shows a menu that depicts the right balance of
grouping contrasted with two menus that show insufficient grouping and too
much grouping. Use this picture as a visual guide when trying to decide how
many dividers to use to group items in your menus.

Figure 4-13

Grouping items in menus

Menu Dividers 4

Use standard menu dividers to separate groups of commands in your menus.
On color and gray-scale screens, a gray line serves as the divider. For display
on black-and-white screens, a dotted line appears separating groups of menu
items. Figure 4-14 shows these two types of dividers.

Not enough groups. Appropriate grouping. Too many groups.

C H A P T E R 4

Menus

Menu Elements

63

4

M
enus

Figure 4-14

Standard menu dividers

Even though the Menu Manager allows you to use other techniques to divide
menus, use the standard dividers. For example, don’t use a dimmed menu
item as a divider. Dimmed items always represent a menu item that is usually
available, but, in a certain context is not. Figure 4-15 shows an example of a
menu divider you shouldn’t use.

Figure 4-15

An inappropriate menu divider

Black-and-white screens Color and gray-scale screens

Gray lineDotted line

Don’t use a

dimmed menu

item as a divider.

C H A P T E R 4

Menus

64

Standard Characters and Text Style in Menus

Standard Characters and Text Style in Menus 4

You can use several standard characters to indicate additional information in
menus. Don’t use arbitrary symbols in menus because they may confuse
people. The standard characters include checkmarks, dashes, and ellipsis
characters. In a Style menu, you can display menu item names in different
text styles. Figure 4-16 shows a menu with text styles and a checkmark as
an indicator.

Figure 4-16

A menu with text styles and an indicator

Checkmarks and Dashes in Menus 4

Checkmarks indicate a setting that applies to an entire selection. Dashes
indicate settings that apply to only part of a selection.

In a mutually exclusive attribute or action group of commands, only one item
is in effect at any one time. (In dialog boxes, mutually exclusive options are
represented by radio buttons.) In a menu, use a checkmark to indicate the
item that’s in effect. For example, the Left, Center, and Right commands in a
graphics menu are a set of three commands, only one of which can be in effect
at any time. A checkmark indicates which item is in effect for the current
selection. When the user chooses a new menu item, move the checkmark
to that item. Figure 4-17

shows how to correctly use a checkmark to mark a
choice in a mutually exclusive group of items.

Aes
th

et
ic

In
te

grit
y

C H A P T E R 4

Menus

Standard Characters and Text Style in Menus

65

4

M
enus

Figure 4-17

A checkmark to indicate a choice in a mutually exclusive group

In an accumulating (nonexclusive) attribute group, any number of attributes
can be in effect at the same time. (In dialog boxes, these options are
represented by checkboxes.) Figure 4-18 shows a Style menu when all
the selected text is bold.

Figure 4-18 A checkmark to indicate a choice in an accumulating attribute group

Mutually exclusive

attribute group

C H A P T E R 4

Menus

66 Standard Characters and Text Style in Menus

Use dashes to indicate that an attribute applies to only part of the selection.
For example, if a selection of text appears in two different styles, display a
dash next to each style name. Figure 4-19 shows this state.

Figure 4-19 Dashes to indicate partial attributes in an accumulating attribute group

You can use a combination of these marks when appropriate. Figure 4-20
shows an example where the entire selection is bold, part of the selection is
also italicized, and part of the selection is underlined. (This technique of using
many styles in text is not recommended for best readability.)

C H A P T E R 4

Menus

Standard Characters and Text Style in Menus 67

4
M

enus

Figure 4-20 Several attributes in effect

The Ellipsis Character in Menus 4
The ellipsis character (…) after a menu item means that the command needs
more information from the user before the operation executes. To generate
this character in your application’s menus, type Option-; rather than three
unspaced periods; the spacing is slightly different. The ellipsis character is
often misused to indicate a wide variety of behaviors. The only time they
should be used is to let the user know that a command will need more
information to execute, as opposed to a command that executes immediately
with no further information.

This section contains several examples that demonstrate the correct and
incorrect ways to use the ellipsis character in menus. The Find command in
the Finder’s File menu is an example of the correct presence of the ellipsis
character. The command needs more information from the user about what to
look for. The ellipsis character lets users know that they will have an
opportunity to provide more information before the command executes.

C H A P T E R 4

Menus

68 Standard Characters and Text Style in Menus

Figure 4-21 shows a menu item with the ellipsis character correctly used.

Figure 4-21 The ellipsis character means more information is required

Don’t use an ellipsis character with a command that never displays a dialog
box asking for more information, but executes immediately. This use
definitely confuses the meaning of the ellipsis character and makes the
interface unpredictable. When a user chooses a command and expects to
see a dialog box that never appears, it may seem like something is wrong.
Try to be consistent in your implementation of interface elements like the
ellipsis character.

Figure 4-22 shows the incorrect use of the ellipsis character after a command
that never displays a dialog box, and the menu as it should appear.

1. 2.

C H A P T E R 4

Menus

Standard Characters and Text Style in Menus 69

4
M

enus

Figure 4-22 Don’t use the ellipsis character with a command that doesn’t require
more information

The ellipsis character doesn’t simply mean that a dialog box or window will
appear. For example in the Finder File menu, the Get Info command doesn’t
have an ellipsis character and shouldn’t. When you select a Finder object and
choose Get Info, a window appears displaying information about the object.
The window appearing simply completes the command. The command
doesn’t require additional input from the user before it executes.

Don’t do this.

Do this instead.

C H A P T E R 4

Menus

70 Standard Characters and Text Style in Menus

Figure 4-23 shows the correct absence of the ellipsis character, even in the case
where a window appears as the result of a command.

Figure 4-23 The absence of the ellipsis character means no more information
is required

Don’t use an ellipsis character if the command displays an alert box to warn
the user of a potentially dangerous action, especially if the command displays
an alert box only sometimes. In this case you are simply giving the user an
opportunity to cancel a potentially dangerous action (such as causing a loss of
data), not asking for more information. Figure 4-24 shows the correct absence
of the ellipsis character with a command that displays an alert box.

1. 2.

C H A P T E R 4

Menus

Standard Characters and Text Style in Menus 71

4
M

enus

Figure 4-24 The ellipsis character doesn’t mean an alert box appears

A Diamond Mark in the Application Menu 4

When your application is running a background task and you need to notify
the user of something that needs attention, you can use various techniques
provided by the Notification Manager to get the user’s attention. At the
minimum, display a diamond-shaped mark next to your application’s name
in the Application menu to indicate that it is the application that is asking for
the user’s attention and alternate a small icon in the menu bar with the icon
for the Application menu. In general, you should use the small icon that
corresponds to your application or system extension, so that the user gets
an additional visual clue about which application is requesting attention.

1.

2.

C H A P T E R 4

Menus

72 Standard Characters and Text Style in Menus

Figure 4-25 shows an example of a notification symbol in a menu.

Figure 4-25 The Application menu with a notification symbol

There are other notification techniques as well. You can also play a sound
and put up an alert box to notify the user. See Inside Macintosh: Processes for
more information on notification techniques and implementing the
Notification Manager.

Avoid Nonstandard Marks in Menus 4
Don’t use any nonstandard marks or arbitrary graphic symbols in menus.
They only add visual clutter to the menu and people won’t necessarily
understand the significance of the nonstandard marks—for example, they
won’t know what a circle, addition sign, or tilde in a menu means. Figure 4-26
shows some marking techniques to avoid.

Figure 4-26 Don’t use arbitrary symbols in menus

Notification symbol

C H A P T E R 4

Menus

Standard Characters and Text Style in Menus 73

4
M

enus

Text Styles in Menus 4
You can use text styles in a Style menu to indicate the effect of choosing a
certain text attribute. This use is only appropriate in Style menus. Figure 4-27
shows an appropriate Style menu. Outline style is also used in the Size menu
to indicate installed sizes of bitmapped fonts and all sizes of TrueType fonts
that are available.

Figure 4-27 A Style menu with text styles

Use the standard wording for style items. These items are one type of toggled
menu item. With this type of toggled menu item, the first time the user
chooses the item, it sets the selected object to that attribute. The second time
the user chooses the item with the same object selected, the effect is reversed.
See the discussion of toggled menu items in the next section, “Toggled Menu
Items,” for more information. Figure 4-28 shows the effect of choosing a style
menu item.

C H A P T E R 4

Menus

74 Standard Characters and Text Style in Menus

Figure 4-28 The effects of the two states of a Style menu item

Don’t use text styles to indicate additional information, not style related,
about menu items. This technique may distract and confuse your users.
It may also disrupt the visual clarity of the interface.

Don’t use both arbitrary marks and text styles to try to pack your menus with
meaningful information. Use plain 12-point Chicago for menu commands on
an unlocalized Roman system and add standard marks only where they
belong. (Use keyboard equivalents on only the most often used items and
follow the guidelines in the section “Keyboard Equivalents” on page 128 for
assigning them.) Figure 4-29 shows an extreme example of an overburdened
menu and an appropriate standard menu. For more information about
providing text style choices, see the section “The Style Menu,” which begins
on page 124.

1.

2.

Aes
th

et
ic

In
te

grit
y

C H A P T E R 4

Menus

Toggled Menu Items 75

4
M

enus

Figure 4-29 A menu with nonstandard marks and extraneous text styles and a
menu all in plain text style

Toggled Menu Items 4

A toggled menu item changes between two states each time a user chooses it.
It’s like a toggle light switch, when you flip it one way, the light turns on.
When you flip the switch the other direction, the light turns off.

There are three types of toggled menu items. In one type, there is one menu
item and its name changes to reflect the current state of the item. An example
of this type is the command Show Ruler, which changes to Hide Ruler when
the ruler is visible in the document. Another type of toggled menu item has
one menu item that has a checkmark next to its name when it is in effect. An
example of this type of item is a style attribute like Bold. The third type of
toggled menu item has a group of two menu items that are opposite states.
The state currently in effect has a checkmark next to its name.

Do this instead.

Don’t use text

styles in other

menus.

C H A P T E R 4

Menus

76 Toggled Menu Items

If you have room in your menu, it’s a good idea to use two menu items
that describe opposite states. The user can see both items at once, and
there’s less chance of confusion about the effects of the menu items. Set
the items off using dividers to indicate that this is a related set of menu items.
Use a checkmark to indicate the active item, as described in the section
“Checkmarks and Dashes in Menus” on page 64. Figure 4-30 shows a
set of properly constructed toggled menu items.

Figure 4-30 A set of toggled menu items

If you don’t have room in your menu for two items, you can use one item
(which describes a specific action) and change its name to the opposite action
when it’s chosen. When you use a toggled menu item that is only one item,
you must be sure that the name of the command is completely unambiguous.
The command names should be verbs that express opposite actions. In the
previous example, you could change the phrase Grid On to Turn Grid On.
The command becomes Turn Grid Off in the opposite state. Figure 4-31 shows
this solution.

Figure 4-31 A single toggled menu item whose name changes

C H A P T E R 4

Menus

Toggled Menu Items 77

4
M

enus

In this menu, Turn Grid On clearly means that the grid appears when the user
chooses the command. Then the command name changes to a clear statement
of what happens as a result of choosing the Turn Grid Off command.

Try not to use phrases that could have ambiguous meanings. For example,
does Use Grid mean that

■ the grid is on?

■ this command turns on the grid?

Figure 4-32 shows two different expectations of what the user might see when
the Layout menu is opened after choosing the command Use Grid. In this
example people have to choose the command, see what happens, and look at
the menu to see what the meaning of Use Grid is.

Figure 4-32 An ambiguous toggled menu item

Don’t use one menu item with a toggled checkmark to indicate the presence
or absence of a feature like a grid or a ruler. It’s unclear whether the
checkmark means that the feature is in effect or whether choosing the
command turns the feature on. In the example shown in Figure 4-33,
a checkmark next to Grid On could mean the grid is on, but the absence of a
checkmark wouldn’t be a clear indication that the grid is off. Because
any change to the user’s content or working environment should be visible on
the screen (in the application or in the Finder), not hidden, don’t use the
menu as an indicator of the current state by placing a checkmark next to a
single, ambiguous menu item.

Choosing Use Grid

turns the grid off.

Choosing Use Grid

turns the grid on.

C H A P T E R 4

Menus

78 Scrolling Menus

Figure 4-33 An incorrect use of a checkmark to indicate a state

Scrolling Menus 4

Scrolling menus contain more menu items than are visible on the screen.
(For a nonscrolling menu, you can usually use between eight and twelve
menu items and still have a menu that is easy to use and to navigate.)
Scrolling menus should exist only when a user adds many items to a
customizable menu like the Font menu.

If a menu becomes too long to fit on the screen, an indicator appears at the
bottom of the menu to show that there are more items. When the user starts to
scroll, an indicator appears at the top of the menu to show that some items are
no longer visible in that direction. When the user drags past the last visible
item, the menu scrolls to show the additional items. When the last item
is shown, the downward-pointing indicator disappears. Figure 4-34 shows
this behavior.

Figure 4-34 A scrolling menu

Don’t use a

toggled checkmark

with an action

menu item.

1. 2.

C H A P T E R 4

Menus

Hierarchical Menus 79

4
M

enus

Figure 4-35 shows the menu scrolling in the opposite direction.

Figure 4-35 The menu scrolling in the other direction

If the user drags back up to the top, the menu scrolls back down in the same
manner. If the user leaves the menu and comes back to it later, it appears in its
original position, with the hidden items and the indicator at the bottom.

Hierarchical Menus 4

Hierarchical menus are menus that include a menu item from which a
submenu descends. You can offer additional menu item choices without
taking up more space in the menu bar by including a submenu in a main
menu. When the user drags the pointer through a menu and rests it on a
hierarchical menu item, a submenu appears after a brief delay. To indicate
that a submenu exists, use a triangle facing right, as shown in Figure 4-36.

Figure 4-36 A hierarchical menu

1. 2.

1. 2.

C H A P T E R 4

Menus

80 Hierarchical Menus

Submenus add complexity to the interface. They hide choices from people by
adding a layer to menus. They are physically more difficult to use than menus
that pull down from the menu bar. You should use a submenu only when you
have more menus than fit in the menu bar. Figure 4-37 shows an example of
unnecessary submenus.

Figure 4-37 Don’t use submenus unnecessarily

When you use submenus, include them in a menu with a logical relationship
to the choices they contain. In the example shown in Figure 4-38, the
submenus are in the logical menu. However, since there is still space available
in the menu bar, it’s questionable whether the submenus should exist. They
would be more visible as main (pull-down) menus in the menu bar. Fonts
should always be in their own separate menu because users often have very
long lists of fonts.

If you find that there is still a lot of space between your last menu title
and the standard menus (Help menu, Keyboard menu, and Application
menu), it’s best to continue to use standard pull-down menus instead of
hierarchical menus.

Don’t do this.

Lots of space available

Still lots of space available

Do this instead.

C H A P T E R 4

Menus

Hierarchical Menus 81

4
M

enus

Figure 4-38 shows an example of a 9-inch screen that still allows room for
more menus. The Size and Style submenus would fit in the menu bar.

Figure 4-38 A menu bar on a 9-inch screen with space for more menu titles

Hierarchical menus work best for providing a submenu of attributes. A
menu item that’s the title of a submenu should clearly represent the choices it
contains. It’s much easier to identify a set of attributes than a set of verbs
(actions). Figure 4-39 shows the difficulty of naming a menu item so that
it serves as a descriptive title for a submenu of commands. The figure also
shows an appropriate title for a submenu of attributes.

Figure 4-39 Examples of submenu titles

Space available

Don’t put commands in

submenus.

Do include sets of attributes

you can describe easily in

the submenu title.

C H A P T E R 4

Menus

82 Pop-Up Menus

A main menu can contain both standard menu items and submenu titles.
You may assign keyboard equivalents to menu items in either a main menu
or a submenu. Follow the guidelines presented in the section “Keyboard
Equivalents,” which begins on page 128.

Never use more than one level of submenus. A submenu at the second level
would be buried too deep in the interface and would unnecessarily create
another level of complexity. Also, it takes more time for the user to use
and peruse a hierarchical menu than a pull-down menu. It is physically
difficult to use a second level of submenus without slipping off the first
submenu. Figure 4-40 shows an example of a technique to avoid using
with submenus.

Figure 4-40 Avoid more than one level of submenus

Pop-Up Menus 4

Pop-up menus present a list of mutually exclusive choices in a dialog box
or window. Pop-up menus are used as a means of selecting one choice from a
list of many. Figure 4-41 shows a standard pop-up menu. A pop-up menu
typically has a title that appears to the left of the menu in script systems that
read from left to right. The menu itself looks like a rectangle with a drop
shadow. The menu contains the text of the current choice and a triangle
indicator that identifies this element as a pop-up menu.

Acc
es

sib
ilit

y

Don’t even think

of doing this.

C H A P T E R 4

Menus

Pop-Up Menus 83

4
M

enus

Figure 4-41 A pop-up menu and its parts

Pop-up menus act like other menus: the user can drag through them and
choose an item, which then flashes briefly and appears as the current choice in
the menu. The user can also move outside the menu to leave the current value
active. (If a pop-up menu reaches the top or bottom of the screen, it scrolls like
other menus.)

Pop-up menus work well for presenting a number of mutually exclusive
choices. However, they hide these choices from view. You should use a
pop-up menu when the user doesn’t need to see all the choices all the time
in a dialog box or window. You can use a pop-up menu when you have from
5 to 12 items. If your item list fits in this range, it’s a good idea to use a
pop-up menu because the user will be able to see all the choices when the
menu is open and won’t have to scroll through the menu to see additional
choices. If you have more than 12 items, use a scrolling list instead. Users
would have a hard time scrolling a pop-up menu to see all the choices and
then reversing the scrolling direction to choose the item they wanted.

Menu indicator

Current choice

Menu

Title

C H A P T E R 4

Menus

84 Pop-Up Menus

Figure 4-42 shows a pop-up menu in a dialog box and the same menu when
it’s open.

Figure 4-42 Opening a pop-up menu

1.

2.

C H A P T E R 4

Menus

Pop-Up Menus 85

4
M

enus

If you need to show only a few choices, consider using another interface
element instead of a pop-up menu. Figure 4-43 shows such a situation. Since
there are only three types of columns to choose from, and the user can make
an exclusive choice, it makes more sense to use radio buttons for the choices.
The radio buttons don’t take up much more space than the pop-up menu
would and they’re always visible when the dialog box is open.

Figure 4-43 Pop-up menus versus radio buttons

Pop-up menus provide a list from which only a single selection can be made.
These choices could be expressed as nouns (things) or adjectives (states or
attributes). Don’t use pop-up menus when more than a single selection is
needed. Allowing multiple selections from a pop-up menu gives the user
ambiguous feedback. The user knows only the current selection, not all of the
settings currently in effect. This forces the user to open the menu to know
what all the settings are.

Don’t use pop-up menus for accumulating attribute lists like text style
choices. Style menus provide multiple choice lists, which should be presented
either as checkboxes in a dialog box or pull-down menus. If you put a
multiple choice menu in a dialog box, you would destroy the ability of
the menu to provide feedback in the menu text. You would be hiding
essential information from the user, who would only be able to see it
when the menu was open. You can use checkboxes to provide a set of
“many-from-many” choices.

Choices are hidden. Choices are visible.

C H A P T E R 4

Menus

86 Pop-Up Menus

Figure 4-44 shows an example of a pop-up menu with more than one choice
in effect. The figure also shows one correct way to provide the same choices
by using checkboxes. You could also provide this same set of choices with a
pull-down menu.

Figure 4-44 Pop-up menus versus checkboxes

Never create a hierarchical pop-up menu. Doing so would hide choices too
deeply in the interface. It would also create an element that would be far too
physically difficult to use.

Pop-up menus are not a means of providing more commands. Therefore they
shouldn’t contain actions (verbs). If there were a pop-up menu that contained
commands, there wouldn’t be a logical choice to display as the current choice.
Figure 4-45 shows this dilemma. Commands aren’t persistent choices, they
are always available and aren’t current as soon as they finish operating. In
other words, don’t use a pop-up menu to present choices that should appear
in pull-down menus. Since the choices in a pop-up menu aren’t visible at all
times, the menu items shouldn’t contain keyboard equivalents.

Don’t do this.

Do this instead.

C H A P T E R 4

Menus

Pop-Up Menus 87

Figure 4-45 Don’t use pop-up menus for commands

Standard Pop-Up Menus
The standard pop-up menu looks like a rectangle with a one-pixel border.
It has a one-pixel drop shadow and contains a downward-pointing triangle
similar to the triangle used to indicate a scrolling menu. Figure 4-46 shows
a simple pop-up menu.

Figure 4-46 A standard pop-up menu

When the user presses the mouse button while the pointer is over the pop-up
menu or its label text, the triangle disappears and the other choices appear.
When the mouse button is released, the triangle reappears. An exploratory
press in the menu to see what’s available doesn’t select a new value.

While the menu is open, its title is inverted. If several pop-up menus are near
each other, the inverted title makes it clear which menu is being chosen from.
The open menu shows a checkmark next to the current selection. When a user
makes a new choice in the pop-up menu, it becomes visible as the current
choice in the menu after it closes.

C H A P T E R 4

Menus

88 Pop-Up Menus

Figure 4-47 shows four simple steps that show how a user makes a choice
from a pop-up menu.

Figure 4-47 Using a pop-up menu

Be sure to use the same font for the closed state and the open state of a
pop-up menu. If the menu looks different when it’s open, you destroy
the illusion that it is one object that expands and contracts. It’s best to use
12-point Chicago, plain in pop-up menus. However, if it’s necessary to
use another font, use it in both states of the menu to maintain a consistent
and stable appearance. In most cases you should use a 12-point font in
pop-up menus. In rare cases you may find it necessary to use a 9-point
font. However, keep in mind that it may not be possible to localize a
9-point font.

1. 2.

3. 4.

Consis
te

ncy

C H A P T E R 4

Menus

Pop-Up Menus 89

4
M

enus

Figure 4-48 shows the incorrect and the correct way to use fonts in
pop-up menus.

Figure 4-48 Correct and incorrect use of fonts in pop-up menus

It’s very important to create and maintain the illusion that a pop-up menu is
one object. Ideally, it should be the same width when it’s open as when it’s
closed. It’s OK to have a pop-up menu be wider when it’s open. In no case
should you create a pop-up menu that appears narrower than the normal
state. If the menu does appear narrower in the open state, the menu looks and
feels like two separate objects. This appearance would destroy the sense of
direct manipulation that users get as they use single objects. Figure 4-49
shows two pop-up menus that violate the guideline that a pop-up menu
maintains the illusion of being one object. In the third example in Figure 4-49,
the pop-up menu still appears to be one object, even though it is larger in the
open state than it appears in the closed state. The final example in Figure 4-49
shows the best case of a pop-up menu that appears as though it is always one
object when the user is opening, using, or closing it.

Don’t use different fonts. This is better. This is best.

Dire
ct

 M
an

ip
ulat

io
n

C H A P T E R 4

Menus

90 Pop-Up Menus

Figure 4-49 Pop-up menu behavior

When you use the pop-up menu control definition function, you always get
the correct appearance and behavior for pop-up menus. However, sometimes
developers find new ways and places to implement pop-up menus. If you
must do this, at least maintain as much of the standard appearance of the
pop-up menu as possible. For instance, always draw the triangle as a visual
indicator of the menu. Otherwise there is no clue that some text in your
interface is a pop-up menu.

Don’t extend the selection

beyond menu.

Don’t display a menu

narrower when open.

It’s OK to display a menu

wider when open.

Menu is the same width

open and closed.

C H A P T E R 4

Menus

Pop-Up Menus 91

4
M

enus

Figure 4-50 shows an example of a hidden pop-up menu and how to make
it more visible.

Figure 4-50 A hidden pop-up menu

Type-In Pop-Up Menus 4
Sometimes it is useful to display a list of likely choices but still allow the user
to type in a choice that you can’t anticipate. Keep in mind that all preset
choices should be visible so that people can make choices with mouse actions.
The type-in option should be an additional choice when appropriate, not a
requirement. You’ll need to handle error checking and feedback for the typed
data, as you would for a text entry field.

If the user types in an item that is already in the menu, place a checkmark
next to the menu item. When the menu is open, highlight the item in the text
box and the corresponding item in the menu. This behavior prevents a quick
look in the menu from accidentally wiping out the previous value. It also
reinforces the idea that choosing a different value in the menu changes the
value in the text box. You don’t need to highlight the title of the menu in this
situation. The standard pop-up menu lends itself readily to this extension,
as shown in Figure 4-51.

Nothing to indicate this

is a pop-up menu.

Triangle identifies this

pop-up menu.

No indicator

C H A P T E R 4

Menus

92 Tear-Off Menus and Palettes

Figure 4-51 A type-in pop-up menu

If the value typed into the text box does not match any of the items in the
pop-up menu, add the type-in value as the first item and separate it from the
standard values by a gray or dotted line, as shown in Figure 4-52. This item
disappears from the menu when the user selects a standard value from the
pop-up menu. Separating the custom item from the standard items makes a
clear distinction between the items that are always available and the typed-in
value, which is only temporary.

Figure 4-52 A type-in pop-up menu with user’s choice added

Tear-Off Menus and Palettes 4

A tear-off menu is a menu that a user can detach from the menu bar by
pressing the mouse button while the cursor is over the menu title and
dragging beyond the menu’s edge. These menus are usually called palettes.
Palettes can also be part of a standard document window. Sometimes palettes
pop up from an item in a tear-off menu. You can create tear-off menus and
palettes to provide sets of colors, patterns, or tools to users. Use symbols such
as icons, patterns, characters, or drawings to provide easy access to features of
your application.

C H A P T E R 4

Menus

Tear-Off Menus and Palettes 93

4
M

enus

Figure 4-53 shows a tear-off menu that becomes a palette and a palette that
popped up from a torn-off menu.

Figure 4-53 A tools palette and a color palette

Tear-Off Menus 4
A tear-off menu allows users to move a menu around the screen like a
window. Tear-off menus save desktop space because the user can place them
on top of a document or move them to a convenient position. If you
implement a tear-off menu rather than a fixed palette in a window, you allow
the user to have a larger workspace in document windows. Users can also
choose to leave the menu in the menu bar, or tear it off and close it when
necessary. Tear-off menus give the user more flexibility than fixed palettes do.

When the user drags a tear-off menu three pixels away from the menu bar,
the menu separates from the menu bar and floats on the desktop. Even after
a user tears off a menu, it is still available from the menu bar, however.
Figure 4-54 shows the process of tearing off a menu and positioning it on the
desktop. Note that if the user tears off a menu while the same menu floats on
the desktop in its torn-off state, the torn-off menu on the desktop disappears;
only one copy of a tear-off menu can appear on the desktop at a time.

Tools palette

Color palette

C H A P T E R 4

Menus

94 Tear-Off Menus and Palettes

Figure 4-54 Using a tear-off menu

1.

2.

3.

C H A P T E R 4

Menus

Tear-Off Menus and Palettes 95

4
M

enus

The user can choose an item from a tear-off menu simply by pulling down
the menu like any other menu, then dragging the pointer to the desired item
and releasing the mouse button. You need to provide visual feedback about
the current selection regardless of the content of the tear-off menu. In a
tear-off menu that contains tools, highlight the currently selected tool. In
a tear-off menu that contains patterns or colors, you can outline the currently
selected item and include a preview area that shows that item. When the user
clicks a new item, change the selection to that item. For tear-off menus that
contain text items such as buttons, a single click selects the item. You also
need to provide tracking feedback in tear-off menus. That is, as the user drags
over the items in a tear-off menu, each item should be highlighted or outlined
when the pointer is over it. Only one item can be active at a time. A tear-off
menu behaves the same way when it is attached to the menu bar and when it
is torn off and on the desktop.

Tear-off menus behave like utility windows and document windows. Users
can drag them around the screen and close them with a close box. Tear-off
menus have a drag region with a 25 percent black-and-white pattern and a
close box. Tear-off menus are always on top of document windows. If your
application can have more than one menu torn off at a time, then you must
determine their order of appearance based on user actions. Figure 4-55 shows
an example of a tear-off menu on top of a window.

Figure 4-55 A tear-off menu on top of a document window

Fee
dbac

k a
nd D

ial
og

C H A P T E R 4

Menus

96 Tear-Off Menus and Palettes

Palettes 4
You can use icons, patterns, colors, characters, or drawings that represent
an operation in a palette. You need to provide visual feedback about the
current selection in a palette. In a palette that contains tools, highlight
the currently selected tool. In a palette that contains patterns or colors,
you can outline the currently selected item and include a preview area that
shows the current selection. When the user clicks a new item, change the
selection to that item. You also need to provide tracking feedback in palettes.
That is, as a user drags over the items in a palette, each item should be
highlighted or outlined when the pointer is over it. Only one item can be
active at a time. (If your application uses only one palette for multiple
open windows, then the palette reflects the settings for the active window.)
Figure 4-56 shows some palettes and the feedback they provide to show the
currently selected tool or pattern.

Figure 4-56 Palettes and feedback

In a palette of tools or patterns, you can change the pointer shape to give
additional feedback about the current selection. People can change a selection
immediately by clicking another item. Figure 4-57 shows a tool palette and
the corresponding pointers that provide additional feedback to the user about
which tool is active.

Fee
dbac

k a
nd D

ial
og

C H A P T E R 4

Menus

Tear-Off Menus and Palettes 97

4
M

enus

Figure 4-57 A tool palette with the corresponding pointers

If you include tool palettes as part of your windows, put them on the left side
of the window or along the top of the window underneath the title bar. Using
these positions keeps the palettes from conflicting with standard window
controls. Don’t put palettes in areas where users expect standard controls like
scroll bars or the close box. Figure 4-58 shows a window with a tool palette in
an appropriate location.

Figure 4-58 A tool palette in a window

If the palette is part of a window, then the user has less area for content,
especially on a small screen. Also parts of the palette may be concealed if the
user makes the window smaller. If a palette is not part of a window, then it
takes up extra space on the desktop.

C H A P T E R 4

Menus

98 Standard Macintosh Menus

Standard Macintosh Menus 4

This section describes the style and contents of standard menus for
Macintosh applications.

The Apple Menu 4
The Apple menu contains all items that the user puts in the Apple Menu
Items folder. They appear in alphabetical order in the menu, separated from
the About menu item by a gray line. This menu also displays small icons for
each item. Figure 4-59 shows a sample Apple menu.

Figure 4-59 An Apple menu

About 4

You can include an About item in the Apple menu. When the user chooses
this item, display a dialog box that contains your application’s name, version
number, and copyright information. You can include additional information
in the dialog box if you find it necessary. Include an OK button in the dialog
box so that the user can dismiss the dialog box after reading it. If you don’t
include an OK button, remove the dialog box automatically after a few
seconds. Figure 4-60 shows a sample dialog box.

Consis
te

ncy

C H A P T E R 4

Menus

Standard Macintosh Menus 99

4
M

enus

Figure 4-60 An About dialog box for an application

File Menu 4
The File menu provides commands that pertain to housekeeping tasks for
documents. It also contains the Quit command. All of the standard operations
are described here. If you add additional commands to the File menu, be sure
that they fit the category of taking care of documents. Figure 4-61 shows a
sample File menu.

Figure 4-61 A File menu

New 4

The New command opens a new, untitled document for the current
application. The user names the document the first time it’s saved. If you
detect that there isn’t enough memory available to open another untitled
window when the user chooses this command, display a dialog box that
explains why the user can’t open another window and suggest a solution.
As described in Chapter 5, “Windows,” which begins on page 131, always
title the first new window “untitled.” Some specialized applications require
documents to be named when the user creates them. For example, if you are
developing a database application, you can display the standard file dialog
box for saving documents so that the user can name and save the database
document upon creation. For more information on displaying default
window titles, see Chapter 5. Figure 4-62 shows the New command and
its result.

C H A P T E R 4

Menus

100 Standard Macintosh Menus

Figure 4-62 The New command

1.

2.

C H A P T E R 4

Menus

Standard Macintosh Menus 101

4
M

enus

Open 4

The Open command opens an existing document. When the user chooses
Open from within your application, display the standard file dialog box. The
user selects a document from the list in the dialog box. You can create a
custom filter procedure to display all the documents of the types that your
application can handle. When the user selects a document, the application
opens it. Figure 4-63 shows the standard file dialog box that appears when the
user chooses the Open command.

Figure 4-63 The standard file dialog box for opening files

The user can browse through all levels of the file system from the desktop
down through nested folders, and back to the desktop. The Eject button
allows the user to eject any removable media such as a 3.5-inch disk or a
CD-ROM disc. The Eject button is disabled when there are no removable
media selected. The Desktop button allows the user to go immediately to the
top level of the hierarchy. The Desktop button is disabled when the user is
looking at that level, as shown in Figure 4-63.

When the user chooses Open while running an application, the standard file
dialog box displays all documents that the application can open. The standard
file dialog box displays all documents, folders, and storage devices that are
available. When the user selects a document and clicks the Open button
or double-clicks a document name, the application opens the document.

1. 2.

C H A P T E R 4

Menus

102 Standard Macintosh Menus

When an application starts up by putting an empty, untitled document on the
screen, the Open command remains enabled even if the application allows
only one open document at a time. In this case, choosing Open from the
File menu displays an alert box that informs the user that only one window
can be open at a time and asks if it’s OK to close the current window. If the
user clicks OK, close an empty document or display the save changes alert
box for a document with contents; then open the document the user selected.
If the user clicks Cancel, the current document remains on the screen in the
state it was in before the user chose the Open command.

Note that you shouldn’t set a maximum number of documents that your
application can open. You should base the limit on the amount of available
memory at any given time.

Close 4

The Close command closes the active window, which may be a document
window, a modeless dialog box, a folder, or any other type of window.
Clicking in a window’s close box provides a mouse-based method of closing
windows. The user can also press Command-W to close windows.

When the user chooses the Close command, and the active document has
been changed since the last save, display the standard save changes alert box.
This alert box is designed to prevent users from accidentally losing data. The
standard appearance and layout of the alert box help users quickly identify a
potentially dangerous situation. For information about the layout of items in
alert boxes, see “Basic Dialog Box Layout,” which begins on page 196 in
Chapter 6, “Dialog Boxes.”

Use the caution alert box, which includes the caution icon in the upper-left
corner. This icon indicates to users that they need to carefully consider the
alert box message before clicking the default button or pressing the Return
key. The caution icon should always be in the same, predictable location so
that users easily recognize it as a warning and understand its meaning.

The button names in the save changes alert box correlate to the action users
perform by pressing the button. The buttons read Save, Don’t Save, and
Cancel. Using these verbs reinforces the identity of each possible action to the
user. In other words, Don’t Save provides much more context for the user
than No does.

C H A P T E R 4

Menus

Standard Macintosh Menus 103

4
M

enus

In order to prevent accidental clicks of the wrong button, you should
always keep safe buttons apart from buttons that could cause data loss.
Standardizing the location of buttons in a safe configuration provides an
additional safeguard for the user. Place the Save button in the lower-right
corner with the Cancel button to its left. Place the Don’t Save button
left-aligned with the message text. Make the Save button the one that is linked
to the Return or Enter key. This way, the user is less likely to accidentally click
the Don’t Save button and cause irretrievable loss of data. Figure 4-64 shows
an example of a standard save changes alert box.

Figure 4-64 The save changes alert box

Include the name of your application and the name of the document in
the alert box message, as shown in Figure 4-64. When a user chooses the
Close command, the message should read, “Save changes to the . . . document
. . . before closing?” This wording should change to “Save changes to the . . .
document . . . before quitting?” if the alert box appears as a result of the
Shut Down command or the Quit command. When a user shuts down the
computer, several save changes alert boxes may appear if there are several
open, unsaved documents on the desktop. The addition of contextual
information to the message helps the user by identifying to which
application and document the message refers.

When you display the save changes alert box, center it horizontally either on
the screen or over the active window if the window is on a large screen.
Figure 4-65 shows the correct placement of the alert box on three common
sizes of screens.

A button that

causes data loss

Buttons that are

“safe” for data

C H A P T E R 4

Menus

104 Standard Macintosh Menus

Figure 4-65 The correct location of the save changes alert box

Save 4

The Save command lets the user save the active document to a disk, including
any changes made to that document since the last time it was saved.
Figure 4-66 shows the Save command.

9-inch or 13-inch screen

19-inch screen

Alert box centered

horizontally on screen

Alert box centered

horizontally over

active window

untitled

untitled

File Edit Font Size Style

File Edit Font Size Style

C H A P T E R 4

Menus

Standard Macintosh Menus 105

4
M

enus

Figure 4-66 The Save command

The document remains open. Provide feedback to the user that the document
is being saved. Use the animated watch cursor if the save takes approximately
one or two seconds. If the operation takes much longer, display a status bar or
other message box.

If the user chooses Save for a new untitled document (one that the user hasn’t
saved yet), display the Save As dialog box described in the next section.

If there’s not enough room on the selected disk to save the document, display
a caution alert box that says so and suggest that the user can use Save As
instead to save the document on another disk. Don’t destroy the document
just because the current disk is full. Figure 4-67 shows a sample alert box for
this case.

Figure 4-67 A sample alert box to use when a disk is full

1. 2.

C H A P T E R 4

Menus

106 Standard Macintosh Menus

Save As 4

The Save As command saves a copy of the active document under a new
name provided by the user. Figure 4-68 shows the Save As command and its
dialog box.

Figure 4-68 The Save As command and dialog box

The Save As dialog box allows the user to provide a name for the document
and to choose where it will be saved. Leave the document open and active.

When the user opens a document, makes changes to it, and then chooses
Save As, don’t change the original document. Save the changed version of the
document under the new name. The active document is no longer the one
the user opened, but rather the new one with the new name.

If the user uses the Save As command to make a new copy of a document,
and made no changes to the original document, create a second document
exactly like the first one. The user now has two identical documents with
different names.

1. 2.

C H A P T E R 4

Menus

Standard Macintosh Menus 107

4
M

enus

If your application supports stationery, include a Stationery option in the
Save As dialog box. A stationery pad is a template of the original document
with whatever information it contains. When a user opens a stationery
document, open a copy of the template with the name untitled. When the user
saves that document, display the Save As dialog box so that the user can
name it.

Don’t use the Save a Copy command in your application. People may not
understand the distinction between the Save As command and the Save a
Copy command.

Revert 4

The Revert command discards all changes made to the active document since
the last time it was saved or opened. The document that was last saved to
the disk is reopened. When the user chooses Revert, display an alert box
that warns the user about the potential data loss this operation will cause.
Provide a cancel button so that the user has a way to back out of the situation.
Figure 4-69 shows a File menu with the Revert command highlighted and an
appropriate alert box.

Figure 4-69 The Revert command

Forg
ive

nes
s

1. 2.

C H A P T E R 4

Menus

108 Standard Macintosh Menus

Page Setup… 4

The Page Setup command lets the user specify printing parameters such
as the paper size and printing orientation. Your application can provide
other printing options as appropriate. These parameters are saved with
the document when the document is saved. Figure 4-70 shows a typical
Page Setup dialog box.

Figure 4-70 A Page Setup dialog box

Print… 4

The Print command lets the user specify various parameters, such as print
quality and number of copies, and then prints the document. The parameters
apply to only the current printing operation and are not saved with the
document. Figure 4-71 shows a typical Print dialog box.

If the user has not selected a printer in the Chooser, display a dialog box when
the user chooses the Print command. This dialog box should alert the user
of the situation and direct the user to the Chooser to select a printer.

If a document is printed from the Finder, the document is opened and the
Print dialog box is displayed. If the application is launched for the purpose of
printing the document, the application quits after the printing is complete or
canceled. If the application is already running, the application remains active
after the printing is complete. This behavior occurs so that the application
remains in the same state after printing a document as before the printing
was initiated.

1. 2.

C H A P T E R 4

Menus

Standard Macintosh Menus 109

4
M

enus

Figure 4-71 A Print dialog box

If you find it necessary to add items to the Print dialog box, do so at the
bottom of the dialog box. For more information on printing, see the
appropriate book in Inside Macintosh.

Quit 4

The Quit command lets the user leave the application and return to the
Finder, or another open application. If any open documents have been
changed since the last time they were saved, present the standard
save changes alert box, once for each open document. This alert box is
described in the section “Close” on page 102.

The Edit Menu 4
The Edit menu provides commands that allow people to change, or edit, the
contents of their documents. It also provides the commands that allow people
to share data, within and between applications, via the Clipboard or the
Edition Manager. All applications should support the Undo, Cut, Copy, Paste,
and Clear commands. These commands provide standard text-editing
abilities, which need to be available in modal dialog boxes such as the
Save As dialog box, even though your application itself may not handle these
features. You can include a Select All command and its keyboard equivalent if
it makes sense for your application.

1. 2.

C H A P T E R 4

Menus

110 Standard Macintosh Menus

Figure 4-72 shows an example of a standard, simple Edit menu.

Figure 4-72 A standard Edit menu for an application

You can add other commands to this menu if they’re essential to your
application and involve changing user content. You must add the commands
after the standard menu commands without changing their order. Figure 4-73
shows how to incorporate commands into the Edit menu without disrupting
the standard order.

Figure 4-73 Adding commands to the Edit menu

In addition to the standard commands, if your application implements the
capabilities of the Edition Manager, include its commands in the Edit menu,
separated from the standard commands by a gray line. Figure 4-74 shows a
sample Edit menu that includes the required Edition Manager commands.

Don’t change

the standard

order. Do this instead.

C H A P T E R 4

Menus

Standard Macintosh Menus 111

4
M

enus

Figure 4-74 A sample Edit menu with Edition Manager commands

If you find that you need all of the available space in the Edit menu for your
application’s commands, another way to accommodate the Edition Manager
commands is by implementing a submenu. Include a Publishing command in
the Edit menu as the title of the submenu. Use the standard indicator for a
hierarchical menu, as shown in Figure 4-75, which also shows the submenu
with the Edition Manager commands. Because hierarchical menus increase
the complexity of your application, it’s best to use this approach only when
you have no other alternative.

Figure 4-75 A sample hierarchical Edit menu with Edition Manager commands

The Clipboard 4

The Clipboard holds whatever data is cut or copied from a document. It stores
the contents until the user replaces them with a new cut or copy operation.
The user can change documents, applications, or open a utility without losing
the Clipboard contents. Because the contents of the Clipboard don’t change
when the user moves from one application to another, the Clipboard is used
to transfer data among compatible applications and desk accessories. If the
user moves the Clipboard file from one disk to another, the contents move
with it, replacing any existing Clipboard file on the target disk.

C H A P T E R 4

Menus

112 Standard Macintosh Menus

Figure 4-76 shows an example of the Clipboard window with some
text in it.

Figure 4-76 The Clipboard

The Clipboard is available to all applications. Your application can show the
contents of the Clipboard in a window. The Clipboard window looks and acts
like a document window. The contents are visible, but not editable.

Every time the user selects data in the active document and chooses Cut or
Copy, store a copy of the selection in the Clipboard, replacing any previous
Clipboard contents. Keep the previous contents available in case the user
chooses Undo.

Implement the Show Clipboard/Hide Clipboard command in the Edit menu
so that the user can display and close the Clipboard window. If the Clipboard
is already showing, the user can also use the close box or the Close command
to close the window. Show Clipboard and Hide Clipboard are a single toggled
item. The Show Clipboard/Hide Clipboard command is described in“Show
Clipboard/Hide Clipboard” on page 117.

You should let the user determine when the Clipboard window is open. For
example, if the user leaves the window open when quitting your application,
the Clipboard should be open when the user restarts it.

In the cooperative, multitasking environment of the current system software,
it’s important that you hide your application’s Clipboard window when your
application is not active. In this model, each application has a local Clipboard.
Whenever the user switches applications, the contents of the Clipboard are
converted to a standard format.

1. 2.

C H A P T E R 4

Menus

Standard Macintosh Menus 113

4
M

enus

Undo/Redo 4

The Undo command reverses the effect of the user’s previous operation. The
Redo command reverses the effect of the last Undo command. Undo
and Redo are a single toggled item. In most applications, there is one level
of undo operations. The application determines which operations can be
undone. Simple operations require your application to store a minimal
amount of information about the previous state of the data in order to
implement the Undo command. For example, if a user cuts one word from a
document, you only need to store the size, the location, the content, and the
style of the data. For operations that require you to store the entire state of the
document in order to implement the Undo command, it may be more difficult
to implement. You should consider the needs of your audience when making
difficult decisions about which operations support the Undo command.
Remember that your application must be able to redo every undo operation.

In general, support the Undo command for operations that change the user’s
contents of a document. It’s nice, but not necessary, to support the Undo
command for operations that don’t change the user’s contents of a document.
Actions that take a lot of effort to recreate are probably those that a user
would most expect to be able to undo. For example, a user might spend
several minutes arranging windows on a screen in a specific layout. If
that user then accidentally chose the Tile command, the user would expect
to be able to recover the original layout by using the Undo command.

Most menu items, regardless of how the user invokes them, should be
undoable. Most keyboard input, any sequence of characters typed from the
keyboard or numeric keypad, including Delete (Backspace), Return, and Tab
should also be undoable.

Operations that may not be undoable include selecting, scrolling, splitting the
window, or changing a window’s size or location. None of these operations
interrupts a typing sequence. For example, if the user types a few characters
and then scrolls the document, the Undo operation doesn’t undo the scrolling
but does undo the typing. Whenever the location affected by the Undo
command isn’t currently showing on the screen, your application should
scroll the document so the user can see the effect of the Undo command.

You should add the name of the last operation to the Undo command. For
example, it could read Undo Typing if the user just finished entering some
text in a document. If the last operation can’t be undone, you should use the
phrase Can’t Undo and display it dimmed, because it provides more feedback
to the user about the current state. The Undo command changes to Redo
after the user chooses Undo. You should also include the operation name in
the Redo string when possible. If the user chooses Redo, reverse the
undo operation.

C H A P T E R 4

Menus

114 Standard Macintosh Menus

Figure 4-77 shows an example of the Edit menu with correctly updated Undo
and Redo commands.

Figure 4-77 The Undo and Redo commands

If a user is about to complete an operation that could have a deleterious effect
on data and that can’t be undone, you should warn the user. For example,
if a user is about to destroy a lot of data by replacing every fifth word with a
space, display an alert box that says something to the effect of, “You are about
to change a lot of your document. You can’t undo this operation.” The buttons
should be labeled Replace and Cancel. If the user is about to make a change
that affects only the environment, such as changing a window location, then
it’s not necessary to display a warning.

The Command-Z combination is reserved as a keyboard equivalent for
the Undo/Redo command in the Edit menu. It shouldn’t be used for any
other purpose.

Cut 4

The Cut command removes data that the user selects prior to choosing
the command. People use the Cut command to delete the current selection
or to move it. Store the cut selection on the Clipboard, replacing its
previous contents.

Forg
ive

nes
s

C H A P T E R 4

Menus

Standard Macintosh Menus 115

4
M

enus

Make the area active where the cut selection was. The visual indicators vary
by application type. For example, a word processor would display a blinking
insertion point at the spot where the text was cut. In an array, the user would
see an empty but highlighted cell. If the user chooses Paste immediately after
choosing Cut, restore the document to the state it was in just before the
cut operation.

The Command-X combination is reserved as a keyboard equivalent for the
Cut command in the Edit menu. It shouldn’t be used for any other purpose.

Copy 4

The Copy command makes a duplicate of data the user has selected. Your
application puts a duplicate of the selected information on the Clipboard,
but leaves the selection in the document. People use the Copy command
in conjunction with the Paste command to insert duplicate data in
another location.

The Command-C combination is reserved as a keyboard equivalent for the
Copy command in the Edit menu. It shouldn’t be used for any other purpose.

Paste 4

The Paste command inserts the contents of the Clipboard in a document at the
insertion point. It replaces any current selection. The user can choose the
Paste command several times in a row to insert multiple copies of the
Clipboard contents. After a paste operation, make the object that was
pasted the new selection, unless the user pasted text. In this case, place an
insertion point after the inserted text. In either case, leave the contents of the
Clipboard unchanged.

People use the Paste command as the last stage of a move or copy operation.
Figure 4-78 shows how the Paste command works.

The Command-V combination is reserved as a keyboard equivalent for the
Paste command in the Edit menu. It shouldn’t be used for any other purpose.

C H A P T E R 4

Menus

116 Standard Macintosh Menus

Figure 4-78 The results of using the Paste command

1.

2.

C H A P T E R 4

Menus

Standard Macintosh Menus 117

4
M

enus

Clear 4

The Clear command removes data that the user selects just prior to choosing
the command. Unlike Cut and Copy, the Clear command does not put the
selection in the Clipboard. The Clipboard is unchanged and your application
displays the new selection in the same way as it would after a cut operation.

Pressing the Delete (Backspace) key or the Clear key has the same effect as
choosing the Clear command from the File menu. (Note that the Backspace
key and the Clear key do not appear on all keyboards.)

Select All 4

The Select All command highlights every object in the document. In a word
processor, Select All selects every character as well as all graphics in the
document. This command is useful if a user wants to copy or reformat an
entire document.

The Command-A combination is reserved as a keyboard equivalent for
the Select All command in the Edit menu. It shouldn’t be used for any
other purpose.

Show Clipboard/Hide Clipboard 4

Implement the Show Clipboard command in the Edit menu so that the user
can display and close the Clipboard window, as described earlier in this
chapter in the section “The Clipboard.” (If the Clipboard is already showing,
the user can also use the close box or the Close command to close the
window.) Show Clipboard and Hide Clipboard are a single toggled item.

Show Clipboard changes to Hide Clipboard when the Clipboard window is
displayed. The user can also use the close box in the Clipboard window
(or the Close command) to hide the Clipboard. Remember to hide your
Clipboard window when your application isn’t active. Display it again when
the user makes your application active by clicking a window or using the
Application menu.

Create Publisher… 4

The Create Publisher command creates an edition based on the selected
data. Your application stores this data in an edition file. This information
updates automatically when a user saves the document that contains the
publisher. The entire Edition Manager interface is described in the chapter
“Edition Manager” in Inside Macintosh: Interapplication Communication.

C H A P T E R 4

Menus

118 Standard Macintosh Menus

Figure 4-79 shows the first two steps of the process.

Figure 4-79 The Create Publisher command and dialog box

Subscribe To… 4

The Subscribe To command allows the user to specify which edition to insert
in the document. Display the Subscribe To dialog box, as shown in Figure 4-80.

Figure 4-80 The Subscribe To command and dialog box

Publisher/Subscriber Options… 4

The Publisher Options and Subscriber Options commands allow you
to provide some choices about publishers and subscribers to the user.
Publisher/Subscriber Options is a context-sensitive toggled command;
the command name changes to reflect whether a publisher or subscriber
is selected. If a user selects a publisher, the command should be Publisher
Options. If a user selects a subscriber, the command name should change to
Subscriber Options. If no area is selected, the command should appear
unavailable in the last state it was in.

1. 2.

1. 2.

C H A P T E R 4

Menus

Standard Macintosh Menus 119

4
M

enus

Figure 4-81 shows the Publisher Options dialog box. The options apply to the
currently selected publisher.

Figure 4-81 The Publisher Options dialog box

The Cancel Publisher button allows the user to stop sending the information
to an edition. The data remains unchanged in the document. The border that
denotes a publisher no longer appears when the data is selected.

The Send Editions radio buttons allow the user to specify whether to
automatically send a new edition when the document is saved or to send the
data to the edition when the user decides to do so. The Send Edition Now
button becomes available when the user clicks the Manually button. Then
the user must click the Send Edition Now button to specifically send a new
edition of a publisher. Information that identifies the latest edition sent
appears in the area below the radio buttons.

If you provide additional options to the user, include the controls in the
bottom area of the Publisher Options dialog box.

Figure 4-82 shows the Subscriber Options dialog box. The options apply
to the currently selected subscriber.

Figure 4-82 The Subscriber Options dialog box

C H A P T E R 4

Menus

120 Standard Macintosh Menus

The Edition Manager has no provisions to let users edit subscribers directly
because new editions can arrive at any time. This situation could be especially
destructive if several users were working over a network with interconnected
publishers and subscribers, and new editions arrived that replaced
subscribers that had been edited. To make changes to a subscriber, the
user must go to the publisher and make changes to it. The user can use the
Open Publisher button in the Subscriber Options dialog box. This option
locates the document that contains the publisher and opens it, launching the
application if necessary. The document automatically scrolls to display the
publisher. When the user saves changes to the document, the new contents
are written to the edition file and all subscribers are updated. Because the
changes are made to the original document, the user can make changes to
the data without danger of losing the change in a subscriber. It’s important
to note that the user must have correct access privileges to the document
that contains the publisher for this option to work. If a user doesn’t have
permission to open a file on a file server or a personal Macintosh, display an
alert box to notify the user that the publisher couldn’t be opened and why.

The Cancel Subscriber button allows the user to break the connection to
the edition. The data remains in the document, but new editions won’t be
received and the borders that denote a subscriber no longer appear.

The Get Editions radio buttons allow the user to specify when new editions
should be received. If the user clicks Automatically, editions arrive as they
become available when the document is open or each time the document is
opened if new editions are available. If the user clicks Manually, new editions
are received when the user selects the subscriber, chooses Subscriber Options,
and then clicks the Get Edition Now button. Information that identifies the
latest edition available appears in the area below the radio buttons.

If you provide additional options to the user, include the controls in the
bottom area of the Subscriber Options dialog box.

The Font Menu 4
The Font menu provides choices of text fonts for users. A font is a set of
typographical characters created with a consistent design. All the characters
in a font share features such as the thickness of horizontal and vertical lines,
the degree and position of curves, and the presence or absence of serifs.
Serifs are fine lines added to the main strokes of a letter. The characters
in a font can appear in many different point sizes, but all have the same
general appearance, regardless of size.

C H A P T E R 4

Menus

Standard Macintosh Menus 121

4
M

enus

Your application can include a Font menu if you support text in your
application. Not all applications need a Font menu, but all word processors
should include a Font menu.

Display the names of all available fonts (those residing in the user’s
System Folder) in your application’s Font menu. Fonts appear in the Font
menu in alphabetical order, grouped by script system when more than one
script is installed. When the script system is installed, the font name of an
international font appears in its corresponding script when it is localized.
Users install fonts by dragging the font icon to the System Folder icon.
Figure 4-83 shows an example of a Font menu.

Figure 4-83 A Font menu

Indicate which font is currently in effect using a checkmark. As described
in the section “Checkmarks and Dashes in Menus,” which begins on
page 64, use dashes to indicate when more than one font applies to the
current selection.

Many people have a very large set of fonts, so the font list should never
be included with other items in one menu. Your application needs to have a
Font menu and separate menus to accommodate lists of attributes such as
style and size choices.

C H A P T E R 4

Menus

122 Standard Macintosh Menus

Figure 4-84 shows why it’s not a good idea to try to group the Font menu
with other text-related menus.

Figure 4-84 Don’t combine the Font menu with other menus

For more information on font considerations, see the section “Worldwide
Compatibility” on page 16 in Chapter 2, “General Design Considerations.”

The Size Menu 4
The Size menu provides size choices for fonts. Font sizes are measured in
points. A point is a typographical unit of measure equivalent to 1/72 inch.
Indicate the current font size with a checkmark. As described in the section
“Checkmarks and Dashes in Menus,” which begins on page 64, use dashes
to indicate when more than one font size applies to the current selection.
Figure 4-85 shows a typical Size menu.

Figure 4-85 A Size menu

Don’t put fonts

with other choices

in one menu.

Put fonts in

a separate

menu.

C H A P T E R 4

Menus

Standard Macintosh Menus 123

4
M

enus

System 7 supports both bitmapped and TrueType fonts. To incorporate basic
support for TrueType fonts into your application, provide support for all font
sizes in your application. Don’t set an upper limit for font sizes. Outline the
font sizes in the menu for those sizes that appear in the user’s System file. Use
plain type for font sizes that aren’t in the System file. If a TrueType font is
present, outline all sizes of that font that you display in the menu. Provide a
way for users to choose whatever font size they desire.

One way that you can support TrueType fonts is to add an Other command to
the end of the Size menu. When the user chooses Other, display a dialog box
that allows the user to choose any available font size by typing in a text box.
If the user enters a font size not currently on the menu, add a checkmark to
the Other command and include the font size as part of the Other command
name. Show the font size in parentheses after the word Other. If a selection
contains more than one nonstandard size, include the word Mixed in
parentheses following the word Other. In this case, leave the text box of
the font size dialog box blank when the user chooses the Other (Mixed)
command. Figure 4-86 displays a sample pull-down Size menu and font size
dialog box. See Inside Macintosh: Text for more information on supporting
fonts in your application.

Figure 4-86 A sample pull-down Size menu and font size dialog box

It’s possible to implement the Size and Style menus as submenus in a
hierarchical menu. For information on doing so and the tradeoffs that you
need to consider before implementing the menus this way, see the section
“Hierarchical Menus,” which begins on page 79.

C H A P T E R 4

Menus

124 Standard Macintosh Menus

The Style Menu 4
The Style menu provides style choices for fonts. The menu items in a
standard Style menu are Plain Text, Bold, Italic, Underline, Outline, Shadow,
Condense, and Extend. You can display these styles in the menus to indicate
the effect of choosing the items. Figure 4-87 shows a typical Style menu.

Figure 4-87 A Style menu

You can also include other style attributes in this menu, such as Superscript,
Subscript, Small Caps, and Uppercase and Lowercase. Most style attributes
except Plain Text, Uppercase and Lowercase, and Condense and Extend, are
accumulating attributes. This means that the user can choose all of them, none
of them, or any combination of them. Choosing Plain Text cancels all other
style attributes.

Display a checkmark next to each item when it’s in effect. The absence of a
checkmark indicates that the attribute is not currently in effect. It is important
that you toggle on and off each attribute individually. In this way you provide
the user with the ability to have multiple attributes in effect and then cancel
one of them, without having to cancel them all and start over. For example,
if the user made a selection bold, italic, and underline (which is not
recommended), he or she could decide to eliminate the underline style
but keep the bold and italic styles.

You can assign keyboard equivalents for the Style menu, as described in the
section “Keyboard Equivalents,” which begins on page 128.

C H A P T E R 4

Menus

Standard Macintosh Menus 125

4
M

enus

The Help Menu 4
The Macintosh Operating System includes Balloon Help, an online help
system for system software; you can use the Help Manager to implement
Balloon Help for your application. The user can turn on Balloon Help from
the Help menu. Figure 4-88 shows the Help menu.

Figure 4-88 The Help menu

If you provide additional help information for your application, put the help
commands that you provide in the Help menu. It’s a good idea to include the
name of your application next to your help command. For example, you
might include a command called WaveWriter Help in the Help menu.

The Keyboard Menu 4
Users can install multiple script systems. A script system can contain multiple
keyboard layouts that each map character codes to keys on a physical
keyboard, can use input methods that act as a front end processor for text
input in 2-byte scripts, and can support more than one attached physical
keyboard. See Inside Macintosh: Overview for information on installing
and enabling script systems and keyboard resources.

The Keyboard menu appears when more than one script system is present or
a localizable resource flag is set. This menu simplifies the user’s access to
script systems, keyboard layouts, and input methods. The icon for the
Keyboard menu appears between the icons for the Help menu and the
Application menu. A keyboard icon appears next to each keyboard layout
or input method name in the menu, and the icon of the active keyboard
layout or input method appears in the menu bar. As Figure 4-89 shows,
the Keyboard menu displays a list of installed keyboard layouts and input
methods for each enabled script system.

Acc
es

sib
ilit

y

C H A P T E R 4

Menus

126 Standard Macintosh Menus

The Keyboard menu groups the keyboard layouts by script system, which
are separated by dotted or gray lines. In Figure 4-89, there are several script
systems that include keyboard layouts and input methods. Only one
keyboard layout or input method and one physical keyboard are active at a
time. Indicate the active condition by using a checkmark in the menu.

Figure 4-89 The Keyboard menu

Script boundaries

Keyboard layout

for active script

Keyboard icon for

active keyboard layout

C H A P T E R 4

Menus

Standard Macintosh Menus 127

4
M

enus

Users can change scripts by using this menu or by using a keyboard
equivalent, Command–Space bar, to cycle through the scripts. The user
can rotate through keyboard layouts or input methods within a script by
using Command–Option–Space bar. Don’t use the keyboard equivalents
Command–Space bar and Command–Option–Space bar in your application
because they are reserved for use by the Script Manager. See the section
“Keyboard Equivalents,” which begins on page 128, for a complete listing
of reserved keyboard equivalents.

A keyboard icon represents a localized keyboard layout or input method.
If you develop keyboards or keyboard resources, you should provide
customized icons. You need to create a 16-by-16 pixel icon in 1-bit, 4-bit,
and 8-bit color.

If you are designing a new keyboard icon, use a symbol to represent a
keyboard layout for a region that is larger or smaller than a country or
province. For example, a diamond represents the Roman Script System, which
is used in the United States, Central America, South America, Australia, and
most of Europe. Use the flag of a country or province if the keyboard layout is
used only in that area. For example, the Union Jack represents the keyboard
layout localized for use in Great Britain. Be sure to use the colors that appear
on the nation’s flag. You can also add a visual indicator to the flag to show
some modification. Use a superscript diamond to indicate a QWERTY
transliteration, which is a mapping of sounds from a language to the Roman
keyboard layout. See Figure 8-47 in Chapter 8, “Icons,” which begins on
page 223, for examples of icons with these symbols. Also, see that chapter for
more information on designing or creating keyboard and input method icons.

The Application Menu 4
The Application menu displays a list of the applications that are currently
running. When the user opens your application, its name and its small icon
appear in the Application menu. Users can switch to another application by
choosing an item in this menu. They can also hide the open windows of the
active application or any other open applications. See Chapter 5, “Windows,”
which begins on page 131, for more information about how your application
should behave when the user makes it the active application or when the user
chooses another application while yours is active.

C H A P T E R 4

Menus

128 Keyboard Equivalents

Keyboard Equivalents 4

Apple reserves several standard keyboard equivalents for standard
commands. Table 4-1 and Table 4-2 show the standard Macintosh
keyboard equivalents.

Table 4-2 shows several keyboard equivalents that are reserved for use with
localized versions of system software, localized keyboards, keyboard layouts,
and input methods. These keyboard equivalents don’t correspond directly
to menu commands, so there is no menu column with command names
in Table 4-2.

Table 4-1 Apple-reserved keyboard equivalents for all systems

Menu Keys Command

File x-N New

File x-O Open…

File x-W Close

File x-S Save

File x-P Print…

File x-Q Quit

Edit x-Z Undo

Edit x-X Cut

Edit x-C Copy

Edit x-V Paste

Edit x-A Select All

Edit x-period Terminate an operation

Table 4-2 Additional reserved keyboard equivalents for worldwide systems

Keys Action

x–Space bar Rotate through enabled script systems

x–Option–Space bar Rotate through keyboard layouts and input methods within a script

x–modifier key–Space bar Apple reserved

x–Right Arrow Changes keyboard layout to current layout of Roman script

x–Left Arrow Changes keyboard layout to current layout of system script

Consis
te

ncy

C H A P T E R 4

Menus

Keyboard Equivalents 129

4
M

enus

See the section on keyboard equivalents in the book Inside Macintosh: Overview
for a discussion of handling keyboard equivalents in other script systems.

The key combinations in Table 4-1 and Table 4-2 are reserved across all
applications. Even if your application doesn’t support one of the menu
commands in Table 4-1, it shouldn’t use these keyboard equivalents for
another function.

Some applications use other common keyboard equivalents, as shown in
Table 4-3. These keyboard equivalents are secondary to the standard keyboard
equivalents listed in Table 4-1 and Table 4-2. If your product doesn’t support
one of these functions, then use these equivalents as you wish.

Don’t assign keyboard equivalents for infrequently used menu commands.
Add keyboard equivalents only for the commands your users employ
most frequently.

Table 4-3 Common keyboard equivalents that are not reserved

Menu Keys Command

File x-F Find

File x-G Find Again

Style x-T Plain Text

Style x-B Bold

Style x-I Italic

Style x-U Underline

131

C H A P T E R 5

5

Windows 5Figure 5-0
Listing 5-0
Table 5-0

My Hard Disk

Trash

Thi d t t d ith F M k 4 0 4

C H A P T E R 5

Windows

132

This chapter describes document windows, which contain user data, and
utility windows, which “float” above other windows and can provide tools or
other controls that users can work with while document windows are open.
The chapter presents specifications and recommendations about the
appearance and behavior of these windows, including how the window
frame should look, how the user interacts with windows, how you should
display them on the screen, and how they interact with each other. This
chapter includes some information about dialog boxes, but you can find more
extensive information about dialog and alert boxes, both of which are also
windows, in Chapter 6, “Dialog Boxes,” which begins on page 175.

Windows provide a way for people to view and interact with their
data. Windows have standard appearances that create a sense of perceived
stability for people because they have a standard way to view and
interact with all the different kinds of data they can create and store
on Macintosh computers.

A window is a view into the document—if the document is larger than the
window, the window is a view of a portion of the document. The application
puts one or more windows on the screen, each window showing a view of a
document or of auxiliary information used in processing the document.

Generally there is only one window per document. Multiple windows for the
same document can confuse the relationship of windows to icons. The user
may wonder, “which window do I close to close the document?” You can
provide multiple views to a document by implementing the capability to
split windows or by adding utility windows. (See the section “Splitting a
Window” on page 170 and the section “Utility Windows” on page 137 for
more information.)

Figure 5-1 shows examples of the standard window types, including
dialog boxes.

Per
ce

ive
d S

ta
bilit

y

C H A P T E R 5

Windows

133

5

W
indow

s

Figure 5-1

Examples of standard windows

There are conventions for opening, closing, moving, sizing, scrolling, and
zooming windows. This means that no matter which application people use,
they know how to control windows on the screen and how to adjust windows
in the desktop workspace for particular tasks or for their work styles.

When people manipulate windows on the screen, they see immediate visual
feedback. When people move windows, the graphic display keeps up with
their movements using a dotted outline to represent the window as it moves
on the screen, reinforcing their sense of direct manipulation. When people
open and close windows, they see an illusion of such actions. All of these
mechanisms emphasize that the user is in control and can directly manipulate
“real” interface objects such as windows. See

Inside Macintosh: Macintosh
Toolbox Essentials

 for information on implementing windows.

Modeless dialog boxModal dialog box

Document window Movable modal dialog box

Dire
ct

 M
an

ip
ulat

io
n

C H A P T E R 5

Windows

134

Window Appearance

Window Appearance 5

Document windows present a view into the content that people create and
store. If the document is larger than the window, the window shows a portion
of the document. The Window Manager provides support for the window
frame. Your application determines window content and what happens in the
content area. Document windows also provide a graphic representation of
opening, closing, and other operations performed on documents. Windows
are usually, but not necessarily, rectangles.

This section discusses the appearance of document windows and utility
windows. The section “Window Behaviors,” beginning on page 139,
includes information about the behavior of window components as well
as information about general window behaviors.

Document Window Controls 5

Standard document windows have standard structural components.
These components include the title bar, size box, close box, zoom box,
and

scroll bars. Figure 5-2 shows the structural components of standard
document windows.

Figure 5-2

Standard document window parts

Consis
te

ncy

Close box

Title bar

Content area

Zoom box

Scroll bar

Size box

C H A P T E R 5

Windows

Window Appearance

135

5

W
indow

s

Windows are designed for visual consistency across all monitors from
black-and-white displays to 24-bit color displays. For display on color
monitors, colors and shades of gray have been added to the frames of
windows and to user controls to emphasize those areas that users interact
with, such as scroll boxes and arrows, zoom boxes, close boxes, and size
boxes. The window content area remains white on all systems and the
window contents remain black and white, unless the user assigns color to the
content. This updated design takes advantage of the color capabilities of the
Macintosh but maintains the consistency of the Macintosh interface.

Use of Color in Windows 5

Color distinguishes the active window from other windows and enhances the
appearance of user controls on the window frame. On color screens, the scroll
bars and the racing stripes in the title bar are gray. The user controls—close
box, size box, zoom box, and scroll box—are colored to make them more
apparent. The borders of inactive windows are gray and appear to recede into
the background so that the active window’s black frame emphasizes its
position in front of the other windows. Figure 5-3 shows the appearance of
windows on a color screen.

Figure 5-3

Windows on a color screen

Aes
th

et
ic

In
te

grit
y

C H A P T E R 5

Windows

136

Window Appearance

The standard window definition functions display color windows and dialog
boxes. The control definition functions for scroll bars, scroll arrows, scroll box,
close box, size box, and zoom box have been updated to display these
controls in color. If you use the standard window definition functions and
standard control definition functions, your application’s windows will match
the appearance of Macintosh system windows. If you create your own
windows, be compatible with the system software appearance by using the
standard window color table. Figure 5-4 shows the components of a standard
window in color.

Figure 5-4

Standard window components in color

Be aware that users can change the color used in window frames and dialog
box frames by using the Color control panel. If you use the standard window
color table, you can be sure that any colors you use are consistent with any
color that the user can choose from the Color control panel. You can use the

Close box

Scroll arrow

Scroll box

Size box

Zoom box

C H A P T E R 5

Windows

Window Appearance 137

Palette Manager to associate a color palette with a window definition.
For more information, see the discussion of the Palette Manager in
Inside Macintosh. Figure 5-5 shows the Color control panel and the colors
that the user can choose to be used in windows and dialog boxes.

Figure 5-5 Colors that the user can choose for windows

Utility Windows
A utility window is a small accessory window that provides additional
tools or controls to users. A tool palette or a set of text attributes could be
implemented in a utility window. Utility windows float on top of document
windows. The user can open several utility windows at a time. The user can
easily use any utility windows from the active document window. That is, the
user doesn’t have to click a utility window once to make it active and then
click again to make a choice or activate a setting in the window. Figure 5-6
shows an example of a utility window.

Figure 5-6 A utility window

C H A P T E R 5

Windows

138

Window Appearance

You can create utility windows as a way to present controls or settings that
affect the active window. Utility windows are useful for keeping extremely
important controls or information accessible at all times in the context of a
user task. Don’t use utility windows when you can solve this need with a
modeless dialog box (the user can make the appropriate settings and then
close the dialog box) or by adding controls to the window frame (where
appropriate) because utility windows take up screen space, which is a factor
especially on smaller screens.

You need to create and maintain any utility windows for your application.
Whenever your application is in the background, hide all utility windows.
Sometimes applications implement palettes in utility windows. Palettes
are discussed in Chapter 4, “Menus,” in the section “Tear-Off Menus and
Palettes” on page 92.

Most utility windows don’t have titles. The standard drag region at the top of
utility windows is 11 pixels high. If you create utility windows that have title
bars and a title (text), make sure the title bar is at least 19 pixels high, the
height of a document window title bar. (If you create a smaller title bar with a
title, it can’t be localized for areas where the system font is never smaller than
12 points.) Fill the title bar with a 25 percent pattern. Don’t use racing stripes
in a utility window title bar. You can include a close box and a zoom box on
utility windows. If you do include these mechanisms, implement them with
standard behaviors, as described in “Closing a Window” on page 152 and
“The Zoom Box and Window Behavior” on page 168.

When a user has a document window open and a utility window that accepts
text open as well, it’s difficult to make it obvious where keyboard input will
appear. You need to implement a way to clarify to users what they can expect
in such a situation. You may use a secondary selection technique, such as
outlining the text in the inactive window (or making it gray on a color
monitor), to distinguish between the active input area and the inactive one.
It’s also very difficult to manage the input and editing of text in a utility
window. If users are confused about where the text will appear, it’s probably
a better idea to implement a modeless dialog box with the same capability.
Figure 5-7 shows an example of a utility window and a document window
that both accept text; this type of situation can be confusing to users.

Figure 5-7

Make it clear where text will appear

It’s unclear where

new text appears.

Show one active selection and an

indication of the secondary selection.

C H A P T E R 5

Windows

Window Behaviors

139

5

W
indow

s

Window Behaviors 5

Document windows provide immediate feedback about all actions the user
takes such as opening, closing, and changing the view of a document. The
sections that follow describe these behaviors and appearances.

The Active Window 5

People can open as many applications and desk accessories as their
computer’s memory can support, but they interact with only one at a time.
The one the user is interacting with is the

 active application.

 Its small icon
represents the Application menu in the menu bar.

As with applications, there can be only one active window at a time. Like the
active application, the

active window

 is the one the user is currently working
in. It is frontmost and visually distinct from the other windows on the screen.
The title bar displays racing stripes and the controls in the window frame are
visible. On color screens, the controls in the scroll bars are colored. Your
application should update the controls, such as the scroll bars, in its frontmost
window whenever the user switches to your application. Figure 5-8 shows
what the active window looks like compared to other windows on the screen.

Figure 5-8

The active window

Fee
dbac

k a
nd D

ial
og

C H A P T E R 5

Windows

140

Window Behaviors

All other windows, whether they belong to your application or another, are
inactive. Things can happen to documents in inactive windows, but only the
active window interacts with the user. For example, if the user chooses Save,
the command affects only the active window.

To make a window active, the user clicks anywhere in its content area or
window frame. It appears to the user that the window “moves” to the
frontmost plane and any parts that were previously covered by other
windows become visible.

When a user clicks in an application window, the click activates the window,
but makes no other changes. To make a selection in an application window,
the user must click again. This behavior protects the user from losing an
existing selection when the window becomes active. When the user activates
a window that had been deactivated, reinstate the window just the way it was
before the window was deactivated. The scroll box should be in the same
position and the same selection, if any, should still be highlighted. Try not to
create a great deal of flashing or other visual disturbance when you update
windows for your application. This action should take place with as little
distraction to the user as possible.

When a window that belongs to your application becomes inactive, the visual
characteristics of the active state reverse. The close box, zoom box, size box,
scroll box, and stripes in the title bar disappear. Don’t display the scroll bars
and their associated controls (scroll box and arrows) when a window from
your application is inactive; however, the lines that outline the area of the
scroll bar itself should remain visible. For example, notice the appearance of
the scroll bar in the “untitled” window shown in Figure 5-8; only the outline
is displayed. Don’t display a selection in an inactive window. Users may have
difficulty determining where the next keyboard or mouse action will take
effect. (You can use a secondary selection technique, such as an outline on a
black-and-white monitor or gray on a color monitor, to indicate where a
selection is in an inactive window.) Figure 5-9 shows what can occur when
two windows simultaneously display selection information.

C H A P T E R 5

Windows

Window Behaviors

141

5

W
indow

s

Figure 5-9

Don’t show a selection in an inactive window

Opening Windows 5

Users can open windows in a variety of ways including double-clicking a
document icon in the Finder, choosing a file from a standard file dialog box,
choosing the New command, choosing the Open command, or choosing a
command that displays a dialog box. For more information on where to open
windows on the screen, see the section “Window Positions” on page 146.

Don’t show a

selection in an

inactive window.

No selection

shown in the

inactive window.

C H A P T E R 5

Windows

142

Window Behaviors

When your application displays a new window, title it “untitled,” spelled in
lowercase letters. If the user chooses the New command again, without
saving the first untitled window, title the second window “untitled 2,”
leaving a space between the word and the number. Continue to add one to
the number in the title as long as the user continues to open new windows
without saving previously numbered untitled windows.

Figure 5-10 shows some examples of appropriate window titles for a series of
windows that haven’t been saved or named.

Figure 5-10

Appropriate window titles for a series of unnamed windows

Add numbers to window titles only when there is more than one open,
untitled window on the screen. If the user saves the first window, open the
next new one as “untitled.”

C H A P T E R 5

Windows

Window Behaviors

143

5

W
indow

s

Never capitalize the word

untitled

 in a new window title. It makes the
window look like it has a name and discourages people from saving the
document with a meaningful name. Don’t number the first new window with
the numeral one. Usually people open only one window, use it, save and
name it, and then go on with other work. In this case, numbering one
instance of a window doesn’t make sense and is distracting. Also, don’t add
punctuation of any kind to untitled window titles. Figure 5-11 shows several
examples of window titles that use naming techniques you should avoid;
it includes an example of the right way to title a window.

Figure 5-11

Examples of correct and incorrect window titles

When the user opens an existing document, display the name of the
document as it appears in the Finder icon. The document and its
corresponding window name must match at all times.

Window Display Order 5

Windows always appear on the desktop in a certain hierarchy of layers. Each
application has its own stack of windows within which different types of
windows appear in a specified order.

Don’t capitalize “Untitled.”

Don’t add a number to the first new window.

Don’t use additional punctuation.

Don’t leave a title blank.

Do use “untitled” for the first new window.

C H A P T E R 5

Windows

144

Window Behaviors

Standard document windows and modeless dialog boxes appear on the
lowest level, closest to the desktop and farthest away from the user. Modeless
dialog boxes follow the same ordering guidelines as document windows; they
typically appear on top of an open document window just as if they were new
document windows. Figure 5-12 shows the initial order of document
windows and modeless dialog boxes on the desktop; this order remains the
same until the user activates the modeless dialog box or one or more of
the windows.

Figure 5-12

Display order of document windows and modeless dialog boxes

C H A P T E R 5

Windows

Window Behaviors

145

5

W
indow

s

Floating windows, such as utility windows and palettes, appear on top
of other document windows and modeless dialog boxes, as shown in
Figure 5-13.

Figure 5-13

Adding floating windows to the desktop

When a user chooses a command that displays either a modal dialog box or a
movable modal dialog box, that dialog box appears on top of all modeless
windows and utility windows. All the open windows from an application
that appear beneath a modal dialog box are frozen in place and inactive,
but the user can move the open windows by pressing the Command key
and dragging them (one by one) to other positions on the screen (the
open windows remain inactive, but the user can now view their contents).
To view windows appearing beneath a movable modal dialog box, the user
can move the movable modal dialog box (rather than moving the other
windows) to another position on the screen.

C H A P T E R 5

Windows

146

Window Behaviors

Figure 5-14 shows a movable modal dialog box on top of all other windows.

Figure 5-14

Adding a movable modal dialog box to the desktop

Note that the user

cannot

 switch to another application when a fixed-position
modal dialog box appears on the screen. Only movable modal dialog boxes
allow the user to switch to another application without first dismissing the
dialog box. See Chapter 6, “Dialog Boxes,” beginning on page 175 for more
details on the design and behavior of dialog boxes.

Window Positions 5

Whenever your application displays a window on the screen, you must
decide where to put it and how big it should be. To determine where to place
a window, consider what kind of window your application is opening,
what other windows are open and where, and the relationship between
the content of the window and other windows or dialog boxes. Whenever
a change has been made to the initial size or location of a window, maintain
the user’s preferred size and position for the window.

Use
r C

ontro
l

C H A P T E R 5

Windows

Window Behaviors

147

5

W
indow

s

The sections that follow present examples for the most common situations.
You should consider how your application compares to these common
situations to determine the best ways to position your application’s windows,
including dialog boxes and alert boxes.

The Default Position on a Single Screen 5

When your application opens a new document window, position it in the
upper-left corner of the screen. Open each additional new document window
below and to the right of its predecessor. Figure 5-15 shows windows
positioned on a single screen.

Figure 5-15

Window positions on a single screen

Before closing a window, check to see whether the user has changed its size
or position. Save window positions, and reopen windows in the size and
position in which the user left them. If a user opens, moves, and closes a
document window without making any other changes, save the new window
position but don’t modify the date stamp of the document. If the user does
not change the size or position of the window, don’t save the position when
the user closes the window.

Before reopening a window, check to make sure that the size and state are
reasonable for the user’s current monitor or monitors, which may not be the
same as the monitor on which the document was last open. For example,
a user might start working on a word-processing document on a full-page
display at work and then take the document home and work on it on a
computer with a 13-inch monitor. In a situation like this, your application
should open the document in a window sized appropriately for the smaller
monitor and not necessarily in the saved size. See the section “The Zoom Box
and Window Behavior,” beginning on page 168, for more information on
appropriate window size.

untitled
untitled 2

My Hard Disk

Trash

untitled 3

File Edit Font Size Style

C H A P T E R 5

Windows

148

Window Behaviors

Figure 5-16 shows the standard position of a window on a 19-inch screen and
a 13-inch screen.

Figure 5-16

The standard window position on two sizes of screens

The Default Position on Multiple Screens 5

On computer systems with more than one monitor attached, display the first
new window in the upper-left corner of the screen that contains the menu bar.
If the user doesn’t move that first window, display each additional window
below and to the right of its predecessor. If the user moves the window,
display each additional window on the screen that contains the largest
portion of the frontmost window. If there is sufficient room on the screen,
display the subsequent windows to the lower right of the frontmost window.
If there isn’t enough room on the screen, display subsequent windows
starting in the upper-left corner on the screen (and then continue to display
additional windows in relationship to this new position). For example, if the
user creates a new window, drags it to a second screen, and then creates a
second window, display this window and any subsequent windows on
the second screen.

My Hard Disk

Trash

My Hard Disk

Trash

The Two Step

Here is the first sentence.

Here is the second sentence.

Here is the third sentence.

Here is the fourth sentence.

Here is the fifth sentence.

Here is the sixth sentence.

Here is the seventh sentence.

Here is the eighth sentence.

Here is the ninth sentence.

Here is the tenth sentence.

Here is the eleventh sentence.

Here is the twelth sentence.

Here is the thirteenth sentence.

Here is the fourteenth sentence.

Here is the fifteenth sentence.

The Two Step

Here is the first sentence.

Here is the second sentence.

Here is the third sentence.

Here is the fourth sentence.

Here is the fifth sentence.

Here is the sixth sentence.

Here is the seventh sentence.

Here is the eighth sentence.

Here is the ninth sentence.

File Edit Font Size Style

File Edit Font Size Style

C H A P T E R 5

Windows

Window Behaviors 149

5
W

indow
s

Figure 5-17 shows the position in which to open a new window when the
user has dragged its predecessor from the screen with the menu bar to a
second screen.

Figure 5-17 The standard window position on multiple screens

When you open several windows on multiple screens, continue to place the
windows on the screen where the user is working, each new one below and to
the right of its predecessor. The initial position of a window, however, must
always be contained on a single screen. It would be awkward to have a
window appear initially on screens of different display depths and
resolutions. Of course, the user can choose to place a window in such
a position.

File Edit Font Size Style

My Hard Disk

Trash

The Two Step

The Two Step

C H A P T E R 5

Windows

150 Window Behaviors

Figure 5-18 shows a window incorrectly displayed across two screens.

Figure 5-18 A window displayed across two screens

Dialog Box and Alert Box Positions 5

Open dialog boxes and alert boxes on the screen where the user is working.
On a computer system with one monitor, display the dialog box or alert box
horizontally centered on the screen. The dialog or alert window should
appear with one-fifth of the vertical desktop area (not including the menu
bar) above it and the rest below the window. Figure 5-19 shows where to
place an alert or dialog box on a single screen if no windows that the alert or
dialog box is related to are open.

Don’t open a window across two screens.

My Hard Disk

Trash

The Two Step

File Edit Font Size Style

C H A P T E R 5

Windows

Window Behaviors 151

5
W

indow
s

Figure 5-19 Standard position of an alert box

If you are displaying a dialog box or alert box that relates to a specific
document, position it relative to the document window. This position
reinforces the relationship of the two windows and also puts the box near the
user’s focus. Leave one-fifth of the document visible above the dialog box or
alert box. Figure 5-20 shows where to position an alert or dialog box in
relation to the active document window.

Figure 5-20 Alert box position in relation to the active document window

My Hard Disk

Trash

Dialog box

horizontally centered

on screen.

File Edit Font Size Style

My Hard Disk

Trash

untitled

untitled 2

untitled 3

Dialog box centered

over active window.

File Edit Font Size Style

C H A P T E R 5

Windows

152 Window Behaviors

When the user has more than one monitor connected to the computer, display
the dialog box or alert box on the screen where the user’s attention is. For
example, if a text document is active, open a find-and-replace dialog box on
the screen where the text document appears, not necessarily on the screen
where the menu bar is. Leave one-fifth of the document visible above the
dialog box or alert box. Figure 5-21 shows where to place an alert or dialog
box when the user has more than one monitor connected to the computer.

Figure 5-21 Standard alert box position with more than one screen

Closing a Window 5
People can close windows in a variety of ways. They can use the Close
command in the File menu, use the keyboard equivalent Command-W,
or click the close box. Figure 5-22 shows an enlarged view of the close box.

My Hard Disk

Trash

Display dialog

boxes where the

user is working.

untitled

File Edit Font Size Style

C H A P T E R 5

Windows

Window Behaviors 153

5
W

indow
s

Figure 5-22 The close box

Your application determines what happens with its windows visually and
logically when the user closes them. The visible effects may make the window
seem to retreat into an icon or to simply disappear.

When a user closes a document window, your application must do something
with any user data that may be in the window. The most common case is to
save the information by writing it to disk and display it when the user opens
the document again. In this case, store the position where the user placed the
window on the screen and the last size in which the user had the window as
described in “Window Positions,” beginning on page 146. When you reopen
it, use the size and position information to display the window.

C H A P T E R 5

Windows

154 Window Behaviors

When a user closes a document window, your application must decide
whether or not to write the information to disk. If the user has made changes
to the contents of the document (the most common situation), display the
save changes alert box described in Chapter 4, “Menus,” in the section
“Close” on page 102. This alert box is shown in Figure 5-23. In addition to
saving the contents of the document, you should also store the user state (size
and position) of the window and record whether the window was in the
system or user state, as described in “The Zoom Box and Window Behavior”
on page 168.

Figure 5-23 The save changes alert box

If the user has not changed the contents of the document but has moved,
resized, or zoomed the window, it’s a good idea to save the new window state
(size and position) information, but do not change the date stamp. In this
situation, the information is saved without prompting the user with the save
changes alert box. In either case, the window should have the same content,
size, and position the next time the user opens the document (unless they
decide not to save changes to the content of the document).

Moving a Window 5
The user moves a window by dragging its title bar. As the user drags, a dotted
outline of the window moves with the pointer until the user releases the
mouse button. At the release of the button, the full window and its contents
appear at the new location. Moving a window doesn’t affect the appearance
of the document within the window. Figure 5-24 shows how a moving
window looks to users.

Dire
ct

 M
an

ip
ulat

io
n

C H A P T E R 5

Windows

Window Behaviors 155

5
W

indow
s

Figure 5-24 Moving a window

The act of moving an inactive window makes it active. If a user presses
the Command key while dragging a window, the window does not become
active. The window moves in the same plane (doesn’t change stacking
order if there are multiple windows within the same application) and
remains inactive.

Your application should never allow users to move a window to a position
from which they cannot reposition it. For example, don’t allow users to move
windows completely off the screen.

C H A P T E R 5

Windows

156 Window Behaviors

Changing the Size of a Window 5
Your application determines the minimum and maximum window size. Base
these sizes on the physical size of the display. When a user has more than one
monitor attached to the computer system, calculate the display size of all the
attached screens. With the Monitors control panel, the user determines the
relationship of the screen space on one monitor to that on another. Figure 5-25
shows a conceptual view of the space a user has to work in when more than
one monitor is connected to the computer.

Figure 5-25 Multiple monitors and conceptual work space

The user changes the size of the window by using the size box in the lower
right corner of the window (if a window has one). When the user presses the
size box and drags the pointer, a dotted outline of the window moves with
the pointer. The upper-left corner of the window remains in the same place. It
acts like an anchor on the screen; the window shrinks or grows from that
point. The outline of the lower-right corner of the window follows the pointer.

My Hard Disk

Trash

Physical space

Conceptual space

File Edit Font Size Style

C H A P T E R 5

Windows

Window Behaviors 157

5
W

indow
s

When the user releases the mouse button, redraw the window in the shape of
the dotted outline. Figure 5-26 shows how a window changing size appears
to the user.

Figure 5-26 A window growing larger

When a user changes the size of a window, it affects only how much of the
document is visible in the window. It doesn’t affect the position of the
upper-left corner of the window or the appearance of the part of the view
that’s still showing.

Exceptions to this rule are commands that by definition change the view of
the window’s contents. An example is a Reduce to Fit command, which
changes the scale of the view to fit the size of the window. If the user chooses
this command, and then resizes the window, your application should change
the scale of the view appropriately. See the chapter “Window Manager” of
Inside Macintosh: Macintosh Toolbox Essentials for details on changing the size
of a window.

Per
ce

ive
d S

ta
bilit

y

C H A P T E R 5

Windows

158 Window Behaviors

Scrolling a Window 5
People use scroll bars to change which part of a document is shown in a
window. Only the active window can be scrolled. This section describes the
appearance and behavior of scroll bars and their controls. Figure 5-27 shows a
conceptual view of a document and the portion of it that appears in a window.

Figure 5-27 Relationship between a window and a document

Scroll Bars 5

A scroll bar is a light gray rectangle that has an arrow in a box at each end of
the rectangle. Windows can have a horizontal scroll bar, a vertical scroll bar,
or both. A vertical scroll bar appears on the right side of the associated
window. A horizontal scroll bar runs along the bottom of the window. Inside
the scroll bar is a rectangle called the scroll box. At either end of the scroll bar
is an arrow that points towards the portion of a document still hidden from
view; clicking the arrow displays more of the document by scrolling it
into view. The rest of the scroll bar is called the gray area. Figure 5-28 shows
the elements of a scroll bar.

C H A P T E R 5

Windows

Window Behaviors 159

5
W

indow
s

Figure 5-28 The elements of a scroll bar

A scroll bar represents one dimension, top to bottom or right to left, of the
entire document. The scroll box represents the relative location, in the whole
document, of the portion that can be seen in the window.

If the user clicks a scroll arrow or clicks in the gray area, the document
“moves” and the scroll box moves along with it. If the user drags the scroll
box and releases the mouse button, the document “moves” along with it.
Figure 5-29 illustrates these behaviors.

Figure 5-29 Using scroll arrows and the scroll box

Scroll box

Gray area

Scroll arrow

Scroll bar

C H A P T E R 5

Windows

160 Window Behaviors

If the document is no larger than the window, the scroll bars are inactive. This
means that the rectangles are outlined, but there is no gray area, no scroll box,
and the arrows are hollow (their outlines appear). If the document window is
inactive, don’t show the elements of the scroll bar at all; only the outline of the
scroll bar as a whole should appear. Figure 5-30 shows an active document
window with inactive scroll bars and an inactive document window with
inactive scroll bars.

Figure 5-30 Inactive scroll bars in active and inactive document windows

If a document has a fixed size that is smaller than the maximum size of the
window, and the user scrolls to the right or bottom edge of the document,
your application can display a gray background between the edge of the
document and the window frame. This background indicates to the user
that the content area has a fixed size that is smaller than the maximum size
of the window. Figure 5-31 shows an example of a document with this
gray background.

Active window with inactive scroll bars

Inactive window with inactive scroll bars

C H A P T E R 5

Windows

Window Behaviors 161

5
W

indow
s

Figure 5-31 Background between the content and the window frame

Many applications add features like controls to windows in the scroll bar
region. Since the scroll bars are used frequently, it’s best not to add lots of
additional controls to this area of the window. Generally it’s best to minimize
the complexity of your application’s interface and use the established
graphical language. It’s OK to add one control, like a split bar, which allows
users to split a window into panels, to the top of the vertical scroll bar. But if
you add more than one control to this area, it’s hard for people to distinguish
controls, and to click exactly the desired control. Also from an implementation
standpoint, it’s difficult to design small symbols and pictures that effectively
convey the action of the control.

Another addition to the window that’s not too intrusive is a status bar at the
left side of the horizontal scroll bar. This bar doesn’t take up much space,
while providing useful information to the user. It also doesn’t reduce the
working size of the scroll bar by too much.

Aes
th

et
ic

In
te

grit
y

C H A P T E R 5

Windows

162 Window Behaviors

Figure 5-32 shows scroll bars with acceptable additions; the horizontal scroll
bar has a page indicator and the vertical scroll bar has a split bar.

Figure 5-32 Acceptable additions to the scroll bar region

Some applications include a page number inside the scroll box to indicate the
position of the document. This allows the user to see the page number change
as the document scrolls. It also provides information without adding
complexity to the window.

To ensure that the controls that you include in the window are easy to use and
understand, it’s best to place the majority of your features in the menus as
commands. Figure 5-33 shows a window with too many controls in the scroll
bars. If you really want to provide additional access to features, consider
creating a utility window such as a palette with buttons. For more
information on palettes, see “Tear-Off Menus and Palettes” on page 92 in
Chapter 4, “Menus.”

Figure 5-33 Too many controls in the scroll bar

Split bar

Page indicator

C H A P T E R 5

Windows

Window Behaviors 163

5
W

indow
s

Scrolling With the Scroll Arrows 5

When the user clicks or presses one of the scroll arrows, more of the
document in the direction of the scroll arrow appears, so the document seems
to move in the opposite direction. Clicking the arrow means, “Show me more
of the document that’s hidden in this direction.” When the user clicks the
bottom scroll arrow, for example, the document moves up, bringing what was
just below the window into view. Pressing the scroll arrow causes continuous
movement in the appropriate direction. Figure 5-34 shows the change in a
document when a user scrolls by clicking a scroll arrow.

Figure 5-34 Scrolling by clicking a scroll arrow

The scroll box moves in the direction of the arrow being clicked. It continues
to represent the approximate position of the visible part of the document in
comparison to the whole document.

Each click in a scroll arrow causes movement of the content a distance of one
unit in the chosen direction. Your application determines what one unit
equals. For example, a word processor would move one line of text for each
click in the arrow. A spreadsheet would move one row or one column
depending on the direction of the arrow. To ensure smooth scrolling effects,
it’s usually best to specify units of the same size throughout a document.

1.

2.

C H A P T E R 5

Windows

164 Window Behaviors

Scrolling With the Gray Area 5

Clicking in the gray area of the scroll bar advances the document by a
windowful. The scroll box and the document view move toward the location
where the user clicked. For example, when the user clicks in the area below
the scroll box, the document view moves to the next windowful toward the
bottom of the document. Figure 5-35 shows how a user scrolls by clicking in
the gray area.

Figure 5-35 Scrolling by clicking in the gray area

Pressing in the gray area causes the display of consecutive windowfuls of the
document, until the user releases the mouse button, or until the location of the
scroll box catches up to the location of the pointer. A windowful equals the
height or width of the window, minus at least one unit of overlap to maintain
the user’s context. This unit of overlap is the same measurement determined
for scroll arrow movement. By retaining this unit of information, you provide
a reference point for the user.

On keyboards with function keys, the Page Up and Page Down keys also
move the document view by a windowful.

Scrolling by Dragging the Scroll Box 5

The scroll box shows the position of the visible portion of the document in
relationship to the whole document. If the scroll box is halfway between the
top and bottom of the scroll bar, then what the user sees is about halfway
through the document. To scroll the document, the user drags the scroll box.

1.

2.

C H A P T E R 5

Windows

Window Behaviors 165

5
W

indow
s

To see the beginning of the document, the user drags the scroll box to the top
of the scroll bar; to see the end, the user drags the scroll box to the bottom.
This behavior allows the user to quickly move around in the document. The
user can get from one end of a long document to the other faster by dragging
the scroll box than by clicking in the gray area or pressing the scroll arrows.
Figure 5-36 shows how a user scrolls by using the scroll box.

Figure 5-36 Scrolling by dragging the scroll box

If the user starts dragging the scroll box, then moves the pointer out of the
scroll bar, the scroll box stops following the pointer and snaps back to its
original position. The user can move the pointer out of the scroll bar region by
a little more than the width of the scroll box before the scroll box snaps back.
If the user then releases the mouse button, no scrolling occurs. But if the user,
still holding down the mouse button, moves the pointer back into the scroll
bar, the scroll box resumes its movement in the direction of the pointer. This
type of tracking is standard behavior for controls in general, such as buttons,
checkboxes, and radio buttons.

1.

2.

3.

C H A P T E R 5

Windows

166 Window Behaviors

Automatic Scrolling

In all the discussions of scrolling behavior and appearance in the previous
sections, the user controls scrolling behavior by deciding which control to
use and how long to use it. Most of the time, the user should be in
control. However, there are four cases where your application must scroll
the document.

■ When your application performs an operation whose side effect is to make
a new selection or move the insertion point, scroll the document to show
the new selection.
For example, when the user searches for some text, your application locates
the desired text. If this text appears in a part of the document that isn’t
currently visible, scroll the document to the location to show the selection.
Another example might occur after the user pastes something. If the
insertion point appears after the end of whatever was pasted, scroll
the document until the selection and the new insertion point are visible.
Figure 5-37 shows the effect of automatic scrolling.

Figure 5-37 Automatic scrolling

C H A P T E R 5

Windows

Window Behaviors 167

5
W

indow
s

■ When the user enters information from the keyboard at the edge of a
window, scroll the document automatically to incorporate and display the
new information.
The user’s focus will be on the new information, so don’t try to maintain
the document’s position and record the new information out of the user’s
view. Your application determines the distance to scroll. In general, a word
processor scrolls one line of text, a database or spreadsheet scrolls one field.
Graphics applications should scroll to display an entire object when
possible. Otherwise, determine how quickly your application can redraw
the window contents during scrolling and adjust the amount of scrolling
to reduce the amount of flashing or redrawing that is necessary. Try to
ensure that the scrolling is sufficiently fast that it allows users to see the
information at a rate that’s useful, but don’t scroll so fast that people
get lost.

■ When the user moves the pointer past the edge of the window while
holding down the mouse button to make an extended selection, scroll
the document automatically in the direction the pointer moves. The
rate of scrolling can be the same as if the user were pressing on the
corresponding scroll arrow. In some cases, it makes sense to vary the
scrolling speed so that it is faster as the user moves the pointer farther
away from the window edge.

■ Sometimes the user selects something, scrolls the document to a new
location, and then tries to perform an operation on the selection. In
this case, scroll the window so that the selection is showing before your
application performs the operation. Showing the selection makes it clear
to the user what is being changed.

Whenever your application scrolls a document automatically, avoid
unnecessary scrolling. Users want to control the position of documents,
so your application should move a document only as much as necessary.
This means that if part of a selection is showing in the window after the user
performs some operation, don’t scroll at all. One exception to this rule is
when the part of the selection that is hidden is more important than the part
that is showing; then scroll to show the important part. For example, if a user
has a large text selection, only the bottom of which is currently visible and the
user types a character, your application must scroll to the location of the
newly typed characters so they are visible.

If your application can scroll in one orientation to reveal the selection, don’t
scroll in both orientations. That is, if you can scroll vertically to show the
selection, don’t also scroll horizontally.

When you can show context on either side of a selection, it’s useful to do so.
It’s also better to position a selection somewhere near the middle of a window
than right up against a corner. When the selection is too large to show the
entire selection in the window, it might be a good idea to show some
context next to it rather than having the selection fill the window. For
more information about document scrolling, see Inside Macintosh:
Macintosh Toolbox Essentials.

C H A P T E R 5

Windows

168 Window Behaviors

The Zoom Box and Window Behavior 5
Your application sets values for the initial size and position of a window. This
is called the standard state of the window. The user can change the size and
location of the window to a state that is more useful or convenient, the user
state. The user can then toggle between the standard state and the user state
by using the zoom box. Figure 5-38 shows an enlarged view of the zoom box.

Figure 5-38 The zoom box

Using the zoom box, the user can quickly manipulate windows to have access
to other icons or windows or to look at a document in a larger size or different
location. The user must drag or resize a window at least seven pixels to cause
a change in the user state.

A window’s standard state depends on the size and location that are best
suited to working on the document. Macintosh monitors come in many
sizes, and multiple monitors can be configured in many different ways, so
applications should never simply assume that the standard state should be as
large as the screen. Frequently the monitor is larger, sometimes much larger,
than the most useful size for a window. Screen real estate is valuable, so use
screen-sized windows only when they make sense. Figure 5-39 shows the
standard state and the user state of a window on the same size screen.

C H A P T E R 5

Windows

Window Behaviors 169

5
W

indow
s

Figure 5-39 The standard state and the user state of a document

Standard state

User state

C H A P T E R 5

Windows

170 Window Behaviors

A document for a word-processing program has a well-defined most useful
width (the width of a page) and most useful height (the height of the screen).
Therefore the width of the standard state should be the width of a page or the
width of the screen, whichever is smaller. (When determining the width of
the standard state, it’s a good idea to leave room on the right side of larger
monitors so that desktop icons are not obscured when the user switches to the
Finder.) The height of the standard state should be the height of the screen or
the length of a page, whichever is smaller.

When a user clicks the zoom box to change a window from the user state to
the standard state, first determine the appropriate size of the standard state.
Move the window as little as possible to make it the standard size, and keep
the window on the screen.

Zooming behavior in multiscreen environments should not violate any of
the guidelines described in this chapter, but it does introduce one additional
guideline. The standard state should be on the monitor containing the largest
portion of the window, not necessarily on the monitor with the menu bar.
This means the standard state for a single window may be on different
monitors at different times if the user moves the window around. In any case,
the standard state for any window must always be fully contained on a
single screen.

The user can’t change the standard size and location of a window, but your
application can change the standard state when appropriate. For example, a
word processor might define the standard size and location as wide enough
to display a document whose width is specified in the Page Setup dialog box.
If the user specifies a wider or narrower document, the application might
change the values for the standard state to reflect that change.

As described in the section “Window Positions,” earlier in this chapter, open a
window in the last state it was in when possible. Your application must make
sure that the user state fits on the current screen. That is, if the window was
previously open on a different screen, you need to determine the correct
size and location for the current screen. Don’t open a window off of a
user’s screen.

Splitting a Window 5
You can provide the ability for people to look at different parts of a document
simultaneously by implementing a split bar. The split bar is a control, five
pixels high by the width of the scroll bar, contained in the scroll bar. Users
drag the split bar to separate a document into separate scrolling sections,
called window panes. A split line appears to visually separate the panes.
(Note that there should a one-pixel space between the two lines that make up
the split line.) For example, the user might want to look at the opening
paragraphs and review the conclusion of a document in a word-processing

C H A P T E R 5

Windows

Window Behaviors 171

program at the same time. In a programming environment, you might want
to see the include statements at the beginning of a document while looking at
routines in another part of the document. Split windows are useful for
copying data from one part of a document and pasting it into another part.
The user drags the split bar to a location in the scroll bar where the new pane
is to begin. To remove a window pane, the user drags the split bar to within
three pixels of the top or right of the scroll bar. Figure 5-40 shows a window
split into two panes.

Figure 5-40 A split window

The split bar should be large enough for the user to accurately place the
pointer on it, but not so large that it attracts attention. Figure 5-41 shows
an example of the correct size for a split bar and some comparison sizes.

Figure 5-41 Split bar size

C H A P T E R 5

Windows

172 Window Behaviors

Window Pane Behavior 5

When you implement window splitting capabilities, place the split bar at the
top of the vertical scroll bar or to the left of the horizontal scroll bar, or in both
positions if you support both types of splits. The user can drag the split bar
anywhere along the scroll bar. Implement an outline of the split line to follow
the pointer so that the user can tell where the new pane will appear. (This is
similar to the outline of a scroll box being moved.) Releasing the mouse
button splits the window into panes there, and divides the appropriate scroll
bar into separate scroll bars for each pane.

After a single split, there are separate scroll bars for each pane. Usually the
panes scroll independently in the orientation opposite of the split. That is, if
the split is horizontal, the vertical scrolling is controlled separately for each
pane using the two scroll bars along the right of the window. The horizontal
scrolling is still synchronous, or locked, using the scroll bar along the bottom
of the window. Figure 5-42 shows how window panes scroll, independently
or together.

Figure 5-42 Independent and locked scrolling of window panes

When the user splits a window, any part of the window’s contents obscured
by the split line or scroll bar should move down so that it is visible. For
example, if the user drags a split bar to create a horizontal split, the window’s
contents that would have disappeared underneath the split line should scroll
down by the height of the split line, plus some additional space.

The user can make a selection in one pane, and where the same data appears
in another pane, the user can Shift-click to extend the selection. See the section
“Editing Text” beginning on page 300 in Chapter 10, “Behaviors,” for more
information on selecting text. The user should also be able to drag to extend a
selection and have the pane scroll automatically as an entire window would.

Use
r C

ontro
l

Vertically, these panes

scroll independently.

Horizontally, these panes

scroll together.

C H A P T E R 5

Windows

Window Behaviors 173

5
W

indow
s

Your application should save and restore the location of split lines and the
content of window panes whenever the user closes a document that is
divided into panes.

One Split per Orientation 5

You can choose to allow only one split in a window. Usually the panes
are locked in the direction of the split and the panes move independently
in the opposite direction. For example, in a text document if you allow
one horizontal split, then the panes move together when the user scrolls
horizontally, but the user can scroll to different locations in the vertical
direction to see different parts of the content.

175

C H A P T E R 6

6

Dialog Boxes 6Figure 6-0
Listing 6-0
Table 6-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 6

Dialog Boxes

176

This chapter describes the dialog boxes that you use in your products. It gives
recommendations for when to use each kind of dialog box and what
behaviors you need to implement for dialog boxes. This chapter also provides
information on the standard layout of dialog boxes, the language to use
in dialog boxes, and the standard appearance and behavior of the standard
file dialog boxes and the save changes alert box.

Dialog boxes are windows that provide a standard framework in which the
computer can present alternatives from which the user can choose. The
purpose of dialog boxes is to elicit responses from the user, typically several
responses at one time. For example, the Print dialog box allows the user to
specify the number of copies to be printed, the pages to be printed, whether
there should be a title page, and other print-related options. When the user
chooses a menu item that is followed by the ellipsis character (…), a dialog
box appears. (Note that the appearance of a dialog box does not necessarily
mean there should be an ellipsis character after a menu item.) All requests for
information in dialog boxes should be phrased in plain language and in a
nonthreatening manner.

Alert boxes appear when the system software or an application needs to
communicate information to the user. Alert boxes provide messages about
error conditions and warn users about potentially hazardous situations or
actions. An alert box is a type of dialog box and thus follows many of the
same guidelines.

From a programming perspective, dialog boxes and alert boxes are windows.
In the language of the human interface, dialog boxes and alert boxes are
considered unique elements, each with a specific appearance and behavior,
as described in this chapter. A dialog box is a rectangle that may contain text,
controls, and icons. Each dialog box contains some text to indicate which
command or condition caused it to be displayed and what its function is. In
some cases this text is a title for the dialog box. The text in a dialog box should
be in the system font size, which is normally 12-point type. Text that is smaller
than the system font size sometimes cannot be localized.

Controls, such as buttons, radio buttons, and checkboxes, are described in
Chapter 7, “Controls,” which begins on page 203. Text entry fields in a dialog
box follow the guidelines given in Chapter 10, “Behaviors,” which begins on
page 267.

In general you use four types of dialog boxes in your application:

■

Modeless dialog boxes, which are useful for getting user input and for
making changes to a document. Once open, they are available until the
user closes them.

C H A P T E R 6

Dialog Boxes

177

6

D
ialog B

oxes

■

Movable modal dialog boxes, which are useful for requesting user input
and for making changes to a document

 while

 allowing the user to switch to
another application. Also useful for allowing the user to see parts of a
document that might be obscured by a modal dialog box.

■

Modal dialog boxes, which are useful for forcing the user to provide
necessary information before carrying out the current operation.

■

Alert boxes (a type of modal dialog box), which are useful for
communicating error conditions or preventing any other activity until the
user responds to the error condition.

Figure 6-1 shows examples of these types of dialog boxes. The sections that
follow describe the appearance and behavior of each type of dialog box. See
the chapter “Dialog Manager” in

Inside Macintosh: Macintosh Toolbox Essentials

for information on implementing these types of dialog boxes.

Be aware that users can change the colors of standard dialog boxes by using
the Color control panel; this is particularly important if you decide to create
custom alert boxes, modeless dialog boxes, movable modal dialog boxes, or
modal dialog boxes. If you use the default window color table with your
custom window definitions, you can be sure that the colors you use are
consistent with any color that the user has access to with the Color control
panel. You can use the Palette Manager to associate a color palette with
a window definition. For more information, see the discussion of the
Palette Manager in

Inside Macintosh.

Figure 6-1

Examples of dialog box types

Modeless dialog box Movable modal dialog box

Modal dialog box Alert box

C H A P T E R 6

Dialog Boxes

178

Modeless Dialog Boxes

Modeless Dialog Boxes 6

A

modeless dialog box

 looks like a window without a size box, zoom box, or
scroll bars. The user can move a modeless dialog box, make it inactive and
active again, and close it like any document window. Modeless dialog boxes
provide the most flexibility for your users. They preserve user control so that
the user can do any task at any time or in any order. They don’t interrupt
people’s workflow by locking out all other actions. With modeless dialog
boxes, people can change things in their documents, perform actions with the
data in their documents, or get information about their documents or
applications.

Modeless dialog boxes allow people to repeat an action as many times as
necessary while the dialog box remains open—that is, the dialog box doesn’t
close and need to be reopened each time they want to repeat an action. This
feature is useful for tasks such as finding and replacing text in a word
processor or numbers in a spreadsheet.

Use a modeless dialog box instead of a movable modal dialog box whenever
possible so that you can preserve the user’s ability to perform tasks in any
order. Figure 6-2 shows a typical modeless dialog box.

Figure 6-2

A typical modeless dialog box

Because modeless dialog boxes are movable, people can place them out of the
way of the current point of interest in their documents. People can also keep
modeless dialog boxes open and available. This option might be useful if a
person wants to compare information about several documents, which is
possible with Info windows in the Finder. Figure 6-3 shows two such
windows on a desktop.

Use
r C

ontro
l

Modele
ss

nes
s

C H A P T E R 6

Dialog Boxes

Modeless Dialog Boxes

179

6

D
ialog B

oxes

Figure 6-3

Two open modeless dialog boxes

When your application displays a modeless dialog box, it should preset any
controls to some logical values. Also, whenever possible, your application
should supply appropriate text in any text entry fields; users can verify the
information rather than generate it from scratch. In any case, display a
selection or an insertion point in

one

 of the text entry fields (usually the “first”
field) when you display the dialog box.

Modeless Dialog Box Appearance 6

Modeless dialog boxes look like basic document windows. A modeless dialog
box has a title bar that displays its title, which should be the same as the name
of the menu item that displays it. If that item includes an ellipsis character,

don’t

 include it in the title of the dialog box.

C H A P T E R 6

Dialog Boxes

180

Modeless Dialog Boxes

Figure 6-4 shows the appearance of a modeless dialog box.

Figure 6-4

The essential elements of a modeless dialog box

Modeless dialog boxes have the same behaviors as document windows—that
is, the user manipulates them in the same way. For example, the user closes a
modeless dialog box by using the close box or the Close command in the File
menu. If you support keyboard equivalents for menus, support Command-W
to close modeless dialog boxes as well as windows.

A modeless dialog box always has a close box; don’t implement buttons to
make the window disappear. The user expects that modeless dialog boxes
stay on the screen until he or she explicitly dismisses them with the close box,

not

 when he or she clicks a button in the dialog box.

Using a button to close a modeless dialog box also confuses the distinction
between modeless dialog boxes and modal dialog boxes. Further, a modeless
dialog box without a close box looks similar to a movable modal dialog box,
thereby creating more confusion. Figure 6-5 shows a modeless dialog box that
is missing its close box.

Black and white

Color

Title

Title bar
Close box

Button

C H A P T E R 6

Dialog Boxes

Modeless Dialog Boxes

181

6

D
ialog B

oxes

Figure 6-5

Incorrect absence of a close box in a modeless dialog box

If the user activates another window while a modeless dialog box is open, the
window appears in front of the dialog box.

Modeless Dialog Box Behaviors 6

This section describes the standard behaviors and the issues that you need to
resolve when you implement modeless dialog boxes in your application. It
includes discussions of how to use modeless dialog boxes to change attributes
in a document or an application and how to use modeless dialog boxes to
perform actions on a document.

Menu Bar Access 6

Although system software leaves the Help, Keyboard, and Application menus
and their commands enabled, it does nothing else to manage the menu bar
when you display a modeless dialog box. Your application is responsible for
providing access to the rest of the menus in your menu bar as appropriate.
Disable only those menus that contain commands that are invalid in the
current context; if the modeless dialog box includes editable text items,
enable the Cut, Copy, Paste, and Clear commands (and any other appropriate
commands) in the Edit menu. For example, when a modeless dialog box used
with a search-and-replace command appears, the application should allow
access to the Edit menu to assist the user with the editable text items; it
should also allow access to the File menu so that the user can open another
file for searching and replacing text. However, your application should
disable other menus if the commands in those menus cannot be used inside
the active modeless dialog box. After your application removes a modeless
dialog box, always restore the menus to their previous states.

No close box.

Modele
ss

nes
s

C H A P T E R 6

Dialog Boxes

182

Modeless Dialog Boxes

Accepting Changes in a Modeless Dialog Box 6

One purpose for using a modeless dialog box is to give the user an
opportunity to change something in the active document or application.
For example, you could implement a modeless dialog box for finding
text and replacing it with other text. With modeless dialog boxes, people
enter information by setting controls or typing text in a text entry box.

In general, all changes that a user enters in a dialog box should appear to take
effect immediately whenever possible. There are generally three stages of
action in using a modeless dialog box—when keyboard input is entered,
when the data is accepted or checked by your application, and when the data
takes effect. It is your responsibility to make the three states of using a
modeless dialog box as clear as possible to the user. Usually you update
controls like checkboxes and radio buttons immediately and display the
results as the user clicks the controls. This feedback lets the user see that the
information is accurate. If your application doesn’t respond immediately to
the new settings, it’s less clear to the user when the input goes into effect.

Deciding when user input takes effect is a significant issue to resolve with any
modeless dialog box. Try to reinforce the consistency of the interface. People
usually expect to perform some action, such as clicking a button or closing a
window, to cause their input to take effect. For example, the way a user
chooses to dismiss a modeless dialog box conveys an obvious meaning to the
user. The close box usually means, “I’m done with this task.” The Revert
button usually means, “Go back to the previous state.” Similarly, the way a
user chooses to implement changes made in a dialog box conveys an obvious
message to the user. For example, an action button such as Apply usually
means, “Do this task now.” Note that people expect that when they switch to
another application, any pending changes that they may have entered in the
dialog box and implemented with an action button will take effect.

When the user is finished with the current task and is ready to move to
another one, the actions the user performs to dismiss a modeless dialog box
should signify that fact. As much as possible, implement modeless dialog
boxes to respond to user expectations about the results of their actions.

You need to decide when your application will do error checking on user
input. There are several approaches you can take depending on the
circumstances and the user’s expectations.

One approach is to implement the input as the user tabs from one field to the
next. The drawback to this approach is that it isn’t clear to the user that the
changes are taking effect. The user doesn’t click a button, and so isn’t aware of
completing an action. The user may decide to go back to a field and change
the current value. In this case, your application needs to cycle through the
event loop again to process the input.

Fee
dbac

k a
nd D

ial
og

Consis
te

ncy

C H A P T E R 6

Dialog Boxes

Modeless Dialog Boxes

183

6

D
ialog B

oxes

Another approach is to save user input in a queue and activate it when the
user clicks a button, closes the dialog box, or switches to another application.
This method also presents certain complications for your application. If your
application waits to check any user input for errors until the user tries to
dismiss the dialog box and move on, you may end up having to present a
modal dialog box to inform the user of some input error and thereby force the
user to start the process again. If you do your error checking as the user enters
input, it takes more time up front, but you can warn the user immediately.

In addition to error checking, you need to decide when to activate user input.
This input can take effect immediately in some cases. If it’s appropriate to
wait until the user performs an action like clicking a button or switching
applications, an intermediate state where user settings are pending can cause
security problems. For instance, if a user changes permissions on a file server
by using checkboxes in a modeless dialog box and your application does error
checking immediately, there’s a delay during which the user can’t finish
setting all the new access permissions and the system may be temporarily less
secure and open to trespass. You should consider the tradeoffs between the
danger of leaving a system less secure for some period of time versus any
inconvenience to the user of waiting to have the error checking done after all
values are set.

Applications differ in the order in which they check user input. Some
applications check numerals in text entry boxes as the user enters them,
some applications check the data when the user clicks in another field or
presses Tab to move out of the current field, and others check when the user
clicks an action button. Each of these techniques can work if you provide
appropriate feedback to users so that they know what to expect and how to
handle any error conditions.

After you have decided when to check user input for errors and when to
activate it, you need to determine whether your application should
automatically launch an operation based on the input or whether the user
should try to launch the operation by clicking a button or the Close box of a
dialog box. To help you make your decision, try to estimate how long an
operation will last. It’s probably OK to run an operation that happens quickly
and returns control to the user within a couple of seconds. The user should
initiate any operation that will take a long time to execute. You can then
provide information that warns the user that the operation will last for a
while, estimating the length of time when possible.

The Info window for applications provides an example of behaviors for acting
on user input immediately and waiting until the user explicitly initiates an
action. The Locked checkbox in the Info window immediately takes effect
when the user clicks it. The file remains locked until the user clicks the box
again to unlock the file. This system works to the advantage of the user
because the checkbox reflects the user’s action and the action is immediately
in effect. A different process occurs with the application-size text entry box in
the Info window. The text entry box immediately displays the user’s input.

Fee
dbac

k a
nd D

ial
og

C H A P T E R 6

Dialog Boxes

184

Modeless Dialog Boxes

The application memory size is verified and accepted when the user closes the
window. In this case, it’s not dangerous to wait to accept the input until the
user closes the Info window, and the user feels like the input is in effect
immediately because the text entry field provides feedback that the input is
acceptable by updating its contents. (This feedback is accurate unless the user
enters 0, in which case the previous value is used.)

Carefully evaluate each situation in each of your modeless dialog boxes and
choose the approach that meets the users’ needs and expectations as closely as
possible. It’s a good idea to do some usability testing to verify your choices.
See the section “Involving Users in the Design Process” beginning on page 41
in Chapter 3, “Human Interface Design and the Development Process,” for
information about performing user observations to test your product.

Completing Commands 6

Another purpose for using a modeless dialog box is to complete an action
begun with a command in a menu. In this case the user gives additional
information to the application in a modeless dialog box. The information
might consist of additional parameters to the command, such as, “Do the task
. . . in this way.” The user might give specific information that an operation
needs. For example, with the command that allows a user to search for words
in a document, the user needs a place to type the word or characters being
searched for, as shown in Figure 6-6.

Figure 6-6

Provide a place for the user to enter information in a modeless

dialog box

Modeless dialog boxes should be dynamic in nature, updating the document
continuously while open. If the dialog box for a particular feature is not
designed to interact dynamically with the user, you might think about
implementing that feature in a modal dialog box.

C H A P T E R 6

Dialog Boxes

Movable Modal Dialog Boxes

185

6

D
ialog B

oxes

Movable Modal Dialog Boxes 6

A

movable modal dialog box

 is a modal dialog box that has a title bar that
allows the user to move the dialog box. Movable modal dialog boxes are an
adaptation of the modal dialog box that borrows the ability to move around
the screen from the modeless dialog box. Movable modal dialog boxes
suspend other actions within your application, but allow the user some
flexibility. The user can switch to another application while you display a
movable modal dialog box. If the user clicks another window of the current
application, your application should play the system alert sound. If the user
clicks a window from another application or the desktop, the windows of that
application or the Finder come to the front. Figure 6-7 shows a typical
movable modal dialog box.

Figure 6-7

A typical movable modal dialog box

Movable modal dialog boxes typically do not include a close box, meaning
that a user closes such a box by clicking a button. See the section “Button
Names” on page 206 in Chapter 7, “Controls,” for detailed descriptions of
how to name buttons and what actions users expect from appropriately
named buttons.

Use a movable modal dialog box when the user may need to see the
document contents that a modal dialog box obscures. For example, if the
dialog box makes style changes to a selection in a document, the user may
want to see the selection. If you display a modal dialog box over the selection,
the user won’t be able to see it.

C H A P T E R 6

Dialog Boxes

186

Movable Modal Dialog Boxes

You can also use a movable modal dialog box when your application needs
more information from the user, but it’s not imperative to get the information
before the user performs another action in another application. (Movable
modal dialog boxes are still modal to the application.) Another good use of
the movable modal dialog box is to display the status of an operation that
takes a long time but can run in the background. This case is described in
detail in the section “Movable Modal Dialog Box Behaviors,” on page 187.

Movable Modal Dialog Box Appearance 6

The design of the movable modal dialog box adds a title bar with racing
stripes to the standard modal dialog box window. A movable modal dialog
box does not have a close box or zoom box. This design gives the user visual
feedback that the dialog box is modal, and must be responded to before
completing any other action in the active application, but the user can move
it. Figure 6-8 shows the appearance of a movable modal dialog box.

Figure 6-8

The essential elements of a movable modal dialog box

Don’t use a close box in a movable modal dialog box. As described in the next
section, “Movable Modal Dialog Box Behaviors,” the only way to close a
movable modal dialog box is by clicking a button. If you add a close box, it
confuses the appearance of the dialog box with the modeless dialog box. A
close box could also create a situation for users where they wouldn’t know
what to expect. For example, would the close box mean “accept the changes
I’ve made” or “close the dialog box without using the input”? Figure 6-9
shows a movable modal dialog box with a close box, which is incorrect.

Title

Title bar

Buttons to dismiss

the dialog box

Color

Black and white

C H A P T E R 6

Dialog Boxes

Movable Modal Dialog Boxes

187

6

D
ialog B

oxes

Figure 6-9

Close box used incorrectly in a movable modal dialog box

Movable Modal Dialog Box Behaviors 6

Movable modal dialog boxes should respond like modal dialog boxes in most
ways. (See the section “Modal Dialog Boxes” on page 188 for a discussion of
modal dialog boxes.) You must make certain that the dialog box is modal
within your application. That is, the user should not be able to switch to
another of your application’s windows while the dialog box is active.

For movable modal dialog boxes, there are certain behaviors you need to
support. Allow your application to run in the background when you display a
movable modal dialog box. For example, System 7 uses movable modal
dialog boxes to show that an application is busy with a time-consuming
operation, yet a user can still switch the application to the background.
Figure 6-10 shows a movable modal dialog box displayed by the Finder when
it is copying files.

Figure 6-10

A Finder movable modal dialog box

Menu Bar Access 6

When your application displays a movable modal dialog box, the system
software enables the Application menu, the Help menu, and the Keyboard
menu; the system software does nothing else to manage the menu bar. Your
application should allow or disallow access to the rest of your menu bar as
appropriate. Your application should leave the Apple menu enabled so that
the user can use it to open other applications while the movable modal dialog
box is on the screen. Also, if the movable modal dialog box contains editable
text items, your application should enable the Cut, Copy, and Paste
commands in the Edit menu as well as other context-appropriate commands

C H A P T E R 6

Dialog Boxes

188

Modal Dialog Boxes

in the Edit menu and other menus. Note that it is the responsibility of your
application to always restore the menus to their previous states after
removing movable modal dialog boxes. Figure 6-11 shows the Application
menu open while a movable modal dialog box is on the screen.

Figure 6-11

Menu bar access while a movable modal dialog box is open

Modal Dialog Boxes 6

A

modal dialog box

 puts the user in the state, or mode, of being able to work
only inside the dialog box. It temporarily suspends all other actions in an
application and the computer. It forces the user to make decisions before
doing any other actions, such as working on a document or switching to
another application. Users can cancel a modal dialog box, they can respond to
a message, or they can use a modal dialog box to set parameters or assign
values to content in the active document. Modal dialog boxes are restrictive in
that they require the user to stop any other activity and pay attention only to
the current modal dialog box. The user cannot move a modal dialog box, and
the user can dismiss it only by clicking its buttons. If the user clicks any other
window or on the desktop, the system beeps, but nothing else happens. See
the section “Button Names” on page 206 in Chapter 7, “Controls,” for detailed
descriptions of how to name buttons and what actions users expect from
appropriately named buttons.

An alert box is a special case of a modal dialog box. Use alert boxes when you
need to get the user’s attention to respond to an immediate need, to warn
the user of an impending situation, or to force a necessary decision. For
example, the dialog box that asks the user what to do with a document with

C H A P T E R 6

Dialog Boxes

Modal Dialog Boxes

189

6

D
ialog B

oxes

unsaved changes is an alert box; in effect, it warns the user that if the user
doesn’t save changes to the document, those changes will be lost. Alert boxes
are described in the section “Alert Boxes” on page 193.

Modal dialog boxes allow the user to make unambiguous state changes. The
action buttons in the dialog box confirm the action and indicate when the
changes take effect. With modal dialog boxes you can avoid intermediate
states that can occur with a modeless dialog box, where the user’s changes
take effect without the user being aware that this is happening. Figure 6-12
shows one example of a modal dialog box.

Figure 6-12

An example of a modal dialog box

Use modal dialog boxes when it’s appropriate to restrict user input to a
certain order, that is, when your application needs information before it can
continue. A modal dialog box is fairly simple to implement, but that doesn’t
mean that you should use modal dialog boxes too freely. You should rarely
restrict the user’s actions by forcing the user into a mode.

When your application needs to preserve a user selection in order to act on it,
use a modal dialog box. This should be a task-specific, limited interaction that
affects only the current task.

Modal dialog boxes are good for implementing tasks that are short and
simple because they typically allow the user to complete an action and
dismiss the dialog box with the click of a single button. That is, the user
doesn’t have to explicitly close the dialog box as a separate step to initiate the
action, as is sometimes the case with modeless dialog boxes.

Use a modal dialog box for an action that the user needs to perform
infrequently. For example, the Page Setup command displays a modal dialog
box that contains settings that the user will probably set once for each
document. This is a case where it makes sense to implement a modal dialog
box because the user can set how the document will be displayed and doesn’t
need to have constant access to the dialog box. You could use a modeless
dialog box in this case, but you wouldn’t get any extra flexibility or use from
its being modeless. Also, modal dialog boxes are typically easier to implement
than modeless dialog boxes.

C H A P T E R 6

Dialog Boxes

190

Modal Dialog Boxes

Modal dialog boxes are also useful for providing temporal status. The
status may reflect a change from one version to another or an attribute of
a document that is subject to change over the use of an application. One
example would be a modal dialog box that informs a user that a document
was created using a different version of the application. Another example of
this is the status dialog box shown in Figure 6-13, which shows the progress
of converting a document to a new format.

Figure 6-13

A status dialog box

Modal Dialog Box Appearance 6

Modal dialog boxes are framed by a double-outline border that doesn’t
include a drag region. The outer line is one pixel thick and the inner line is
two pixels thick. A modal dialog box cannot be moved or resized. Figure 6-14
shows the appearance of a modal dialog box in color and black and white.

Figure 6-14

The essential elements of a modal dialog box

Color

Black and white

Buttons to dismiss

the dialog box

Double-outline frame

C H A P T E R 6

Dialog Boxes

Modal Dialog Boxes

191

6

D
ialog B

oxes

Modal Dialog Box Behaviors 6

This section describes the standard behaviors and issues that you need to
consider when you implement modal dialog boxes in your application.
It includes discussions of providing access to the menu bar when your
application displays a modal dialog box and why to avoid displaying more
than one modal dialog box at a time.

Menu Bar Access 6

When a modal dialog box is displayed, most menus are inaccessible, but
sometimes it’s useful for the user to have access to certain menus. The
Help menu and the Edit menu are usually active. You can choose to enable
some commands in some of your application’s menus while your application
displays a modal dialog box.

The Dialog Manager and the Menu Manager interact to provide various
degrees of access to the menus in your menu bar. For modal dialog boxes
without editable text items, you can simply allow system software to
automatically provide the appropriate access to your menu bar. However,
your application should handle its own menu bar access for modal dialog
boxes with editable text items by disabling the Apple menu (or the first item
in the Apple menu) in order to take control of its menu bar access, and
by disabling all of the application’s menus except the Edit menu, as well
as any inappropriate commands in the Edit menu. Figure 6-15 illustrates how
an application disables all of its own menus except its Edit menu when
displaying a modal dialog box containing editable text items. Access to the
Edit menu can be very helpful for the user who prefers to use the commands
in the Edit menu to copy and paste text from one text field to another rather
than retyping the text.

Figure 6-15

Access to the Edit menu when displaying a modal dialog box

C H A P T E R 6

Dialog Boxes

192

Modal Dialog Boxes

When the user dismisses the modal dialog box, the Menu Manager restores all
menus to the state they were in prior to the appearance of the modal dialog
box—unless your application handles its own menu bar access, in which case
you must restore the menus to their previous states.

See

Inside Macintosh: Macintosh Toolbox Essentials

 for more information about
providing access to the menu bar while a modal dialog box is onscreen.

Stacking Modal Dialog Boxes 6

Ideally a user should see only one modal dialog box at a time. The user
should never see more than two modal dialog boxes on the screen at any time.
One example where a second modal dialog box appears is when the user
saves a file with the same name as another file. Then the Standard File
Package displays an alert box on top of the standard file dialog box. The alert
box questions the user about whether to replace the existing file. If the user
answers the question by clicking the Replace button, the alert box and the
standard file dialog box both disappear and the action is completed. If the
user clicks the Cancel button, the alert box disappears and the standard file
dialog box remains on the screen; this allows the user to perform another
action, such as saving the file with a different name.

If you find that you can’t avoid displaying a second modal dialog box, make
sure to obscure as little as possible of the first modal dialog box. Also
make sure that the first dialog box (the one in the background) is dimmed
when the second dialog box appears. (You dim the dialog box by dimming
the border and buttons, and by unhighlighting any text selection; make sure
your application stores the text selection so that it can restore it when the
second dialog box is dismissed.) By dimming the dialog box in the
background, you focus the attention of the user on the active dialog box—the
one in which the user must click. Figure 6-16 shows two modal dialog boxes
correctly displayed. Notice that the alert box appears on top of the dialog box
for saving files, but doesn’t totally obscure it. In this way, users still get some
context for the current action.

C H A P T E R 6

Dialog Boxes

Alert Boxes 193

6
D

ialog B
oxes

Figure 6-16 Second modal dialog box on top of first one

Avoid closing a modal dialog box and displaying another modal dialog box in
response to a user action. This situation creates a “tunneling modal dialog
box” syndrome from which it is difficult to recover. Since the previous modal
dialog box is not there for context, the user can’t predict what will happen
next, and can’t get back to the last place. In other words, don’t create a
situation where the user is caught in a maze of dialog boxes.

Alert Boxes 6

Alert boxes are a special case of modal dialog boxes. Alert boxes
display messages to users to inform them of situations that run from
interesting to dangerous. Each type of alert has a corresponding icon that
appears in the alert box as described in the sections that follow. An alert box
contains only an icon, text, and buttons. There are no other controls in
alert boxes.

Forg
ive

nes
s

C H A P T E R 6

Dialog Boxes

194 Alert Boxes

Alert boxes are modal to the application and don’t allow a user to
switch to another application. The only way to close an alert box is to
click a button. In deciding when to use an alert box, follow the same
guidelines as for modal dialog boxes in general.

Alert Box Appearance 6
In addition to the standard modal dialog box frame, alert boxes contain an
icon that signifies the degree of severity of the alert message. Figure 6-17
shows the essential elements of an alert box. The types of alert boxes you can
use are described in the sections that follow.

Figure 6-17 The essential elements of an alert box

See the section “Dialog Box Messages” on page 310 in Chapter 11,
“Language,” for more information on writing appropriate alert box messages.

Note Alert Boxes 6
The note alert box is the first level of alert box. It contains the talking face
icon. The note alert box provides nonthreatening information to the user.
Usually note alert boxes have only one button, the OK button. In this case, the
user can respond to the information only by acknowledging it. Figure 6-18
shows an example of a note alert box.

Color

Black and white

Buttons to dismiss

the alert box

Double-outline frame

Icon that signifies

level of alert

C H A P T E R 6

Dialog Boxes

Alert Boxes 195

6
D

ialog B
oxes

Figure 6-18 An example of a note alert box

Use the note alert box to convey information that is useful to the user but
doesn’t present any threat such as a loss of data.

Caution Alert Boxes 6
The caution alert box is the second level of alert box. It is a more severe alert
than the note alert box. The caution alert box icon is the triangle with an
exclamation point. Caution alert boxes warn the user in advance of a
potentially dangerous action. This kind of feedback provides a safety net for
users. Caution alert boxes always contain two buttons, an OK or Continue
button and a Cancel button. The caution alert box allows the user to continue
the potentially dangerous action or to cancel the action and do something
else. The OK or Continue button should be the default button, unless the
user has to perform some other task in order to prevent the loss of data.
Figure 6-19 shows an example of a caution alert box.

Figure 6-19 An example of a caution alert box

Use a caution alert box to warn users whenever they are about to
complete an action that causes irretrievable data loss or any other potentially
dangerous situation.

Forg
ive

nes
s

C H A P T E R 6

Dialog Boxes

196 Basic Dialog Box Layout

Stop Alert Boxes 6
The stop alert box is the third, and most severe, level of alert box. The stop
alert box icon is the hexagon with an open hand, which resembles a stop sign
in some locales. (If this icon is offensive in a region or country where you
want to market your application, make sure you replace it with a more
appropriate stop icon when you localize your application.) Stop alert boxes
notify the user that an action cannot be completed. Stop alert boxes typically
have only one button, the OK button. As with the note alert box, the user can
only acknowledge the warning and dismiss the alert box. Figure 6-20 shows
an example of a stop alert box.

Figure 6-20 An example of a stop alert box

Use stop alert boxes when the user tries to complete an action that is
impossible in the current context.

Basic Dialog Box Layout 6

In dialog boxes, you should place buttons in locations that are functional and
consistent—consistent both within your particular application and across
other applications that you develop. Note that alert boxes are a type of dialog
box and thus adhere to the same basic guidelines for proper layout. Place the
action button in the lower-right corner with the Cancel button to its left. The
default button is not necessarily the button in the lower-right corner; it should
be the one for the action that the user is most likely to want to perform. This
rule keeps the action button and the Cancel button consistently placed. If the
default button were always in the lower-right corner, the buttons would
change location depending on which one was the default choice. See the
section “Button Behavior,” Chapter 7, “Controls,” on page 205 for more
information on assigning the default button.

Use a consistent amount of white space between the border of the dialog box
and its elements. This creates a balanced appearance in the dialog box.

Aes
th

et
ic

In
te

grit
y

C H A P T E R 6

Dialog Boxes

Basic Dialog Box Layout 197

6
D

ialog B
oxes

Figure 6-21 shows the recommended location for buttons and text in dialog
boxes; it also shows the proper placement of the alert icon in an alert box.
Note that the measurements shown in Figure 6-21 reflect the visual
appearance of a dialog box on the screen, not the actual settings that you
would use when creating dialog boxes with a resource-editing tool such as
ResEdit. See the chapter “Dialog Manager” in Inside Macintosh: Macintosh
Toolbox Essentials for a detailed description of how to place buttons and text
correctly in dialog boxes as well as alert boxes.

Figure 6-21 Recommended spacing of buttons and text in dialog and alert boxes

The Western reader’s eye tends to move from the upper-left corner of the
dialog box to the lower right. Put the initial impression that you want to
convey in the upper-left area (like the alert icon), and place the buttons that a
user clicks in the lower right. Following this guideline makes it easier for
users to identify what’s important in a dialog box.

When a dialog box is localized for worldwide versions of system software, the
text in the dialog box may become longer or shorter. The alignment of the
items in the dialog box may vary with localization. For example, Arabic and
Hebrew are written right to left, so the items in an Arabic or Hebrew dialog
(alert) box should be aligned on the right. The Control Manager, Menu
Manager, and TextEdit routines handle the alignment of dialog box
components. For more information, see the chapters that describe those
managers in Inside Macintosh: Macintosh Toolbox Essentials and Inside Macintosh:
Text. Be sure to create dialog items of the same size, so that they align
properly when a user has a script that reads from right to left. This guideline
is discussed in the section “Worldwide Compatibility” on page 16 in
Chapter 2, “General Design Considerations.”

A = 13 white pixels

B = 23 white pixels

A

BB

A

A

A

A

C H A P T E R 6

Dialog Boxes

198 Keyboard Navigation in Dialog Boxes

Keyboard Navigation in Dialog Boxes 6

In a dialog box, the user can navigate through the interface elements that
accept keyboard input, such as text boxes and scrolling lists, in several ways.
The user can click the desired element or press the Tab key to cycle through
the available elements. The user can move backward through the available
elements by pressing the combination Shift-Tab.

Some scrolling lists in dialog boxes can also accept keyboard input for
navigating within the list. The user can use the arrow keys to move through
the list one item at a time in the direction of the arrow. Users can also select an
item from the list by typing the beginning character or characters of its name;
this technique is called type selection. In versions of system software earlier
than System 7, type selection worked only in the standard file dialog box for
opening files. In System 7, type selection has been extended to work in other
lists, such as the list of files in a Finder window and the list of available
devices in the Chooser.

When a dialog box contains more than one element that can accept input from
the keyboard, it’s necessary to indicate to users which element is currently
accepting input from the keyboard. For text entry boxes, a blinking insertion
point or selected text range is a standard way of showing that the text entry
box is the active element receiving keyboard input.

When a scrolling list is the active element in a dialog box, its visual indicator
is a rectangular border of two black pixels, which is separated from the list by
one pixel of white space. Figure 6-22 shows the AppleTalk Zones list in the
Chooser as an active scrolling list area.

Figure 6-22 An active scrolling list

See
 an

d P
oin

t

C H A P T E R 6

Dialog Boxes

Dialog Box Messages 199

6
D

ialog B
oxes

Since all typing goes to the active window, there should be only one
active area and only one indicator at any time. If a dialog box has only one
scrolling list and no other elements that can accept keyboard input, it’s
not necessary to outline the scrolling list. In the standard file dialog box for
opening documents, the user can use type selection to identify the desired file
in the list of files, but, since there’s no other list or text box, the selected list
doesn’t have a border. See Inside Macintosh: More Macintosh Toolbox for
information about implementing scrolling lists.

Dialog Box Messages 6

Write messages in dialog boxes and alert boxes that make sense to the
user. Use simple, nontechnical language; don’t provide system-oriented
information that the user can’t respond to. When possible, give the
user information that helps explain how to correct the problem. Figure 6-23
shows an example of a well-written dialog box message that replaces the
message users used to see: “The application is busy or missing.”

Figure 6-23 A well-written dialog box message

Use the name of the document or application in a dialog box to help users
understand the message. For example, a dialog box that appears when a user
chooses Shut Down after working on the company’s annual report using the
TeachText application should say “Save changes to the TeachText document
“Annual Report” before quitting?” rather than simply “Save changes before
quitting?” This kind of labeling helps users who are working with several
documents or applications at once to make decisions about each one
individually.

See the section “Dialog Box Messages” on page 310 in Chapter 11,
“Language,” for more information about writing dialog box messages. See
the section “Button Names” on page 206 in Chapter 7, “Controls,” for more
information on naming buttons.

C H A P T E R 6

Dialog Boxes

200 Standard File Dialog Boxes

Standard File Dialog Boxes 6

The standard file dialog boxes allow users to operate on files located on some
type of storage media, such as a hard disk, floppy disk, or file server; users
can perform such tasks as viewing the files on a hard disk, opening and
saving a document, and viewing elements on the desktop. Standard dialog
boxes are commonly called directory dialog boxes in user documentation
because they offer a directory listing of files available on storage media. Users
can navigate through the levels of folders they have created and they can
navigate to other storage media. The standard file dialog boxes show a file’s
position in relation to the disk it’s stored on. The desktop appears as the
top level of the hierarchical file system. The user clicks the Desktop button to
get to the top level of the hierarchy to see what storage media are currently
mounted and available. A user can view and select storage media from
the standard file dialog box, but can see other desktop entities such as the
Trash folder. The dialog box that appears when the user chooses Save As
includes a New Folder button that allows the user to create a folder in which
to store the document.

If you don’t use the default dialog boxes that the system software provides for
opening files and saving files, you should at least replicate the organization
and appearance of the standard file dialog boxes. Figure 6-24 shows an
example of the standard file dialog box for opening files. For more
information, see Inside Macintosh: Files.

Figure 6-24 The standard file dialog box for opening files

C H A P T E R 6

Dialog Boxes

Save Changes Alert Box 201

6
D

ialog B
oxes

Save Changes Alert Box 6

This section describes the standard alert box for saving all changes to a
document before a user closes a document with unsaved changes without
saving those changes or quits an application when there’s an open document
with unsaved changes. The design of the save changes alert box standardizes
the appearance of the alert box and placement of its buttons so that users can
quickly identify a potentially dangerous situation. Follow the guidelines in
this section to create your save changes alert box.

Use the caution alert box, which includes the caution icon in the upper-left
corner. This icon indicates to users that they need to carefully consider the
alert box message before clicking the default button or pressing the Return
key. The caution icon should always be in the same, predictable location so
that users easily recognize it as a warning and understand its meaning.

The button names in the save changes alert box correlate to the action
users perform by pressing the button. The buttons read Save, Don’t Save,
and Cancel. Using these verbs reinforces the identity of each possible action
to the user. In other words, the Don’t Save label provides much more context
for the user than the word No does.

In order to prevent accidental clicks of the wrong button, you should
always keep safe buttons apart from buttons that could cause data loss.
Standardizing the location of buttons in a safe configuration provides an
additional safeguard for the user. Place the Save button in the lower-right
corner with the Cancel button to its left. Place the Don’t Save button
left-aligned with the message text. Make the Save button the default button,
which means that it should be linked to the Return or Enter key. This way,
the user is less likely to accidentally click the Don’t Save button or activate it
with a keystroke and cause irretrievable loss of data. Figure 6-25 shows an
example of a standard save changes alert box.

Figure 6-25 The save changes alert box

Forg
ive

nes
s

Consis
te

ncy

A button that

causes data loss

Buttons that are

“safe” for data

C H A P T E R 6

Dialog Boxes

202 Save Changes Alert Box

Include the name of your application and the name of the document in the
alert box message, as shown in Figure 6-25. When a user shuts down the
computer, several save changes alert boxes may appear if there are several
open documents on the desktop. This addition of contextual information to
the standard message helps the user by identifying to which application and
document the message refers.

203

C H A P T E R 7

7

Controls 7Figure 7-0
Listing 7-0
Table 7-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 7

Controls

204

Standard Toolbox Controls

This chapter describes the controls that users manipulate in windows, dialog
boxes, and alert boxes. These controls are described in terms of their
appearance and behavior, which are standardized. This chapter describes
controls provided by the Macintosh Toolbox. This group includes buttons,
radio buttons, checkboxes, and pop-up menus. (Pop-up menus are described
in Chapter 4, “Menus,” which begins on page 49.) This chapter also describes
controls that are not supported by the Macintosh Toolbox, including sliders,
little arrows, and the outline triangle. In addition, this chapter describes text
entry fields and scrolling lists. If you need to, you can design your own
controls, following the guidelines in this chapter.

Controls

 are graphic objects that cause instant actions or audible results when
the user manipulates them with the mouse. Users set controls that change
settings to modify future actions. Controls also allow users to make choices or
assign parameters in a range. Controls display existing choices so that they
are visible to users. Because of their appearance and behavior, controls
enhance the user’s sense of direct manipulation.

When an operation requires more than one object or when it needs additional
information before it executes, the Macintosh interface uses dialog boxes or
alert boxes to convey and gather information. These dialog boxes and alert
boxes use controls that users manipulate to provide the additional input.
Controls are also found in windows. Controls provide users with familiar
tools and formats for responding to the computer’s need for information.

Standard Toolbox Controls 7

This section describes the controls that are available through the Macintosh
Toolbox. It includes descriptions of the appearance and behavior of buttons,
radio buttons, and checkboxes.

Buttons 7

A

button

 is a rounded rectangle that is named with text. Clicking a button
performs the action described by the button’s name. Buttons usually perform
instantaneous actions, such as completing operations defined by a dialog box
or acknowledging an error message. A button’s width is sized to fit the name
it surrounds; the standard width for OK and Cancel buttons is 59 pixels.

Dire
ct

 M
an

ip
ulat

io
n

C H A P T E R 7

Controls

Standard Toolbox Controls

205

7

C
ontrols

Standard button height is 20 pixels. Figure 7-1 shows some typical buttons in
a dialog box.

Figure 7-1

Buttons in a dialog box

Button Behavior 7

When the user clicks a button, the button highlights (inverts) to give visual
feedback to the user that indicates which item has been clicked. All alert boxes
and modal dialog boxes that use the ModalDialog procedure exhibit this
behavior. If you implement your own controlling mechanism for dialog boxes
or alert boxes, be sure to include this behavior. For buttons that are activated
by using a keyboard sequence, the Dialog Manager inverts the button for
eight ticks, which is long enough for the user to see that the keyboard event
has taken effect. (You must invert the Cancel button when the user presses
Command-period or the Escape key; the Dialog Manager does not handle
these events.) If the user presses the mouse button while the pointer is over a
button, the button stays inverted until the user releases the mouse button or
moves the pointer away from the button. The button tracks the mouse
movement as long as the user keeps the mouse button depressed. If the user
moves the pointer back over the button, it is highlighted. If the user releases
the mouse button while the pointer is not over the button, nothing happens.
Figure 7-2 shows a button that is highlighted to provide feedback.

Figure 7-2

A highlighted button

Default button

Fee
dbac

k a
nd D

ial
og

C H A P T E R 7

Controls

206

Standard Toolbox Controls

The

default button

 should be the button that represents the action that the
user is most likely to perform if that action isn’t potentially dangerous. To
denote a default button, draw an additional border of three black pixels,
separated by a border of one white pixel, around it to let the user know that it
is the default. (In alert boxes, the Macintosh Toolbox outlines the default
button.) When the user presses the Enter key or the Return key, your
application should respond as if the user clicked the default button.

Don’t use a default button if the most likely action is dangerous—for
example, if it causes a loss of user data. When there is no default button,
pressing Return or Enter has no effect; the user must explicitly click a button.
This guideline protects users from accidentally damaging their work by
pressing Return or Enter. You can consider using a safe default button, such
as Cancel.

Don’t display a default border around any button if you use the Return key in
text entry boxes. Having two behaviors for one key can confuse users and
make the interface less predictable.

In addition to the action button or buttons, it’s a good idea to include a
Cancel button. This button returns the computer to the state it was in before
the dialog box appeared. It means “forget I mentioned it.” Always map the
keyboard equivalent Command-period and the Esc (Escape) key to the
Cancel button. These keyboard equivalents, along with Return and Enter,
are accelerator keys and serve the purpose of letting the user respond quickly
to a dialog box or an alert box. In general, it’s not a good idea to assign other
keyboard equivalents to buttons. If you find it useful to assign keyboard
equivalents to some buttons that are used very often in your application,
be sure to follow the guidelines in Chapter 4, “Menus,” in the section
“Keyboard Equivalents,” which begins on page 128.

See the chapter “Dialog Manager” in

Inside Macintosh: Macintosh Toolbox
Essentials

 for information about implementing these behaviors for buttons.

Button Names 7

Whenever possible, name a button with a verb that describes the action that
it performs. Button names should be limited to one word whenever possible.
You should never use more than three words for a button name. Use the
caps/lowercase style of capitalization for button names. In general, this
means that you capitalize every word except articles

(a, an, the)

, coordinating
conjunctions (for example,

and, or

), and prepositions of three or fewer letters.
You also capitalize the first and last words of the name; since button names
should seldom be more than two words, almost all words in button
names should be capitalized. The specific rules for this type of capitalization
appear in detail in the

Apple Publications Style Guide.

Forg
ive

nes
s

Consis
te

ncy

C H A P T E R 7

Controls

Standard Toolbox Controls

207

7

C
ontrols

Button names usually appear in 12-point Chicago. If a button is not available,
it appears dimmed. On a black-and-white monitor, a dimmed button and its
name are dithered to 50 percent gray. On color systems, dimmed items appear
in true gray. Chicago is designed specifically to display well on the screen in
all states, including dithered and gray. Other fonts, such as Geneva, which
is sometimes used for button names, are rendered illegible when they
are dithered.

Buttons usually cause instant actions, described by the name of the button.
Occasionally they require more information before acting. If a button displays
another dialog box, use the ellipsis character in the button name to indicate
this to the user. (Do not include the ellipsis character if the dialog box appears
only to ask users to confirm their actions.) The most appropriate situation for
a second dialog box to appear would be when a modeless dialog box needed
additional information on a limited basis to complete an action. See the
section “Stacking Modal Dialog Boxes,” which begins on page 192 in
Chapter 6, “Dialog Boxes,” for a discussion of the dangers of dialog boxes that
generate more dialog boxes.

A user typically reads the text in a dialog box until it becomes familiar and
then relies on visual cues, such as button names or positions, to respond.
Names such as Save, Quit, and Erase Disk allow users to identify and click the
correct button quickly. These words are often more clear and precise than
names such as OK, Yes, and No. If the action can’t be condensed into a word
or two, OK and Cancel or Yes and No may serve the purpose. If you use these
generic words, be sure to phrase the wording in the dialog box so that the
action the button initiates is clear. Figure 7-3 shows a dialog box with
appropriate OK and Cancel buttons.

Figure 7-3

A dialog box with OK and Cancel buttons

Use Cancel for the button that closes the alert box or dialog box and returns
the application to the state it was in before the alert box or dialog box
appeared. Cancel means “dismiss the operation I started, with no side
effects.” It does not mean “I’ve read this dialog box” or “stop what’s going
on regardless.”

C H A P T E R 7

Controls

208

Standard Toolbox Controls

Ideally, you should never put your users in a situation in which they can’t
return to the state that existed before an operation began (and before the
dialog box appeared). But if it can’t be avoided, use OK or Stop, depending
on the situation, instead of Cancel. Sometimes it is more appropriate to use
the word Done instead of OK for the name of a button that closes the alert box
or dialog box and that accepts any changes made while the dialog box is
displayed. Figure 7-4 shows a dialog box that illustrates this guideline. In this
dialog box, the user creates, renames, or deletes fields and then dismisses
the dialog box, so the Done button means “I have finished editing fields and
want to close the dialog box.”

Figure 7-4

A dialog box with a Done button instead of an OK button

This dialog box uses Done because clicking the Done button maintains any
changes that were made subsequent to the display of the dialog box. If the
button were named OK, the user might confuse it with the Add Field button,
which accepts changes but doesn’t close the dialog box and therefore allows
the user to make other changes. The Done button is most often used in dialog
boxes in which the user can define more than one of an item, for example,
field names, without closing the dialog box. In these situations it is often
unreasonably difficult to return the user to the state that existed before the
operation began, so there is no Cancel button.

Use Stop for a button that halts an operation midstream while accepting the
possible side effects. Stop may leave the results of a partially complete task
intact, whereas Cancel always returns the computer to its previous state. It’s
appropriate to change the button name in the middle of the operation from
Cancel to Stop if you can determine when it’s no longer possible to cancel.
The dialog box shown in Figure 7-5 uses a Stop button because clicking the
button maintains the text that is already inserted while preventing completion
of the insert operation.

C H A P T E R 7

Controls

Standard Toolbox Controls

209

7

C
ontrols

Figure 7-5

A progress indicator that uses a Stop button

In an alert box that requires confirmation, use a word that describes the
result of accepting the message in the dialog box. For example, if a dialog box
says “Revert to the last saved version of this document?” name the button
Revert rather than OK. Figure 7-6 shows a dialog box with appropriately
named buttons.

Figure 7-6

A confirmation alert box with appropriately named button

A modal dialog box usually cuts the user off from the task. That is, the user
can’t see the area of the document that changes when choices are made in the
dialog box until dismissing the dialog box. Once the area becomes visible
because the user dismisses the dialog box, the user sees whether the changes
are the desired ones. If the changes aren’t appropriate, then the user has to
repeat the entire operation. To provide better feedback to the user, you need
to provide a way for the user to see what the changes will be. Therefore, any
selection made in a modal dialog box should immediately update the
document contents, or you should provide a sample area in the dialog box
that reflects the changes that the user’s choices will make. In the case of
immediate document updating, the OK button means “accept this change”
and the Cancel button means “undo all changes done by this dialog box.”

Some applications use an Apply button to approximate the behavior of
immediately updating the document or using a sample area. This method
confuses the meaning of OK and Cancel and is not recommended. If you must
implement modal dialog boxes with an Apply button, you need to include a
Cancel button. When there is an Apply button, the Cancel button undoes the
results of the Apply operation and dismisses the dialog box. The OK button
dismisses the dialog box and applies the settings made in the dialog box, even
if the Apply button wasn’t clicked. The user must always be able to undo any
actions caused by the dialog box.

W
YSIW

YG

Fee
dbac

k a
nd D

ial
og

C H A P T E R 7

Controls

210

Standard Toolbox Controls

Radio Buttons 7

A radio button is a Macintosh control that displays a setting, either on or off,
and is part of a group in which only one button can be on at a time. They
occur in sets and are called radio buttons because they act like the buttons on
a car radio. The user can have only one radio button setting in effect at one
time, just as you can listen to only one radio station at a time. This means that
radio buttons are mutually exclusive. The active setting has a dot in the
middle of the button. Clicking one button in a group turns off whichever
button was on before. Radio buttons never initiate an action. Figure 7-7 shows
a typical set of radio buttons.

Figure 7-7

Sets of radio buttons

A set of radio buttons should contain from two to approximately seven items.
Some sets could be slightly larger, but you must always have at least two
radio buttons in each set. Each group of radio buttons usually has a label that
identifies the kind of choices the group contains. Usually, each button has a
label that identifies what it does. Sometimes a group of buttons represent a
range of incremental options, as shown in Figure 7-7, in which case only the
buttons at each end of the range are labeled. A label can be a few words or a
phrase. A set of radio buttons always has the same set of choices. It is

never

dynamic, changing contents depending on the context. The user can click the
button itself or the text that identifies the choice to activate the button.

Radio buttons represent choices that are related, but not necessarily opposite.
For example, a set of radio buttons may provide alignment choices in a word
processor. The choices would be left aligned, right aligned, and centered on
the page. This group of radio buttons is shown in Figure 7-8.

Met
ap

hors

S

,

Z

X

Radio buttons

C H A P T E R 7

Controls

Standard Toolbox Controls

211

7

C
ontrols

Figure 7-8

Radio buttons for selecting the alignment of text

If more than one group of radio buttons is visible at one time, the groups need
to be visually separate from each other. The General Controls panel from the
Finder, shown in Figure 7-9, shows some examples of radio button sets that
are separate and well labeled. Sometimes it’s useful to draw a dotted line
around a group of radio buttons to separate it from other elements in a
dialog box.

Figure 7-9

The General Controls panel

Checkboxes 7

Checkboxes, like radio buttons, provide alternative choices for users. A

checkbox

 is a square with label text next to it. The user clicks the checkbox to
select or deselect it. When the option is on, an

x

 appears in the box. When the
option is off, the box is empty. Checkboxes act like toggle switches, meaning
that the setting for each checkbox is either off or on. Use checkboxes to
indicate one or more options that must be either off or on. Checkboxes
are independent of each other, even when they offer related options.

C H A P T E R 7

Controls

212 Standard Toolbox Controls

Any number of checkboxes can be on or off at the same time. Figure 7-10
shows some typical checkboxes.

Figure 7-10 A set of checkboxes

You can have one checkbox or as many as you need. It’s a good idea to group
sets of checkboxes that are related and to separate the groups from other
groups of checkboxes and radio buttons.

Each checkbox has a label. It can be very difficult to label the option in an
unambiguous way. The label should imply two clearly opposite states. For
example, in a dialog box for opening files, a checkbox provides the option to
open a file in a read-only format. The checkbox is labeled Read-Only. The
clearly opposite state, when the option is off, is to open files that the user can
read and write (or make changes to). Figure 7-11 shows this checkbox.

Figure 7-11 A single checkbox in a dialog box

C H A P T E R 7

Controls

Standard Toolbox Controls

213

7

C
ontrols

If you can’t find a label for the checkbox that clearly implies its opposite
state, you might be better off using radio buttons. With radio buttons, you
can use two labels, thereby clarifying the states. It’s sometimes tempting to
use a checkbox because one item takes up less space than two. However,
the resulting item may be ambiguous and thus difficult for your users
to understand.

When you use one checkbox to provide two options, it makes the user think
explicitly about what the significance of the option is. The user must click the
checkbox or its label text to enable the option. In this way, you can emphasize
the visible choice. For example, when the dialog box that the Find command
brings up in System 7 was being designed, two implementations were
considered, a set of radio buttons and a checkbox. The radio buttons were to
be labeled “all at once” and “one at a time.” These choices pertain to how the
operating system should search for a text string in filenames. In the first
option, all at once, the operating system highlights all the filenames in the
open folder that match the text string. This option is similar to how the earlier
Find File command operated, displaying all matches in a portion of the
window. In the other option, one at a time, the operating system searches
until the first item is found and highlights it. To see another match, the user
must choose Find Again. One reason to use the checkbox was to reduce the
visual clutter of the dialog box. The compelling reason that persuaded the
designers to use a checkbox labeled “all at once” was that it emphasized the
choice. Not setting the checkbox to on caused the normal state to be searching
for one instance at a time. This made users focus on the choice when they
wanted the Find operation to act differently than it normally did. Figure 7-12
shows the Find dialog box with the final implementation.

Figure 7-12

The Find dialog box

C H A P T E R 7

Controls

214

Controls Not Supported by the Macintosh Toolbox

Controls Not Supported by the Macintosh Toolbox 7

This section describes the appearance and behavior of some common controls
that are not supported by the Macintosh Toolbox. These controls include
sliders, little arrows, and the outline triangle. You can implement these
controls in your application where necessary according to the descriptions
presented here.

Sliders 7

A

slider

(sometimes called a dial) displays the range of values, magnitude, or
position of something in the application or system. An indicator notes the
current setting. Some sliders allow users to alter the value of the slider by
moving the indicator up and down. Sliders can be analog or digital devices
that display their values graphically. Figure 7-13 shows an example of a slider.

Figure 7-13

An example of a slider

You can design and implement your own sliders as necessary for your
application. When you design your sliders, be sure to include meaningful
labels that indicate to users the range and direction of the slider. For instance,
the Speaker Volume slider in the Sound control panel has numbers from 0 to 7
to indicate the loudness of the sound. It would be much clearer to users if the
slider also had labels that stated the loudness in relative terms. The bottom
could be labeled Flash Menu Bar. This type of labeling substantially improves
the comprehensibility of the graphical interface.

Slider

C H A P T E R 7

Controls

Controls Not Supported by the Macintosh Toolbox

215

7

C
ontrols

Give users clues about the direction in which the indicator moves and how
that relates to the control. For instance, most people assume that moving an
indicator up a vertical slider means increasing the value of the setting.
However, this assumption could be clarified easily with graphics or words.
Figure 7-14 shows an example of a slider with graphical symbols that
demonstrate to users which direction to move the indicator to increase
or decrease brightness on a monitor.

Figure 7-14

A slider with direction information

Make sure that you don’t use a scroll bar when you really mean to use a
slider. Use scroll bars only for representing the relative position of the
visible portion of a document and in scrolling lists. Typically a scroll bar
represents the amount of data in a document, and the scroll box represents the
relative position of the window over the length of the document. Using a
scroll box to change a setting confuses the meaning of the element and makes
the interface inconsistent. Scroll bars are described in detail in the section
“Scroll Bars,” which begins on page 158 in Chapter 5, “Windows.” Figure 7-15
shows a scroll bar used incorrectly and a slider used correctly in a
similar situation.

Figure 7-15

Incorrect use of a scroll bar and correct use of a slider

C H A P T E R 7

Controls

216

Controls Not Supported by the Macintosh Toolbox

Little Arrows 7

The control that is two arrows pointing in opposite directions is commonly
called

little arrows.

 It is used to increase or decrease values in a series.
Figure 7-16 shows one example of the little arrows control.

Figure 7-16

Little arrows control

The little arrows control has a label that specifies the content to which it
relates. The numerical or textual value appears in a box, which is often a
type-in box so the user can type in a value instead of using the little arrows.
When the user clicks one arrow, the value changes by a unit of 1. If the user
presses the arrow, the value increases or decreases until the user releases the
mouse button. While the user clicks or presses the arrow, it is highlighted to
provide feedback to the user. The unit of change depends on the content.
For example, if the content area displays years, the increment is one year at a
time, as shown in Figure 7-17.

Little arrows control

C H A P T E R 7

Controls

Controls Not Supported by the Macintosh Toolbox

217

7

C
ontrols

Figure 7-17

Content-dependent increment

If possible, give some indication what the user can expect by using the
up arrow and the down arrow. For example, in Figure 7-17 it may not be
obvious which direction the year would increment using either arrow.
Clicking the up arrow might change the year from 2055 to 2056 or
2055 to 2054.

The little arrows control works best with numbers in cases in which it’s
obvious that the up arrow means 1 more than the current value and the
down arrow means 1 less than the current value.

2.

1.

C H A P T E R 7

Controls

218

Other Elements for User Interaction

Outline Triangles 7

The

outline triangle

 in the Finder is a control that users see when they choose
to display the contents of their file system in a list view. The triangle appears
next to folders that contain documents. The user clicks the triangle to display
a list of the contents of the folder without actually opening it. The triangle
then rotates to point downward. This change in position indicates to the user
that the folder’s contents are listed. Figure 7-18 shows the outline triangle in
both positions.

Figure 7-18

Outline triangle control

Other Elements for User Interaction 7

This section describes other elements that users interact with to provide
information about what they want to do or what they expect to happen. These
elements include text entry fields and scrolling lists. Note that these elements
aren’t necessarily controls.

Outline triangle

C H A P T E R 7

Controls

Other Elements for User Interaction 219

7
C

ontrols

Text Entry Fields 7
The text entry field is typically a rectangular box in a dialog box where the
user enters some text to identify something. It is also called an editable text
field. For example, in the Save As dialog box, the user types in the name of a
document. Figure 7-19 shows an example of a text entry field.

Figure 7-19 A text entry field

If an application isn’t primarily a text application, but does use text in fields,
you may not need to provide the full text-editing capabilities. In Macintosh
applications, the simplest way to implement text editing is to use TextEdit, or
to use the Dialog Manager, which in turn uses TextEdit. You need to make
sure that whatever level of text-editing capabilities you implement for text
entry fields is upward compatible with the full text-editing capabilities. You
should implement these editing capabilities:

■ The user can select the whole field and type in a new value, delete text,
select a substring of the field and replace it, and select a word by
double-clicking.

■ The user can choose Undo, Cut, Copy, Paste, and Clear, as described in the
section “The Edit Menu” on page 109 in Chapter 4, “Menus.”

In addition, you can also implement intelligent cut and paste. (TextEdit does
not provide this.) This capability is described in the section “Intelligent Cut
and Paste,” which begins on page 301 in Chapter 10, “Behaviors.”

Text entry field

C H A P T E R 7

Controls

220 Other Elements for User Interaction

Even applications with only minimal text editing should perform appropriate
edit checks. For example, if the only legitimate value for a field is a string of
digits, the application should issue an alert message if the user types any
nondigits. For example, the alert message might interrupt the user to remind
him or her that the letters l and o can’t be used in place of the numerals 1 and
0. Alternatively, the application could wait until the user is through typing
before checking the validity of a field’s contents. In this case, the appropriate
time to check the field is when the user clicks anywhere other than within the
field or presses the Return, Enter, or Tab key.

Scrolling Lists 7
A scrolling list is a combination of two other elements. One part of the
scrolling list is a list of items, such as a list of document names in the standard
file dialog box. The other component is a scroll bar, which allows the user to
look at more items in the list that aren’t currently visible. The size of the box
that displays the list often depends on the amount of space available in the
context. The list can contain as many items as necessary. Figure 7-20 shows an
example of a scrolling list.

Figure 7-20 A scrolling list

C H A P T E R 7

Controls

Other Elements for User Interaction 221

7
C

ontrols

When you create the list of items in a scrolling list, you may find text that is
too long to fit in the list. When this is the case, it’s best to eliminate text in the
middle of the name and insert ellipsis points there, preserving the beginning
and ending of the item’s name. Users often add version numbers to the end of
their document or device names, so if you cut off the end of the text item, they
lose that context and must guess which of the several item names that begin
the same is the desired one.

The user can click an item in the list to select it, or use multiple selection
techniques such as the Shift-click combination to select more than one item.
The user can also scroll through the list to peruse its contents without
selecting anything. If the list contains folders, the user can use standard
techniques to open them and see their contents. Users can also use the
keyboard navigation techniques discussed in “Keyboard Navigation in Dialog
Boxes” on page 198 in Chapter 6, “Dialog Boxes,” to select items in a
scrolling list.

Scrolling lists are not appropriate to use for providing choices in a limited
range. Since the full range isn’t visible all at once in a scrolling list, it’s
difficult for users to understand the scope of their choices. Sliders work very
well for displaying a limited range of values and for letting users choose their
preference in the range. Sliders are described in the section “Sliders” on
page 214.

223

C H A P T E R 8

8

Icons 8Figure 8-0
Listing 8-0
Table 8-0

Macintosh II

Thi d t t d ith F M k 4 0 4

C H A P T E R 8

Icons

224

Why Icons Work

This chapter describes icons, their appearance, and their use in the Macintosh
interface. It presents information on how to design icons and general
guidelines for designing icons of different sizes and bit depths. This chapter
also describes how to customize the standard icons you can provide for
your products.

Icons

 are graphic representations of objects such as documents, storage
media, folders, applications, and the Trash. Icons look like their real-world
counterparts whenever possible. People can select, open, move, copy, and
throw away icons. Figure 8-1 shows some icons displayed in the Finder.

Figure 8-1

Common icons

Why Icons Work 8

Icons work effectively in the Macintosh interface as representations of
computer entities for several reasons. People often recognize pictures
of things and understand them more quickly than they do verbal
representations of the same things. For example, studies have shown
that traffic signs that have symbols are more recognizable from a distance
than signs that have only words. Figure 8-2 shows several examples of
traffic symbols.

Aes
th

et
ic

In
te

grit
y

Hard disk icon

Application icon

Folder icon

Document icon

Trash icon

Met
ap

hors

S

,

Z

X

C H A P T E R 8

Icons

Why Icons Work

225

8

Icons

Figure 8-2

Examples of common traffic symbols

Symbols cross cultural and language barriers better than words do. Figure 8-3
shows examples of symbols that are used internationally. For example, at the
Olympics pictures communicate ideas such as the locations of various events.
People from around the globe must recognize the meanings of the signs in
order to make their way to events, facilities, and services.

Figure 8-3

Examples of commonly-used international symbols

Symbols also take up less space than words that describe the same concept
would. Imagine having to include the words written in many different
languages on the signs. You can see that it’s much easier in some cases to use
graphics to represent concepts.

In the computer realm, it’s generally easier to recognize symbols across
systems than it is to remember keyboard commands. For example, a mailbox,
even if it is of a different kind, is still recognizable as a mailbox. People
identify a mailbox with sending and receiving communication. It’s much
harder for a user to remember that one system uses the command Control-M
for mail, another system uses Control-P for post, and a third system uses
Control-S for send.

C H A P T E R 8

Icons

226

Why Icons Work

Figure 8-4 shows two examples of mailbox icons and their equivalent
keyboard commands.

Figure 8-4

Symbols are easier to understand than keyboard commands

Icons provide direct access to items in the interface. People can see a folder,
open it, and see its contents, or they can organize their desktop simply by
grouping icons, rather than having to remember a lot of filenames and
using lists to keep track of their files. Thus using icons contributes to the
clarity and aesthetic integrity of the interface. Figure 8-5 shows a desktop
with icon groupings.

Figure 8-5

Grouping icons on the desktop

Mcontrol -

Pcontrol -

Dire
ct

 M
an

ip
ulat

io
n

C H A P T E R 8

Icons

Limitations of Icons

227

8

Icons

Limitations of Icons 8

Designing the right icon that conveys your message to most people can be
difficult. Sometimes it’s difficult because icons need a context to provide
successful communication. For example, what does the drawing shown in
Figure 8-6 mean? It’s a circle that could represent a wide variety of objects in
the real world. From this figure, it’s not clear what the image represents.

Figure 8-6

A confusing image

This image could represent a circle tool, a degree symbol, a ball, or a planet.
It could be as many round things as people could imagine. When it appears in
context with another object, the meaning instantly becomes clear, as
Figure 8-7 shows.

Figure 8-7

Context clarifies the image

C H A P T E R 8

Icons

228

Limitations of Icons

You can clearly see that in this context the circle is a baseball. This picture
communicates an idea in a simple, graphic format. By adding the baseball
player to the circle image, the context clarifies the meaning of the image.

In general, you can represent most nouns (people, places, and things) quite
simply and easily in an icon. For example, you can draw a small picture that
looks like a file folder to be a folder icon. Actions are much harder to portray
in icons. How would you represent a save operation with an icon? You
can overcome this difficulty by representing an action with an icon in
combination with text. In fact, icons with label text are always more effective
than either text or icons in isolation. Figure 8-8 shows a dialog box that uses
icons that change to reflect the choices the user makes. The icons and text
together help the icons give the user an idea of what to expect.

Figure 8-8

Icons with label text

Sometimes another interface element is more appropriate than an icon that
isn’t clear. For example, you could use text for error messages in dialog boxes
more effectively than trying to communicate the same concept with symbols.
Sometimes text is the simplest way to convey a concept, depending on the
specific interface situation.

These symbols

change to reflect

current choices.

C H A P T E R 8

Icons

Designing Effective Icons

229

8

Icons

Designing Effective Icons 8

This section presents some basic guidelines for designing effective icons.
Remember that all your icon designs must work in the Macintosh context.
The desktop interface is based on an office metaphor using a desktop as the
primary workspace. You want to build on this basis and diverge from it as
little as possible. You must also consider other important facets of the
Macintosh interface described here when you’re designing icons. For
information on designing color icons, see Chapter 9, “Color,” beginning
on page 257.

Use Appropriate Metaphors 8

You need to choose the appropriate metaphor to design effective icons.
Folders are the appropriate metaphor for a storage container for documents
because people use folders to store pieces of paper. In contrast, most people
probably wouldn’t use a kitchen canister for storing documents. People do
use canisters to store things, and the shape of a hard disk platter is round. But
it would require a major leap of logic for people to associate a canister as a
storage medium for something like paper. Figure 8-9 illustrates this point.

Figure 8-9

A logical and an illogical metaphor

Met
ap

hors

S

,

Z

X

FLOUR

SUGAR

PAPER

C H A P T E R 8

Icons

230

Designing Effective Icons

Think About Worldwide Compatibility 8

Your icon should be localizable for different regions around the world or
should be designed with worldwide use in mind. For example, to localize
an icon for receiving mail, you would substitute a post box for a mailbox
in British system software. A worldwide icon is one that is understood
universally. An example of an icon that is understood around the world is the
document icon. Even though people in different locations around the world
use different sizes of paper and different types of paper stock, they all still
recognize the document icon as a representation of a document.

Figure 8-10 shows some examples of mailbox icons that have been localized
for use in different countries.

Figure 8-10

Localized mailbox icons

In general icons shouldn’t be gratuitously cute. Humor typically doesn’t
translate well to other cultures or languages. Also, don’t use inside jokes or
pictures that represent code names for your icons. Although it might work to
use such icons during your development process for product identification, be
sure to remove them and replace them with appropriate icons

before

 you ship.
Symbols and colloquial language are usually culturally dependent, meaning
that what one person relates to may have no meaning or may be an insult in
another person’s culture.

Avoid Text in Icons 8

Avoid using text in your icons whenever possible. Text in icons can be
confusing, and it’s not localizable to other regions, languages, or countries.
It’s appropriate to label icons to help the user recognize them and so that they
can be read to a person with a visual disability. When you ship your product,
every icon should have a name, but people can change the name of an icon at
any time. Figure 8-11 shows an example of icons with text in them and icons
that convey the idea much better without text.

Acc
es

sib
ilit

y

United States Italia France Danmark

C H A P T E R 8

Icons

Designing Effective Icons

231

8

Icons

Figure 8-11

Avoid text in icons

Design for the Macintosh Display 8

Your icons must look good at the current display resolution. You should use
straight lines and 45-degree angles for the best appearance. Curves don’t
work well because they make the edges appear jagged. Figure 8-12 shows the
jagged effects that curves and angles other than 45 degrees produce.

Figure 8-12

Certain shapes don’t work well

Three-dimensional effects in icons are difficult to achieve in the Macintosh
interface because they require shading and more angled lines. A large
percentage of users have black-and-white monitors and thus complex shading
may not display very well on their screens. If you decide to attempt to
incorporate three-dimensional effects in your icons, make sure that a
professional visual designer works on the design to ensure aesthetic integrity
and compatibility with the Macintosh interface appearance.

Labels Views

Labels Views

Aes
th

et
ic

In
te

grit
y

C H A P T E R 8

Icons

232

Designing Effective Icons

Use a Consistent Light Source 8

On the Macintosh screen the light source always comes from the upper-left
corner of the screen. Therefore icons and other elements have drop shadows
on the lower-right side. Use the light source consistently, so that shading is
consistent throughout the interface. Figure 8-13 shows some desktop entities
that have drop shadows consistent with a light source at the upper-left corner
of the screen.

Figure 8-13

A consistent light source

Figure 8-14 shows some desktop images that have different light sources and
inconsistent drop shadows.

Figure 8-14

Inconsistent light sources

Optimize for Your Target Display 8

You should optimize your design for the display on which it will most often
be seen. For example, some games run on only 4-bit and black-and-white
monitors. In this case, you should optimize your design by choosing colors
from the 4-bit color palette, rather than starting with the 8-bit version and
trying to scale down from there.

C H A P T E R 8

Icons

Designing Effective Icons

233

8

Icons

Maintain a Consistent Visual Appearance in an

Icon Family 8

Maintain a close visual relationship between all members of an icon family.
Color versions of icons should resemble the black-and-white versions. Users
should be able to easily recognize standard interface elements and icons
across all monitor types. Users can have several monitors connected to a
computer and several computers on which they use your applications.
Your application icon should look consistent when a user changes the
bit depth of a monitor or moves your icon from a color monitor to a
black-and-white monitor.

Design the large (32-by-32 pixel) icon first, and then adapt the design to the
small icon. You can leave out inessential details in the small version of
your icon, but it shouldn’t look significantly different from the large version.
Figure 8-15 shows how starting with the design of the large icon and adapting
it for the small icon works better than starting with the design of the
small icon.

Figure 8-15

Design the large icon first and base the small icon design on it

Use Icon Elements Consistently 8

Use icon elements consistently throughout your designs. If there is an existing
shape for an icon element, don’t change it. For example, don’t invent new
designs for entities that have a standard design in system-provided icons,
such as folders and documents. For example, in Figure 8-16, the icon of the
Macintosh computer is the same when it appears in the Finder, in the
Application menu, and within the System Folder icon. Unless you are
representing a different model of Macintosh computer, use the Macintosh
Classic icon to represent the Macintosh computer. People often assume that
different shapes have different meanings and may try to read meaning in
where none is intended. Users can learn what icon elements represent when
they are used consistently.

Consis
te

ncy

Small icon

doesn’t fit large

icon design.

Small icon

resembles large

icon.

C H A P T E R 8

Icons

234

The Finder Icon Family

Figure 8-16

Consistent use of icon elements

The Finder Icon Family 8

For display in the Finder, for each icon you should provide an entire icon
family, which consists of large (32-by-32 pixel) and small (16-by-16 pixel)
icons, each available in three different versions of color: black and white
(1-bit color), 4-bit color, and 8-bit color. You also need to provide an icon mask
for each size of icon. The Finder uses the icon mask to cut out space on the
desktop for the display of the icon. Figure 8-17 shows a family of icons for
System 7.

Figure 8-17

An icon family

The 32-by-32 pixel icons appear on the desktop, and, if the user chooses
“by Icon” from the View menu, these icons also appear in Finder windows.
The 16-by-16 pixel icon appears as the Application menu’s title when your
application is active. It also appears next to your application’s name in the
Application menu and in Finder windows when the user chooses “by Small
Icon” from the View menu. Figure 8-18 shows examples of two sizes of icons
and some instances of where they appear in the Macintosh interface.

Finder Application menu System Folder

1-bit versions 4-bit versions 8-bit versions Icon masks

C H A P T E R 8

Icons

The Finder Icon Family

235

8

Icons

Figure 8-18

Different sizes of icons

You can also provide icons for other entities that your application creates,
such as customized document icons, preferences file icons, and stationery
icons. The entire group of icons that you distribute with your product is
known as a suite of icons. A suite of icons includes the families of icons for
each type of icon that you distribute.

A monitor displays the highest-quality icon that its screen allows. Table 8-1
shows which icons are displayed on monitors with different display
capabilities based on the icon families that you provide.

Table 8-1

Icon display on monitors of different bit depths

Icon set provided What 8-bit color
monitor

displays
What 4-bit color
monitor displays

What black-and-white
monitor displays

8-bit, 4-bit, black-and-white icons 8-bit icon 4-bit icon Black-and-white icon

8-bit, black-and-white icons 8-bit icon Black-and-white icon Black-and-white icon

4-bit, black-and-white icons 4-bit icon 4-bit icon Black-and-white icon

Black-and-white icon Black-and-white icon Black-and-white icon Black-and-white icon

16-by-16 pixel icons

in menu

16-by-16 pixel icons

in Application menu

32-by-32 pixel icons

in window

32-by-32 pixel icons

on desktop

C H A P T E R 8

Icons

236

An Icon Design Process

See the chapter “Finder Interface” in

Inside Macintosh: Macintosh Toolbox
Essentials

 for information about the icons you provide and how to create a
bundle resource for your application.

An Icon Design Process 8

This section presents an icon design process used at Apple. Of course, there
are many ways to complete a task, and you may work in a way that doesn’t
lend itself to using this process. However, you should read this section to find
out important principles that contribute to successful and effective icons.

You can’t design one icon in your icon family in isolation. All the icons in a
family—large, small, and different color depths—are incarnations of the same
icon, so the basic design must work for all of them. Be flexible in adapting
your design to all bit depths and sizes. Icon design is an iterative process.
During the design process, you may need to redesign one version of an icon
when you find it doesn’t translate well to another version.

If an icon represents hardware that users are familiar with, such as a printer
or a disk drive, the icon should resemble the hardware as closely as possible.
If the icon represents a desktop entity, such as a document or a folder, it
should resemble its physical world counterpart. If you need to design an icon
for a more conceptual entity, such as a network or some kind of memory, you
can use one of the following approaches. Making the icon representative of
the function of the software is a good approach. If the function is complex and
hard for novice users to understand, think about how you could explain the
idea to someone who doesn’t use a computer and try to generate some images
that way. Often the terms you use and the analogies you come up with to
explain the concept can provide clues for visual images.

You can also make an icon representative of a product name. This may work
for your product in one location, but remember that some product names, and
thus product icons, are often not localizable. For example, in the United
States, an icon for extensions could have something to do with an extension
cord. In other languages, the word used for extension cords may have nothing
to do with extensions, and therefore an icon based on the word

extension cord

would be meaningless. Another drawback to this approach is that product
names are often not finalized until late in the development process, so you
might not have much time in which to design an icon based on the final
product name.

C H A P T E R 8

Icons

An Icon Design Process

237

8

Icons

A final approach to designing conceptual icons is making the icon look like
the window that results from opening the icon. For example, if a window that
appears when the icon is opened is very distinct in appearance from other
windows, you can make an icon look like that window. You need to be very
careful that all your icons do not look like miniature windows.

It is often easiest to create icons that represent objects (nouns) rather than
actions (verbs). For example, the function of deleting a document is
represented by a trash can (an object) rather than by some image of the action
of deleting. Thinking of an object that is representative of the function of your
icon is the key to good conceptual design. Remember that for every image
you generate, you need to consider the advantages and disadvantages of the
idea in regard to your audience before deciding on the final design.

Here’s an outline of the suggested steps in an icon design process. The
sections that follow go into the details of some icon design guidelines.

1. Start by designing the black-and-white version of the large (32-by-32 pixel)
icon. Follow the guidelines given in the next section, “Black-and-White
Icons.”

2. Colorize the black-and-white version of your icon in 8-bit color. Use colors
from the Apple icon colors palette (see the section “The Apple Icon Color
Set” on page 240). For more information about creating color versions of
black-and-white icons, see “Design for Black and White First” on page 263
in Chapter 9, “Color.”

3. Translate the 8-bit version of your icon into 4-bit color. If you can’t find
appropriate colors in the 4-bit palette, try going back to step 2 and swap
colors in the 8-bit version. You can use a dithered pattern of two colors to
create the illusion of a new color for the 4-bit icon.

4. Create the mask.

5. Create matching small versions (16-by-16 pixel) of the black-and-white,
8-bit, and 4-bit icons.

6. Look at the icon family on different desktop backgrounds and with several
effects such as selection and labeling to make sure that the icons look good.

7. Do some usability testing to make sure that your target audience
understands your icons, doesn’t confuse them with other icons, and
identifies them as a family of icons.

ResEdit is a useful tool for accomplishing steps 3, 4, and 6.

Met
ap

hors

S

,

Z

X

C H A P T E R 8

Icons

238 Black-and-White Icons

Black-and-White Icons 8

You should begin by designing a black-and-white icon. In general, you should
use an outline of one black pixel to create the icon border. Use a minimal
number of black pixels in the icon so that the icon’s appearance is noticeably
different when selected. The Finder automatically inverts the black pixels
and the white pixels when the user selects the icon to create the selected
appearance. Figure 8-19 shows an example of a well-designed icon that
changes significantly when selected.

Figure 8-19 A well-designed icon and its selected version

If you use too much black or 50 percent gray in your icon, the icon
doesn’t appear significantly different when the pixels are reversed for
selection. Figure 8-20 shows an example of an icon with too much black
and 50 percent gray.

Figure 8-20 A poorly designed icon and its selected version

Color Icons 8

Macintosh system software ships with full-color icons that appear on color
monitors. Your application can also provide color icons.

C H A P T E R 8

Icons

Color Icons 239

8
Icons

Don’t design a color icon that’s substantially different from your
black-and-white icon. When you add color to an icon, it’s best to leave
the one-pixel black outline and other black lines that form the icon, and fill the
icon in with color. Coloring or graying the icon’s outline makes the icon
appear less distinct on the desktop. Remember that the user can change the
background color of the desktop as well as its pattern, so your icon may not
be displayed against the background on which you designed it. If you use
ResEdit version 2.1 or later to create your icons, it provides a way to look
at your icon against different backgrounds to see whether your design is
effective in various environments such as black-and-white displays or color
displays of different bit depths. Figure 8-21 shows how icons with a black
border look on a gray background.

Figure 8-21 Icons with a black outline

Figure 8-22 demonstrates how an icon appears less distinct from its
background without the strong black border.

Figure 8-22 Icons without a black outline

C H A P T E R 8

Icons

240 Color Icons

Icon Colors 8
This section describes the colors and color techniques that you should use
when you design your color icons.

The Apple Icon Color Set 8

Figure 8-23 shows a palette of the standard 256 colors with a mark on each of
the 34 colors used for icon design in system software. If you use ResEdit
version 2.1 or later to design and create your icons, the Finder icon family
editor provides easy access to these colors. Choose Apple Icon Colors from
the Color menu. This command sets the palette in the editor (which is similar
to the palette in most graphics applications) to contain the 34 colors used for
Finder icons. See ResEdit Reference for information on using ResEdit.

Figure 8-23 Standard 256-color palette with icon colors marked

This entire set of 34 colors was chosen to be subtle. Subdued colors avoid a
“circus” effect on the screen. If you use too many of the same types of colors,
people can’t discern what is important as easily. Ramps of color based on
the initial colors chosen were created to provide shading and blending
capabilities. Some light colors were included in the set to be used for large
areas. The colors from the Apple logo were included because those colors
have a strong Apple identification. The Apple logo colors are very bright and
should be used sparingly. The total set of colors provides maximum flexibility
in design. You can combine these colors in a dithered pattern to provide
additional color effects. Figure 8-24 shows an example of creating a dithered
color to use in your icons.

C H A P T E R 8

Icons

Color Icons 241

8
Icons

Figure 8-24 An example of dithered color in an icon

The icon colors were chosen for icon design in system software. It was
necessary to limit the number of colors in the set to create consistency
across all Apple icons. There are at least 120 system icons. If any number of
the 256 system palette colors were used in each icon, the total effect would be
a disparate appearance rather than a coherent look to all system icons. Using
only 34 colors makes the system icons look like they belong together. In a
design scheme that is so large, fewer colors look better.

Degradation of the Color Set Across Monitors 8

If the default color table colors aren’t available, the system software gracefully
degrades to black and white. First the operating system tries to match 8-bit
colors. If it can’t successfully match the colors you specify with those in
the system palette, then it displays the 4-bit icon that you supply. If the
operating system can’t find or match the 4-bit colors, then it displays the icon
in black and white. The system software won’t substitute colors that aren’t
visually close to colors that you assigned. If you choose colors other than the
34 marked in Figure 8-23, use them for detail and not for essential parts of
your windows or icons.

Selection Mechanism for Color Icons 8

When a color icon is selected, the color decreases in brightness. This
means that the colors appear darker when selected. On a color monitor,
a black-and-white icon turns gray when selected. On a black-and-white
monitor, a black-and-white icon uses reverse video to show selection. To make
selected items appear distinct from unselected ones, use light colors for large
areas. Note that only the 34 colors shown in Figure 8-23 get darkened when
a color icon is selected. This means that if you use colors other than those
34 colors in large amounts in an icon, that icon will not get darkened and
therefore will not look selected.

C H A P T E R 8

Icons

242 Color Icons

Figure 8-25 shows a set of control panel icons as they appear on the desktop
and the same icons in their selected states.

Figure 8-25 Color icons and their selected states

Color Labeling Mechanism for Color Icons 8

The labeling mechanism tints color icons toward the label color chosen by the
user from the Label menu. Figure 8-26 shows some icons and the same icons
in their labeled state. To provide system support for this technique, it was
necessary to limit the number of colors used in icons. Using the 34 identified
icon colors does not guarantee that labeled icons will look good, only that
they will actually look labeled. As with icons that are selected, the tinting
applies to only the 34 colors. As a result, if you use colors other than the
34 colors in your icon, the icon will not look labeled when a label color
is applied.

Color icons

Selected color icons

C H A P T E R 8

Icons

Color Icons 243

8
Icons

Figure 8-26 Color icons and their color-labeled states

Anti-Aliasing 8
A technique for enhancing the appearance of your icons is to smooth angular
or curved lines by coloring pixels on jagged edges. This technique is called
anti-aliasing. Change the pixel color where you can see a visual break in
the outline of a black-and-white icon. Figure 8-27 shows an icon before
anti-aliasing, after anti-aliasing, and then in the context of a control
panel icon.

Figure 8-27 Correct anti-aliasing

Color icons

Labeled color icons

Globe without anti-aliasing Anti-aliased globe alone Globe inside control panel

C H A P T E R 8

Icons

244 Small Icons

In anti-aliasing, you typically add pixels to an outline shape. Since the Finder
uses only one mask for each size in the icon family, make sure that all your
icons have the same outline shape. That is, when you anti-alias icons, don’t
add pixels or shadows to the outline shape of color icons. Figure 8-27 shows
how anti-aliasing works well within an icon. The Finder uses the icon mask
for alignment and transformation effects, so make sure that the mask and all
your icons are appropriate for each other.

If you add too much anti-aliasing to the icons, they appear smooth, but
also more fuzzy. While some people prefer this appearance, the Macintosh
desktop appearance relies on crisp-looking icons. Gray outlines create a fuzzy
image on the desktop. If people perceive something fuzzy on their screen,
they may assume that something is wrong with their eyes or their display.
Avoid creating this appearance if at all possible.

Small Icons 8

If you do not provide a 16-by-16 pixel icon, the Finder reduces the 32-by-32
pixel icon based on an algorithmic formula. The algorithm simply shrinks the
icon and typically creates black areas, creating less pleasing visual results. If
you provide a 16-by-16 pixel icon, however, you can optimize its design by
removing pixels when necessary.

When you design a small version of your 32-by-32 pixel icon, preserve as
many graphical elements of the icon as possible. In essence you want to
provide the same icon in a smaller size. Typically you have to remove some
pixels to reduce the visual clutter. However, don’t eliminate significant
elements, or the smaller version of the icon may look different from the larger
version. Figure 8-28 shows icons that a designer carefully scaled and tuned
to preserve key elements of the icons’ designs.

Figure 8-28 Consistently designed small icons

Small icons

preserve elements

of large icons.

C H A P T E R 8

Icons

Default and Custom Icons 245

8
Icons

After you’ve created the small icon, verify the accuracy and clarity of the
small icon by trying to design a large icon based on its design. If the large icon
you end up with based on your small icon is different from the original large
icon, something is not working about your small icon. In this case, you should
consider redesigning the small icon, making sure to incorporate the key
graphical elements of the original large icon.

In Figure 8-29 the small icons don’t match their corresponding 32-by-32
pixel versions. If you have difficulty distinguishing the consistencies or
inconsistencies, it’s a good idea to consult with someone who specializes in
graphic design to design or review your icons.

Figure 8-29 Inconsistently designed small icons

Default and Custom Icons 8

You can provide custom icons for your application and its associated
documents and files. If you don’t provide custom icons, the Finder displays
default icons in most cases. There are no default icons provided for
preferences files or control panels, so you must provide icons for these.

Since there are so many icons that users see and deal with, it’s important to
create consistent sets of icons. Users should be able to easily identify and
locate the icons they’re looking for, which is more possible if related icons
look related. Each icon family consists of the same icon in two sizes and three
bit depths. Each type of icon family needs to look like a class of objects. For
example, all document-related icons should look like documents. The entire
group of icons that belongs to your product, called a suite of icons, should
have a common appearance that identifies all the icons as being related to
your product.

Small icons look

different from

large icons.

C H A P T E R 8

Icons

246 Default and Custom Icons

Application Icons 8
Because applications are usually used to create documents, the application
icon uses a tilted document page to represent the documents the application
creates. In this way, a relationship is established. The hand is also part of the
default application icon. Figure 8-30 shows the default icon that appears in
the Finder if you don’t supply a custom icon for your application.

Figure 8-30 Default application icons

Although it’s best to be consistent, if you must design an icon different
from the default shape, be sure to use one of the standard application icon
elements, either the page or the hand, in your icon. Figure 8-31 shows
two custom application icons that use both the tilted document page and
the hand elements.

Figure 8-31 Custom application icons

You can customize the application icon by adding graphics to it. Use graphics
that convey meaning about what your application does. If you can’t think
of elements that represent the overall function of your application, it’s OK
to use your company identification. However, using your logo is limiting
because your company will probably make more than one application in
its lifetime and you will want a distinct icon for each one.

Don’t design an application icon that is completely unrelated to the basic
shape of the application icon. People won’t get the benefit of visual clues
that help them identify your icon as an application. Figure 8-32 shows two
examples of application icons that totally violate the guidelines presented
here. They don’t give the user much information about what they do,
although they might be fun to look at.

1-bit versions 4-bit versions 8-bit versions

Pencil&Paper WaveWriter

C H A P T E R 8

Icons

Default and Custom Icons 247

8
Icons

Figure 8-32 Examples of bad application icons

Document Icons 8
Documents are the files in which users store the content they create in
an application. The document icon uses the outline of a page with a
turned-down upper-right corner. This shape evokes the concept that
a document is like a piece of paper, a typical storage medium for information
in an office. Figure 8-33 shows the default document icons that appear in
the Finder if you don’t supply a custom icon for your documents.

Figure 8-33 Default document icons

You can customize this document page icon so that it relates to your
application icon by adding the same graphics you use in your application
icon. Or you can add graphics to the document page that indicate the content
that your documents hold. Figure 8-34 shows the relationship between an
application icon and its document icon.

Figure 8-34 Application icon and document icon with the same graphic element

As with the application icon, it’s OK to use your company identification in a
document icon. Be sure not to change the shape of the document icon unless
the document that your application creates is fundamentally different from
most documents. One example of a document that is fundamentally different
is a stack. The stack icon is a metaphor that represents a stack of cards,
similar to a stack of index cards that you might use to store notes or
related information.

John’s Accounting FlowerWorks

1-bit versions 4-bit versions 8-bit versions

C H A P T E R 8

Icons

248 Default and Custom Icons

Figure 8-35 shows some examples of custom document icons that show the
range of acceptable and unacceptable customizations.

Figure 8-35 Acceptable and unacceptable custom document icons

Several conventions exist for conveying document types. You can use these
visual clues or others that have meaning for your documents’ contents.
Documents that are text-only or primarily text use broken lines on the
document page. Page layout documents typically include a filled rectangle
and broken lines to indicate that the document contains text and pictures.
Graphics document icons use geometric shapes or other graphics or graphics
tools such as paintbrushes. The standard representation for a file of type
‘PICT’ is a circle, a square, and a triangle. Use this symbol to indicate files of
this type. Figure 8-36 shows document icons with all of these symbols.

Figure 8-36 Document icons with standard symbols

Stationery Pad Icons 8
A stationery pad is a template with standard contents that the user can create
from a document. Each time a user opens a stationery pad, a new document
is opened with the same contents as the stationery pad. The stationery pad
icon uses the outline of a page, similar to the document icon, but with the
lower-right corner turned up and a second page visible in the background.

Default Your content Your logo Nonstandard shape

Text only Page layout PICT format

C H A P T E R 8

Icons

Default and Custom Icons 249

8
Icons

Figure 8-37 shows the default icons that appear in the Finder if you don’t
supply a custom icon for stationery pads.

Figure 8-37 Default stationery pad icons

You can customize a stationery pad icon by adding graphic elements to the
stationery document page. Your stationery pad icon should look just like your
document icon except that it has the second page in the background and the
lower-right corner of the first page turned up.

Query Document Icons 8
Query documents are documents that contain instructions used to get data
out of or into a database. The query document icon uses the outline of a
document page with a database element attached to its lower right.
Figure 8-38 shows the default icons that appear in the Finder if you
don’t supply a custom icon.

Figure 8-38 Default query document icons

You can customize a query document icon by adding graphics to the
document page. Be sure to maintain the outline of the icon and the volume
symbol that represents the database. See Inside Macintosh: Interapplication
Communication for information on using the Data Access Manager.

1-bit versions 4-bit versions 8-bit versions

1-bit versions 4-bit versions 8-bit versions

C H A P T E R 8

Icons

250 Default and Custom Icons

Edition Icons 8
An edition is a file that is created when a user chooses Create Publisher from
the Edit menu. The edition icon has a rectangular outline in a horizontal
orientation. Figure 8-39 shows the default icons that appear in the Finder if
you don’t supply a custom icon for editions.

Figure 8-39 Default edition icons

You can customize an edition icon by putting a different graphic inside the
rectangle. Maintain the horizontal orientation and the double-dotted line of
the icon that identify it as an edition icon. See Inside Macintosh: Interapplication
Communication for information on the Edition Manager human interface and
implementing the Edition Manager.

Preferences Icons 8
Many applications have preferences files that store information about a user’s
preferences. If you supply this file or create one after the user stores settings
for your application or documents, you’ll need to create an icon for it.
Preferences files icons often contain document icons with radio buttons,
as shown in Figure 8-40.

Figure 8-40 Preferences file icons

Extension Icons 8
Extensions are software that add a feature or capability to the operating
system. An extension icon looks like a puzzle piece. Figure 8-41 shows the
default icons that appear in the Finder if you don’t supply a custom icon for
your extension.

1-bit versions 4-bit versions 8-bit versions

C H A P T E R 8

Icons

Default and Custom Icons 251

8
Icons

Figure 8-41 Default extension icons

You can customize an extension icon by adding a graphic to the puzzle piece.
You can display the puzzle piece in a horizontal or a vertical orientation with
the protruding part facing any direction.

One exception to the standard form for extension icons are icons that
represent Chooser extensions. Chooser extensions appear in the Chooser
and provide people with a visual idea of the service they are choosing.
Chooser extension icons should look as much as possible like the devices they
represent. Some examples of Chooser icons are shown in Figure 8-42.

Figure 8-42 Examples of Chooser icons

Control Panel Icons 8
The control panel icon is a square with a slider on it to identify it. The slider
also appears on the Control Panels folder. You can add a graphic to the square
to customize the icon. You can display the slider in either a horizontal or
a vertical orientation. Figure 8-43 shows the icon family for the Color
control panel.

Figure 8-43 Icons for the Color control panel

1-bit versions 4-bit versions 8-bit versions

Personal

LaserWriter

LaserWriter ImageWriter StyleWriter

1-bit versions 4-bit versions 8-bit versions

C H A P T E R 8

Icons

252 Default and Custom Icons

Movable Resource Icons 8
The Finder displays default icons for fonts, keyboard layouts, and sounds,
also known as movable resources. The icon looks like a document icon
reversed in orientation. The user installs these resources by dragging the icon
to the System Folder icon. The user can remove a movable resource by
opening the System file icon (or Font Folder icon) in the System Folder and
dragging its icon out of the System file. TrueType fonts have a character in
three sizes on the icon, whereas bitmapped fonts only have a single character.
When a user opens a font icon, the Finder displays a window with a sample
of the font in it. Figure 8-44 shows some font icons.

Figure 8-44 Font icons

Sound icons have a speaker symbol on them, as shown in Figure 8-45. When a
user opens the sound icon, the sound plays.

Figure 8-45 A sound icon

Keyboard Icons 8
A keyboard icon represents a localized keyboard layout or input method.
If you develop keyboards, input methods, script systems, or keyboard
resources, you need to provide icons. (Keyboard icons appear in the Keyboard
menu and in the Keyboard control panel.) You need to create a 16-by-16 pixel
icon in 1-bit and 4-bit color. If you don’t create a keyboard icon, then the
system provides a default icon. Figure 8-46 shows the default keyboard layout
icon and the default input method icon.

Bitmapped font TrueType font

Sound

C H A P T E R 8

Icons

Default and Custom Icons 253

8
Icons

Figure 8-46 The default keyboard layout and input method icons

Keyboard icons are a special case of icons. Since they represent a specific type
of software they follow design rules different from those for other icons users
see on the desktop. The guidelines presented in this section apply only to
keyboard icons.

For a keyboard icon, use a solid symbol to represent a keyboard layout for
a region that is larger or smaller than an area that can be represented by
the flag of a country or province. For example, a diamond represents the
Roman Script System, which is used in the United States, Central America,
South America, Australia, New Zealand, and most of Europe. Use the flag of a
country or province if the keyboard layout is used primarily in that area. For
example, the Union Jack represents the keyboard layout localized for use in
the United Kingdom. Be sure to use the colors that appear on the nation’s flag.
Figure 8-47 shows some keyboard icons for script systems and localized
keyboard layouts.

Figure 8-47 Examples of keyboard icons

Default input

method icon

Default keyboard

layout icon

Arabic

Greece

Portugal

Traditional Chinese

Turkey

Russia

Thai

Japanese input method

Germany

Finland

Korean

Great Britain

United States

Hungarian (Magyar)

Hebrew

Roman

C H A P T E R 8

Icons

254 Default and Custom Icons

You can also add a visual indicator to the keyboard icon to show some
modification. Use a superscript diamond to indicate a QWERTY
transliteration, which is a mapping of sounds from a language to the
Roman keyboard layout. Figure 8-48 shows some flag symbols with
additional indicators.

Figure 8-48 Examples of modification indicators on keyboard icons

When you design the black-and-white version of a flag icon, use black and a
50 percent gray pattern. These choices provide the best contrast and legibility.
To avoid confusion between flags of similar design, use the pattern
substitutions for colors shown in Table 8-2.

Table 8-2 Pattern substitutions for colors in keyboard icons

Belgium, period decimal separator

Belgium, comma decimal separator

Swiss French

Swiss German

Swiss Italian

Portugal, U.S. modified

Turkey, U.S. modified

U.S. - System 6

Arabic transliterated

Hungarian (Magyar), U.S. modified

Black

50 percent gray

25 percent gray

Diagonal stripes

White

Black or blue

Red

Light blue

Green

White or yellow

Color Pattern

C H A P T E R 8

Icons

Default and Custom Icons 255

8
Icons

Figure 8-49 shows some keyboard icons that use the correct pattern
substitutions.

Figure 8-49 Enlarged keyboard icons with correct color substitutions

See the section “The Keyboard Menu” beginning on page 125 in Chapter 4,
“Menus,” and Inside Macintosh: Text for information on the Keyboard menu.
See the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials for more information about displaying custom icons. That chapter
also provides information on how to use the bundle resource to associate
these icons with your application.

Portugal Russia

France Great Britain

257

C H A P T E R 9

9

Color 9Figure 9-0
Listing 9-0
Table 9-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 9

Color

258

Color Design of Standard Interface Elements

This chapter presents information on how to use color in the Macintosh
interface as well as in applications that deal with color. Apple’s goal in adding
color to the interface is to enhance meaning, not just to color things to
improve aesthetics. If used carefully, color can be a valuable additional
channel of information to the user.

Ultimately, color is the domain of the user. The user should control color in
most cases, modifying or removing any color scheme that your application
uses as a default. To implement color successfully in an application, you need
to understand some of the complex issues surrounding its use. There are
many books available on the use of color. This chapter covers the basic
issues of color that relate to its implementation in the Macintosh interface
and applications.

Color Design of Standard Interface Elements 9

This section describes the use of color with standard Macintosh interface
elements and provides recommendations about how your application can fit
in with the color scheme of system software.

The appearance of the Macintosh interface elements is enhanced by the color
capabilities of the Macintosh. Color distinguishes the active window from
other windows and enhances user controls on the window frame. Color in the
interface should help users focus their attention on their work not draw
attention to the interface itself. In general, the use of color makes the interface
more visually pleasing.

Windows and Dialog Boxes 9

The windows and dialog boxes in System 7 are designed for aesthetic
consistency across all monitors from black-and-white displays to 8-bit color
displays. For display on color monitors, color and shades of gray have been
added to the frames of windows and to user controls. The window
background remains white on all systems. This updated design takes
advantage of the color capabilities of the Macintosh but maintains the
consistency of the Macintosh interface. On color screens, the racing stripes in
the title bar and the scroll bars are gray. The user controls—close box, size
box, zoom box, and scroll box—are colored to make them more apparent. The
borders of inactive windows are gray and recede into the background so that
the active window’s black frame emphasizes its position in front of the other
windows. Figure 9-1 shows a colorized window.

Use
r C

ontro
l

Aes
th

et
ic

In
te

grit
y

C H A P T E R 9

Color

Color Design of Standard Interface Elements

259

9

C
olor

Figure 9-1

A colorized window

Figure 9-2 shows a dialog box with a colored frame, but black radio buttons
and text.

Figure 9-2

A colorized movable modal dialog box

The standard window definition functions display color windows and dialog
boxes. Some control definition functions display in color the window’s scroll
bars, scroll arrows, scroll box, close box, size box, and zoom box. If you use
the standard window definition functions and standard control definition
functions, your application’s windows will match the appearance of standard
windows. If you create your own windows, be compatible with the desktop
appearance by using the standard window color table and the guidelines
described in this section. Be aware that users can change the colors of
windows and dialog boxes by using the Color control panel. If you use the
default window color table, you can be sure that the colors you use are
consistent with any color that the user has access to with the Color control
panel. You can use the Palette Manager to associate a color palette with a
window definition. For more information, see the discussion of the Palette
Manager in

Inside Macintosh

.

Consis
te

ncy

C H A P T E R 9

Color

260

Color Design of Standard Interface Elements

Menus 9

In general, the only use of color in your application’s menus should be in
menus used to choose colors. However, color could also be useful for
directing the user’s choices in training and tutorial materials: for example,
one color could lead a user through a lesson.

For display on color screens, use true gray wherever you previously used a
50 percent gray pattern. Use true gray in menus for the dotted separator lines
between groups of items and for dimmed menu items.

Pointers 9

The pointer should always be visible. When it’s being used for selecting
and choosing, it should remain black. A color pointer might not be visible
over different colored backgrounds and doesn’t give the user any extra
information. However, when the user is drawing or typing in color, the
drawing or text-insertion pointer can appear in the color that is being used.
Except for multicolored paintbrush pointers, the pointer shouldn’t contain
more than one color at once since it’s hard for the eye to distinguish small
areas of color. Whether the point is black or colored, make sure the point can
be seen when it’s placed on a background of a similar color. This can be
accomplished by changing the color of the pointer (to contrast it with
the background) or by outlining the pointer with a contrasting color (one
pixel wide).

Highlighting and Selection 9

Most things—menu items, icons, buttons, and so forth—should be
highlighted when selected by reversing the background with the bits. On
black-and-white screens, highlighting means turning white to black and black
to white. For example, if the item is black on a white background, it should be
highlighted to white on a black background. On color screens, highlighting
works differently; colors are darkened when selected, not reversed. For
example, if an item appears green on the screen, the green color becomes
darker when the item is selected. If the user can set different colors of text,
Color TextEdit allows the user to set the highlighting bar color to something
other than black to highlight the text better. The user can change the setting;
your application should never change it. The default for the highlight color is
always black.

C H A P T E R 9

Color

Color Application Guidelines

261

9

C
olor

Color Application Guidelines 9

This section describes the use of color in your application. It provides
recommendations about how you can use color effectively.

The first task you should complete in creating a color design for your
application is to study your users. If you are designing an application that
allows users to assign colors to data or that is used to create color graphics,
try looking at how people are already using color in their work. You might
consider visiting some graphic artists if you are creating a graphic design tool.
Look at the types of tools they have and how they organize the tools. See if
you can construct your tool palettes and color palettes in a way that matches
how people use their color tools such as colored pencils or paint sets.

When designing interfaces to provide color in your application, avoid using
the engineer or hardware model of color. Ideally, you want to translate what
you know into what your users expect. Although it’s essential for you to
understand how the computer produces color so that you can deal with the
implications of it, your users operate under a very different model. Most users
won’t understand hue, saturation, and brightness values in terms of numbers.
However, they will understand a tool that provides ranges of color expressing
hue, saturation, and brightness. Think about how users can understand color,
rather than accurately representing the computer’s model of color.

Match Complexity to the Level of User 9

Think about the range of users that your application will be addressing. If you
will have novice users and expert users, you need to construct tools that are
easy for novice users to understand, but that don’t limit your expert users
from using their knowledge and skills. For example, you might provide
several sets of colors, which can each appear in turn in a palette, that novice
users can set and then choose from. In addition, you can build in a way for
expert users to create their own sets of colors, including the ability to mix
custom colors. This design lets your novice users focus on the simplicity and
clarity of your application

and

 gives your expert users access to the advanced
tools you provide.

Kno
wled

ge
 of

 A
ud

ien
ce

C H A P T E R 9

Color

262

Color Application Guidelines

Figure 9-3 shows a color palette that novice users can easily use and a color
mixing tool that requires more understanding of the interface and the topic.

Figure 9-3

Color palette and custom color mixing tool

Design for the Macintosh 9

When your application uses standard elements or you design custom
elements, these elements need to fit into the Macintosh interface framework.
This means you should follow the Macintosh design guidelines and not
imitate other vendors’ designs. The Macintosh has a light source at the
upper-left corner of the screen and a two-dimensional appearance. Your
designs must be compatible with black-and-white designs, since that is
the basis for the Macintosh interface and many users have only
black-and-white displays.

Color palette

Custom color mixing tool

Consis
te

ncy

C H A P T E R 9

Color

Color Application Guidelines

263

9

C
olor

Design for Black and White First 9

Always design for black and white first and then colorize that design. This
method ensures that your design looks good on all Macintosh computers.
One example of why this is important is the text selection mechanism. On a
color monitor you might be tempted to change the color of text to indicate
that it has been selected; however, this technique wouldn’t translate to a
black-and-white monitor. In addition, people with color-deficient vision
wouldn’t recognize the use of color to indicate selection. Therefore, you
shouldn’t use color as the only means of communicating important
information. Color should be used redundantly. It shouldn’t be the only thing
that distinguishes two objects; there should be other cues, such as text labels,
shape, location, pattern, or sound.

Figure 9-4 shows the correct process of designing for black-and-white
monitors and then adding color to those designs. It demonstrates the
consistency of the appearance of the icons and how the aesthetic integrity
is maintained across the designs.

Figure 9-4

 Design for black-and-white monitors first

Keep black-and-white designs two-dimensional. It’s important to maintain
the visual consistency of the Macintosh interface across applications and
computer systems. Don’t cause unnecessary visual clutter by trying to mimic
color effects, such as shadows, in black-and-white designs. Figure 9-5
shows what can happen to black-and-white icons when you try to mimic
color effects.

Figure 9-5

Don’t mimic color effects in black-and-white designs

Aes
th

et
ic

In
te

grit
y

C H A P T E R 9

Color

264

Color Application Guidelines

Maintain a close visual relationship between a black-and-white design and its
colorized version. Users should be able to easily recognize standard interface
elements and icons across all monitor types. Users can have several monitors
connected to a computer and several computers on which they use your
applications. Your application should look consistent when a user changes the
bit depth of a monitor or moves your icon or window from a color monitor to
a black-and-white monitor.

Limit the Number of Colors 9

In order to maintain consistency with the Macintosh interface, use as few
colors as possible in your designs. The fewer colors you use, the less flashing
occurs when the screen’s color table is updated during screen redrawing.
The color table contains the colors currently available for display on the
screen. Using fewer colors also results in less visual clutter on the screen.
Figure 9-6 shows an example of a palette with a limited number of colors used
for art design. If you use a graphics application to do design work, make sure
that the colors you use are available in the default color tables in system
software. For more information, see the discussion of the Palette Manager in

Inside Macintosh

.

Figure 9-6

A limited palette of colors

Consis
te

ncy

Blue greenBlue steelBlue light Blue turquoise

Red light Sand Brown darkBrown

Green darkGreen light Purple light Purple

Cool palette

Warm palette

Gold Gold dark Brown tanOrange dark

C H A P T E R 9

Color

Color Application Guidelines

265

9

C
olor

Colors on Gray 9

Colors look best against a background of neutral gray. Colors within your
application will stand out more if the background and surrounding areas are
gray or black and white.

Beware of Blue 9

The color that is most difficult to distinguish is light blue, which should be
avoided for text, thin lines, and small shapes. Adjacent colors that differ only
in the amount of blue should also be avoided. However, for things that you
want to make unobtrusive, such as grid lines, blue is the perfect color.

Small Objects 9

People cannot easily distinguish colors in small areas. In order for people to
be able to tell what color an object is, that object must be large enough for
them to see without effort. If more than one color is used in a small object, the
differences must be obvious, not subtle, especially if the different colors are
conveying significant information.

Color for Categorizing Information 9

If you use color to code categories of information in your application, try
to limit the use of color elsewhere in the application. Using color to code
categories—for example, to label or distinguish groups of items—can make
information clear. Providing the user with a small initial selection of distinct
colors—for example, from four to seven—and with the capability to change
those colors or add more is the best solution.

267

C H A P T E R 1 0

10

Behaviors 10Figure 10-0
Listing 10-0
Table 10-0

clear
=

/ *

8
7

9
-

+
6

5
4

1
2

3

.

0

enter

home

help

page

up

end

page

down

ins

num

lock

idel

x

esc

F1
F2

F3
F4

F5
F6

F7
F8

F9
F10

F11
F12

F13
F14

F15
print

screen

scrool

backm

pause nun

lock

caps

lock

scroll

lock

delete

return

shift

option
control

alt

=

]
\

|
}

[
{

'
"

;
:

/
?

����

+

=
+

-
_

0
)

9
(

8
*

=
+

=
+

=
+

=
+

=
+

=
+

=
+

P
O

I
U

Y
T

R
E

W
Q

tab

L
K

J
H

G
F

D
S

A

caps

lock

.
>

,
<

M
N

B
V

C
Z

shift

option
alt

����

control

����
X

Thi d t t d ith F M k 4 0 4

C H A P T E R 1 0

Behaviors

268

The Pointing Device

This chapter describes the aspects of the Macintosh interface that are essential
to its “feel.” It covers the interaction between the user and the computer,
detailing how the computer should respond. This chapter contains
information about the mouse and the pointer, the keyboard, and the behavior
of different types of objects such as text, graphics, and arrays. It discusses the
behaviors associated with the primary user input devices—the mouse and
keyboard. It also describes responses generated by your application, such as
selection behavior and keyboard navigation through lists.

The Pointing Device 10

In some computer systems, the keyboard is the primary input device. People
type in commands and the computer responds with typed responses or
prompts. In the Macintosh interface, the pointing device is central to the
user’s input. A pointing device makes possible the direct manipulation that is
an important aspect of the interface. The user communicates with the
computer by manipulating graphic objects on the screen. The user can grab
(or seem to grab) an object, then indicate what is to be done with it. The user
accomplishes this interaction with the pointing device.

In the Macintosh interface the standard pointing device is the mouse. There
are other pointing devices, such as trackballs and stylus pens, that perform
the same functions. Figure 10-1 shows several different pointer devices.

Figure 10-1

Different pointing devices

Dire
ct

 M
an

ip
ulat

io
n

C H A P T E R 1 0

Behaviors

The Pointing Device

269

10

B
ehaviors

The mouse is a hand-held device, usually (but not necessarily) connected to
the computer by a long, flexible cable. There’s a single button on the mouse.
The user holds the mouse and rolls it on a flat, smooth surface. On the screen,
a

pointer,

 which can assume different shapes according to the context of the
application, follows the motion of the mouse.

Simply moving the mouse (without pressing the mouse button) just moves
the pointer. Most actions take place only when the user positions the pointer
over an object on the screen, then presses and releases the mouse button.

Traditional character-oriented command-line interfaces rely on a

cursor

 to
indicate the place on the display where the next character that is typed will
appear. The user uses arrow keys (sometimes called

cursor keys

) to move the
cursor around the screen. Because there is nothing else to point at, no pointer
is needed.

In the Macintosh interface, there may be many graphic objects on the screen,
unrelated to the text insertion point. Thus there are lots of objects to point at
and a pointer is necessary in the interface. The screen pointer is logically
attached to the mouse or other pointing device. The user manipulates the
pointer to show your application what to do next and where to do it. The
place where the next characters to be typed will appear is indicated by an

insertion point.

 In text, the pointer shows where the insertion point will be
moved to if the user clicks at that location. Figure 10-2 shows the insertion
point and the pointer in a text document.

Figure 10-2

The insertion point and the pointer

Insertion point

Pointer

C H A P T E R 1 0

Behaviors

270

The Pointing Device

Each pointer has a

hot spot

—the portion of the pointer that must be
positioned over a screen object before mouse clicks can have an effect on
that object. The hot spot should be intuitive, such as the tip of an arrow
pointer or the center point of a crosshair pointer. Similarly, screen objects have
a

hot zone

—the area that the pointer’s hot spot must be within in order for
mouse clicks to have an effect.

As the pointer moves about the screen, it may change shape. For example, in
a text-oriented application, the pointer takes the I-beam shape while it’s over
the text, to show where the insertion point will move to if the mouse button is
pressed. When the pointer moves outside of the text, it becomes an arrow. In
general, the pointer should change shape

only

 to provide information to the
user. In other words, it shouldn’t change shape randomly. For example, the
pointer could change shape to give feedback on the range of activities that
make sense either in a particular area of the screen or in a current mode. If the
result of mouse actions depends on the item under the pointer when the user
presses the mouse button, the pointer could change shape depending on the
object. Where an application uses modes for different functions, the pointer
could be a different shape in each mode. Table 10-1 shows some examples of
pointers and their effects. You can create additional pointers as needed for
other contexts.

During a particularly lengthy operation, when the user can do nothing else
but wait until the operation is completed or switch to another application,
the pointer may change its shape and become a status or progress indicator.
This indicator lets the user know that the system hasn’t died—it’s just busy.
The standard pointer for this case is the wristwatch; however, if the operation
will take longer than a few seconds, your application should display an

Table 10-1

Pointers

 Pointer Name Used for

Arrow Scroll bar, other controls, size box, title bar, close
box, zoom box, menu bar, desktop

Crosshairs Drawing, shrinking, or stretching graphic objects

I-beam Selecting and inserting text

Plus sign Selecting fields in an array

Wristwatch Showing that a lengthy operation is in progress

Fee
dbac

k a
nd D

ial
og

C H A P T E R 1 0

Behaviors

Mouse Actions

271

10

B
ehaviors

indicator to show the user the estimated total time and the elapsing time
of the operation. These measurements can be shown in absolute terms, as
proportions of the total, or both. Figure 10-3 shows a status indicator from the
Finder that is implemented as a movable modal dialog box to indicate to
the user that he or she can switch to another application while waiting for the
operation to finish.

Figure 10-3

A status indicator

Mouse Actions 10

The basic mouse actions in the Macintosh interface are pointing, clicking,
double-clicking, pressing, and dragging.

In general, just moving the mouse changes nothing except the location, and
possibly the shape, of the pointer. Pressing the mouse button indicates the
intention to do something, and releasing the mouse button completes the
action. Pressing by itself should have no more effect than clicking has—except
in well-defined areas, such as scroll arrows, where it has the same effect as
repeated clicking. For example, if you click an icon in the Finder, you select
the icon and no more.

Clicking 10

Clicking has two components: pushing down on the mouse button and then
quickly releasing it while the mouse remains stationary. (If the mouse moves
between button down and button up, dragging—not clicking—is what
happens.) Some uses of clicking are to select an object, to move an insertion
point, to activate a button, and to turn on a control such as a checkbox. The
effect of clicking should be immediate and evident. If the function of the click
is to cause an action (such as clicking a button), the

selection is made

 when the
button is pressed, and the

action takes place

 when the button is released.

C H A P T E R 1 0

Behaviors

272

Mouse Actions

Figure 10-4 shows the action of clicking a button.

Figure 10-4

Clicking a button

Double-Clicking 10

Double-clicking involves a second click that follows immediately after the
first click. If the two clicks are close enough to one another in terms of time
(as set by the user in the Mouse control panel) and of screen location (usually
within one or two pixels), they constitute a double click.

The most common use of double-clicking is to provide a shortcut to other
actions. For example, clicking an icon twice is a faster way to open it than
clicking once to select it, then choosing Open from the File menu. Clicking a
word twice to select it is faster than dragging through it. Figure 10-5 shows
the effect of double-clicking a word in a text document.

Figure 10-5

Double-clicking to select a word

Double-clicking is a shortcut for those users who are physically able to
use it. Double-clicking must

never

 be the only way to perform a given action.
Many novice users, children, and people with certain physical disabilities
may have a hard time double-clicking.

C H A P T E R 1 0

Behaviors

Mouse Actions

273

10

B
ehaviors

Some applications support selection by double-clicking and triple-clicking.
The second click extends the effect of the first click, and the third click extends
the effect of the second click. For example, in a text-oriented application, the
first click sets an insertion point, the second click selects the whole word
containing the insertion point, and the third click might select the whole
sentence or paragraph. In a graphics application, the first click might select a
single object, and double and triple clicks might select successively larger sets
of objects.

Three clicks is probably the practical limit, and even that is difficult for many
people. If an application defines the effect of only single- and double-clicking,
a third click should have no effect. If triple-clicking is defined, then the fourth
click should have no effect.

Pressing 10

Pressing means holding down the mouse button for a time while the mouse
remains stationary. For example, pressing a menu title displays the menu
contents. For certain kinds of objects, pressing on the object has the same
effect as clicking it repeatedly. For example, clicking a scroll arrow causes a
document to scroll one line; pressing a scroll arrow causes the document to
scroll continuously until the user releases the mouse button or reaches the end
of the document. Figure 10-6 shows the effect of pressing the mouse button
while the pointer is on a scroll arrow.

Figure 10-6

Pressing a scroll arrow

C H A P T E R 1 0

Behaviors

274

Mouse Actions

Dragging 10

Dragging means pressing the mouse button, moving the mouse to a new
position, and then releasing the mouse button. Dragging can have different
effects depending on what’s under the pointer when the mouse button is
pressed. The uses of dragging include selecting blocks of text, choosing a
menu item, selecting a range of objects, moving an icon or other object from
one place to another, and shrinking or expanding an object.

Graphic objects can be moved by dragging. The application either moves the
entire object or attaches a dotted outline of the object to the pointer and
moves the outline as the user moves the pointer. When the user releases
the mouse button, the application redraws the complete object at the new
location. Figure 10-7 shows the process of moving an object by dragging.

Figure 10-7

Dragging to move an object

Your application can restrict an object from being moved past certain
boundaries, such as the edges of a window. If the user moves the pointer
outside the boundaries, the application stops drawing the dotted outline
of the object. If the user releases the mouse button while the pointer is outside
the boundaries, the object doesn’t move. However, if the user moves the
pointer back within the boundaries before releasing the mouse button,
the object appears in the new location. If the user moves the object beyond the
boundary of a window, your application can also scroll the document (using
automatic scrolling) or even move the object from one window to another.

1. Position pointer over icon

 to be dragged.

2. Press to select.

3. Drag outline to right.

4. Release button.

C H A P T E R 1 0

Behaviors

The Keyboard

275

10

B
ehaviors

The Keyboard 10

In the Macintosh interface the user points to and manipulates objects on the
screen with the pointing device. The user doesn’t have to enter commands
from the keyboard, which leaves entering text as the primary use for the
keyboard. The keyboard may also be used for navigation. (Keyboard
navigation methods are always shortcuts to navigating with the mouse; they
should never be the only method of navigation.)

There are two kinds of keys: character keys and modifier keys. A

character
key

 sends characters to the computer. When held down, a

modifier key

 can
alter the meaning of the character key being pressed, or alter or amplify the
meaning of a mouse action.

Character Keys 10

Character keys include keys for letters, numbers, and punctuation, as well as
the Space bar. If the user presses one of these keys while entering text, the
corresponding character is added to the text. Nonprinting characters such as
the Enter, Tab, Return, Delete (or Backspace), Clear, and Escape (Esc) keys are
also treated like character keys. Although the result of pressing one of these
keys depends on the application and the context, it is essential that your
application use them consistently, as described in the following paragraphs.

Enter 10

The Enter key tells the application that the user is through entering
information in a particular area of the document, such as a field in an array or
table. Most applications add information to a document as soon as the user
types or draws it. However, the application may need to wait until a whole
collection of information is available before processing it. In this case, the user
presses the Enter key to signal that the information is complete. The user can
press Enter (like Return) to dismiss dialog boxes and alert boxes, if there is a
default button. While the user is entering text into a

text

 document, pressing
Enter has no effect.

C H A P T E R 1 0

Behaviors

276

The Keyboard

Tab 10

In text-oriented applications, the Tab key is used to move the insertion point
to the next tab stop. In other contexts, Tab is a signal to proceed: it signals
movement to the next item in a sequence, as shown in Figure 10-8. Pressing
Tab often causes data to be entered before moving to the next item.

Figure 10-8

Using the Tab key to cycle through fields

Return 10

In text, the Return key inserts a carriage return at the current insertion point.
It moves the insertion point to the beginning of the next line, as shown in
Figure 10-9. In arrays, the Return key signals movement to the leftmost field
one step lower on the display (like a carriage return on a typewriter). Return
(like Tab) can cause data to be entered before moving down a step. The user
can press Return (like Enter) to dismiss dialog boxes and alert boxes, if there
is a default button.

1

2

3

C H A P T E R 1 0

Behaviors

The Keyboard

277

10

B
ehaviors

Figure 10-9

Using the Return key to move the insertion point

Delete (or Backspace) 10

The Delete (or Backspace) key deletes text or graphics. Generally, if a selection
has been made, pressing Delete removes the selection without putting it in the
Clipboard. If there is no selection, pressing Delete removes the character
preceding the insertion point without putting it in the Clipboard. The Delete
key has an effect like that of the Clear command in the Edit menu.

You can support the keyboard combination Option-Delete to delete the word
that contains the insertion point.

Note that the Delete key is different from the Forward Delete key (labeled
Del), which removes the character or selection following the insertion point.

Clear 10

The Clear key has the same effect as the Clear command in the Edit menu;
that is, it removes the selection from the document without putting it in the
Clipboard. Because not all Macintosh keyboards have Clear keys, no
application should ever

require

 use of the Clear key.

Escape 10

The Escape (Esc) key has the general meaning “let me out of here.” It’s a sort
of panic button for the user. In certain contexts its meaning is specific:

■

The user can press Escape as an alternate to clicking the Cancel button in a
dialog box.

■

The user can press Escape to stop an operation in progress, such as
printing. Using the Escape key in this way has the same effect as using the
keyboard equivalent Command-period.

Press Return.

Insertion point

moves here.

Forg
ive

nes
s

C H A P T E R 1 0

Behaviors

278

The Keyboard

If an application absolutely requires a series of dialog boxes, the user should
be able to use Escape to move backward through the boxes. However, you
should avoid getting into this situation for the reasons described in Chapter 6,
“Dialog Boxes,” in the section “Stacking Modal Dialog Boxes” on page 192.

Pressing Escape should never cause the user to back out of an operation
that would require extensive time or work to reenter. Also, pressing
Escape should never cause the user to lose valuable information. When
the user presses Escape during a lengthy operation, the application should
display a confirmation dialog box to be sure that Escape wasn’t pressed
accidentally. An example of a message you might post is shown in
Figure 10-10.

Figure 10-10

A sample confirmation dialog box for the Escape key

Modifier Keys 10

Modifier keys are those that alter the way other keystrokes are interpreted.
These keys sometimes affect the way the mouse-button actions are interpreted
as well. They are the Shift, Caps Lock, Option, Command, and Control keys.
Not all Macintosh keyboards contain all of these keys. It is important that you
use these keys consistently from application to application, as outlined in
these guidelines.

Shift 10

The Shift key, when held down at the same time a character key is pressed,
produces the uppercase letter on alphabetic keys, or the upper character on
two-character keys. The Shift key is also used in conjunction with the mouse
for extending a selection or for constraining movement in graphics
applications. For example, in some graphics applications holding down the
Shift key while using a rectangle tool limits the tool to drawing squares.

C H A P T E R 1 0

Behaviors

The Keyboard

279

10

B
ehaviors

Caps Lock 10

The Caps Lock key latches in the down position when pressed and releases
when pressed again. (On PowerBook computers this key is a soft switch, so it
doesn’t latch.) Note that the Caps Lock key operates for Roman languages
only; in other words, it works as described in this section for languages that
include uppercase and lowercase letters. When down, it gives the uppercase
letter on alphabetic keys. Caps Lock has the same effect on alphabetic keys
that the Shift key has, but Caps Lock has no effect on any other keys. In other
words, even when Caps Lock is down, the user must press the Shift key to
produce the upper characters (#, ?, and so on) on the nonalphabetic keys.

Option 10

The Option key, when used in combination with other keys, produces a
set of international characters and special symbols. For example, in many
Macintosh fonts, Option-4 produces the ¢ symbol, Option-R produces



,
and Option-G produces



. Shift and Option can be used together, in
combination with a character key, to produce yet other symbols. For example,
Option-Shift-? produces the Spanish ¿ character. The Key Caps desk accessory
lets the user preview these combinations in all available fonts.

The Option key can also be used in conjunction with the mouse to modify the
effect of a click or drag. For example, in some graphics applications, if the
user selects an object and holds down the Option key while dragging the
object, the application makes a copy of the object and moves it to wherever
the user releases the mouse button. This example is illustrated in Figure 10-11.

Figure 10-11

Using Option-drag to make a copy of an object

C H A P T E R 1 0

Behaviors

280

The Keyboard

Command 10

The Command key is labeled with a propeller (

x

) symbol and, on some
keyboards, an Apple symbol (

K

) as well. Pressing a character key while
holding down the Command key usually tells the application to interpret the
key as a command, not as a character. These combinations are called

keyboard
equivalents

, as described in Chapter 4, “Menus,” in the section “Keyboard
Equivalents” on page 128.

In some applications, the Command key is used with other keys to provide
special functions or shortcuts. For example, pressing Command-Shift-3 on a
Macintosh saves a snapshot of the current screen on disk. The Command key
can also be used in conjunction with the mouse to modify the effect of a click
or drag.

Control 10

The Control key is used with terminal-emulation programs for Control-key
sequences. For all other applications, it is reserved for shortcut key sequences
that the user defines using a macro-key facility.

Type-Ahead and Auto-Repeat 10

If the user types when the computer is unable to process the keystrokes
immediately or types more quickly than the computer can handle, the extra
keystrokes are queued for later processing. This queuing is called

type-ahead.

There’s a limit (varying with the computer) to the number of keystrokes that
can be queued, but this limit is usually not reached unless the user types
while the application is performing a lengthy operation.

When a character key is held down for a certain amount of time, it starts
repeating automatically. This feature is called

auto-repeat.

The user can set
the delay and the rate of repetition with the Keyboard control panel. An
application can tell whether a series of keystrokes was generated by
auto-repeat or by the same key being pressed several times. Your application
can choose to disregard keystrokes generated by auto-repeat; this is usually a
good idea for menu commands chosen with keyboard equivalents such as
Command–character key combinations. Be judicious in ignoring these
sequences because users can find them useful in certain situations.

In general, if the user holds down a modifier key, it has the same effect as if
the user presses it once. If the user holds down a modifier key

and

 a character
key at the same time, the effect is the same as if the user holds down the
modifier key while pressing the character key repeatedly.

Auto-repeat does not function during type-ahead. It operates only when the
application is ready to accept keyboard input.

C H A P T E R 1 0

Behaviors

The Keyboard

281

10
B

ehaviors

International Keyboards 10
Keyboard layouts used in the United States resemble those on standard U.S.
office typewriters. The layouts used outside the United States are designed to
conform to the International Standards Organization (ISO) standard. In
different countries, international keyboards have different labels on the keys,
but the overall layout is still based on the ISO standard.

Arrow Keys 10
Some Macintosh keyboards include four arrow keys: Up Arrow, Down Arrow,
Left Arrow, and Right Arrow. These keys are shown in Figure 10-12.

Figure 10-12 Arrow keys

Appropriate Uses for the Arrow Keys 10

As a general rule, arrow keys are used to move the insertion point and, when
used with the Shift key, to extend or shrink selections. The guidelines in this
section apply both to moving the insertion point and to making selections.
They are the minimum guidelines for arrow keys. You may expand these
guidelines if you need to, keeping in mind their spirit.

Arrow keys are never used to duplicate the function of the scroll bars or to
move the mouse pointer. They may be used as a shortcut to move the
insertion point and, under some circumstances, to make selections.

An application should use the arrow keys only when appropriate to the task.
Applications that deal with text or arrays, such as word processors,
spreadsheets, and databases, have an insertion point. This insertion point
could be moved both by the mouse and by the arrow keys.

If the user makes a selection and then presses the Right Arrow or Left Arrow
key, your application should shrink the selection to zero length and place the
insertion point at the right or left edge of the selection. This action doesn’t
move the location of the selection.

*

num

lock

caps

lock

scroll

lock

`
~

Arrow keys

1
!

2
@

3
#

4
$

5
%

6
^

7
&

8
*

9
(

0
)

-
_

=
+

\
|

]
}

delete

[
{

POIUYTREWQtab

caps

lock A S FD HG KJ

shift Z

option

alt

control

CX BV MN .
>

,
<

;
:

L

/
?

'
"

return

shift

option control

alt

homehelp

ins

page

up

end
page

down

idel

x

clear =
num

lock

/ *

87 9 -

+654

1 2 3

.0 enter

F13 F14 F15

print

screen

scroll

lock

pause

F9 F10 F11 F12F5 F6 F7 F8

undo

F2 F3 F4esc F1

cut copy paste

C H A P T E R 1 0

Behaviors

282 The Keyboard

In a graphics application, the arrow keys can be used for fine movement of
selected objects, particularly since graphics applications typically have no
insertion point. If a graphics application uses arrow keys, it should be only to
move the selected object by the smallest possible increment (one pixel or one
grid unit). For example, the user could select an object and use the arrow keys
to move one pixel per keystroke in the direction of the arrow key pressed.
Generally, graphics applications shouldn’t use arrow keys to change a
selection or use modifier keys to multiply the effect of arrow keys. (Note that
the Finder uses arrow keys to change the selection.)

Moving the Insertion Point 10

The Left Arrow and Right Arrow keys move the insertion point one character
left and right respectively. Up Arrow and Down Arrow move the insertion
point up and down one line respectively.

During vertical movement of the insertion point, horizontal screen position is
maintained in terms of screen pixels, not characters. (Character boundaries
seldom line up vertically when proportional fonts are used.) When the
insertion point moves to a new line, move it slightly left or right, to the
nearest character boundary on the new line. During successive movements up
or down, the application should keep the insertion point as close as possible
to the original horizontal position as it moves from line to line.

Moving the Insertion Point in Empty Documents 10

Various text-editing programs treat empty documents in different ways. Some
assume that an empty document contains no characters, in which case
clicking at the bottom of a blank screen causes the insertion point to appear at
the top. In this situation, Down Arrow cannot move the insertion point into
the blank space because there are no characters there.

Other applications treat an empty document as a page of space characters, in
which case clicking at the bottom of a blank screen puts the insertion point
where the user has clicked and lets the user type characters there, overwriting
the spaces. In this sort of application, Down Arrow moves the insertion point
straight down through the spaces. Whichever of these methods you choose
for your application, it’s essential that you be consistent throughout.

Using Modifier Keys With Arrow Keys 10

In some cases it’s appropriate to use modifier keys such as Option and
Command to extend the action of moving the insertion point in a document.
This allows users to move the insertion point using keyboard combinations as
an alternative to the mouse. Keep in mind that these keyboard combinations
are only shortcuts for mouse actions. It is optional to extend these behaviors to
applications but it is never appropriate to implement only a keyboard shortcut
and not provide a mouse-based way to perform the same action.

C H A P T E R 1 0

Behaviors

The Keyboard 283

10
B

ehaviors

You can support using modifier keys with arrow keys to move the input
focus, extend a selection, or move objects. The most common uses of these
keyboard combinations are to extend selections and to move the insertion
point. The paragraphs that follow suggest typical uses for modifier key–arrow
key combinations.

The Option key and the Command key are both used as semantic modifiers
with the arrow keys. A semantic modifier changes the semantic unit that the
arrow keys affect. The application determines what the semantic units are. For
example, in word-processing applications, semantic units are characters,
words, lines, paragraphs, and documents. In general, the Option key
increases the size of the semantic unit by 1 compared to the arrow keys alone,
and the Command key enlarges the semantic unit again. Table 10-2 shows
how the Option key and Command key could change the effect of arrow keys
in a word-processing application.

If there aren’t any paragraphs or an additional paragraph marker after the
insertion point in the document, then Option–Down Arrow can’t move the
insertion point to its end. In this case, you should map Option–Down Arrow
to have the same action as Down Arrow. For example, if the insertion point is
already at the end of the document and the user presses Option–Down Arrow,
play the system beep to call the user’s attention to the position of the
insertion point.

In an application (such as a spreadsheet) that represents data in an array, the
basic semantic unit would be the cell. Option–Left Arrow (or Option–Right
Arrow) would designate the cell to the left (or right) of the currently active
cell as the new active cell. Using modifier keys with arrow keys doesn’t
change the data; Option–Left Arrow just causes the data to be entered and
moves the selection to the next cell to the left.

Though the use of multiple modifier-key combinations (such as
Command–Option–Left Arrow) is discouraged, it’s all right to use the
Shift key with any one of the other modifier keys for making a selection.
(See “Selecting With the Arrow Keys” on page 295 for more information.)
If multiple keys must be pressed simultaneously, they should be fairly close
together, otherwise, some people won’t be able to use that combination.

Table 10-2 How modifier keys change the movement of the insertion point with the
arrow keys

Arrow key alone With Option key With Command key or Shift key

Left Arrow Left one character Left one word To beginning of line

Right Arrow Right one character Right one word To end of line

Up Arrow Up one line To start of paragraph To top of window

Down Arrow Down one line To end of paragraph To bottom of window

C H A P T E R 1 0

Behaviors

284 The Keyboard

Note that for non-Roman script systems, Command–Left Arrow and
Command–Right Arrow are reserved for changing the direction of keyboard
input. Specifically, Command–Right Arrow changes the keyboard layout to
Roman and Command–Left Arrow changes the keyboard layout to the system
script. This capability is especially useful for bidirectional script systems such
as Arabic and Hebrew since it allows users to change the direction of
keyboard input. See Table 4-2 in Chapter 4, “Menus,” on page 128 for more
information. Also, Command–Shift–Left Arrow and Command–Shift–Right
Arrow move the insertion point to the beginning and end of the line,
respectively.

In all cases, if you can’t complete a user action for some reason, provide
feedback to indicate this. For example, you can flash the menu bar or play a
sound on the first instance of a user action that can’t be completed. You can
also display an alert box that describes the situation and gives suggestions to
the user about what can be done in the current context.

Function Keys 10
Some Macintosh keyboards include function keys. There are two types of
function keys, dedicated and nondedicated. The nondedicated function keys—
labeled F1 through F15—are definable by the user, not by the application. F1
through F4 represent Undo, Cut, Copy, and Paste in any applications that use
these commands.

The six dedicated function keys are labeled Help, Del, Home, End, Page Up,
and Page Down. These keys are shown in Figure 10-13.

Figure 10-13 The function keys

Fee
dbac

k a
nd D

ial
og

*

num

lock

caps

lock

scroll

lock

`
~

1
!

2
@

3
#

4
$

5
%

6
^

7
&

8
*

9
(

0
)

-
_

=
+

\
|

]
}

delete

[
{

POIUYTREWQtab

caps

lock A S FD HG KJ

shift Z

option

alt

control

CX BV MN .
>

,
<

;
:

L

/
?

'
"

return

shift

option control

alt

homehelp

ins

page

up

end
page

down

idel

x

clear =
num

lock

/ *

87 9 -

+654

1 2 3

.0 enter

F13 F14 F15

print

screen

scroll

lock

pause

F9 F10 F11 F12F5 F6 F7 F8

undo

F2 F3 F4esc F1

cut copy paste

Nondedicated

function keys

Dedicated

function keys

C H A P T E R 1 0

Behaviors

The Keyboard 285

10
B

ehaviors

Help 10

Pressing the Help key invokes any application help system that has been
installed. This is equivalent to pressing Command-? (or Command-/). The
sort of help available varies among applications. If a full contextual help
system is not available, some sort of useful help screen should be provided.

Forward Delete (Del) 10

In most script systems, pressing Forward Delete performs a forward delete:
the character following the insertion point is removed, shifting everything
following the removed character one character position back. The effect is that
the insertion point remains stable while it “vacuums” the character or
selection ahead of it.

You can support the keyboard combination Option–Forward Delete to
delete the next larger semantic unit as described in the section “Using
Modifier Keys With Arrow Keys” on page 282. Deleting more than one
word ahead of the insertion point at a time using the keyboard can make
users feel uncomfortable. Users prefer to select large amounts of text or
content in a document with the mouse so that they have more control over the
exact selection.

If Forward Delete is pressed when there is a current selection, it has the same
effect as pressing Delete (Backspace) or choosing Clear from the Edit menu.

Home 10

Pressing the Home key is equivalent to moving the scroll boxes all the way to
the top of the vertical scroll bar and to the left end of the horizontal scroll bar.
(Note that the Home key may operate differently in a spreadsheet application;
it won’t necessarily scroll horizontally and it may scroll to the beginning of a
row or to the beginning of the spreadsheet itself.) Pressing the Home key has no
effect on the location of the insertion point or any selected material.

End 10

Pressing End is the opposite of pressing Home: it’s equivalent to moving
the scroll boxes all the way to the bottom of the vertical scroll bar and to the
right end of the horizontal scroll bar. (Note that the End key may operate
differently in a spreadsheet application; it won’t necessarily scroll
horizontally and it may scroll to the end of a row or to the end of the
spreadsheet itself.) Pressing End has no effect on the location of the insertion point
or any selected material.

C H A P T E R 1 0

Behaviors

286 Selecting

Page Up 10

Pressing Page Up is equivalent to clicking the mouse in the upper gray region
of the vertical scroll bar. Pressing Page Up has no effect on the location of the
insertion point or any selected material.

Page Down 10

Pressing Page Down is equivalent to clicking the mouse in the lower gray
region of the vertical scroll bar. Pressing Page Down has no effect on the location
of the insertion point or any selected material.

Selecting 10

Before performing an operation on an object, the user must select it, usually
by clicking it, to distinguish it from other objects. Selecting the object to be
operated on before identifying the operation itself is a fundamental
characteristic of the Macintosh human interface. The pattern is usually
something like this:

1. The user selects an object (a noun, a thing to be operated on).

2. The user chooses an operation (a verb, the thing to be done).

This is often called the “noun-verb paradigm.”

There is always a visual clue to show that something has been selected. For
example, text and icons in a black-and-white environment usually appear in
inverse video when selected. In color environments, icons appear darker and
text is highlighted with the color the user set in the Color control panel. In
some situations, other forms of highlighting may be more appropriate. The
important thing is that there should always be immediate feedback, so the
user knows that the click had an effect.

Selecting an object never alters the object itself. Making a selection shouldn’t
commit the user to anything; there should never be a penalty for making an
incorrect selection. The user can undo any selection by making any other
selection or clicking outside the selection.

How something is selected depends on what it is. Although there are many
ways to select objects, the selection methods fall into easily recognizable
groups. Users get used to selecting objects in certain ways, and applications
that use these methods are easier to learn. Some of these methods apply to
every type of application, and some to only particular types of applications.

See
 an

d P
oin

t

Forg
ive

nes
s

C H A P T E R 1 0

Behaviors

Selecting 287

10
B

ehaviors

It’s useful to distinguish among three types of objects—text, lists or arrays,
and graphics—because the user deals with each of them in a different way
when selecting them. Figure 10-14 shows an example of each.

Figure 10-14 Three ways of selecting information

Each of these three ways of presenting information retains its integrity
regardless of the context in which it appears. For example, a field in an array
can contain text. When the user is manipulating the field as a whole, the field
is treated as part of the array. When the user wants to change the contents of
the field, he or she edits the field in the same way as any other text.

Text can be arranged on the screen in a variety of ways. Some applications,
such as word processors, might consist of nothing but text, whereas others,
such as graphics-oriented applications, might use text almost incidentally.

Text

Array

Graphics

C H A P T E R 1 0

Behaviors

288 Selecting

It’s useful to consider all the text appearing together in a particular context as
a block of text. The size of the block can range from a single field, as in a
dialog box, to the whole document, as in a word processor. Regardless of
its size or arrangement, the application sees each block as a one-dimensional
string of characters. Text is edited the same way regardless of where
it appears.

Arrays are tabular arrangements of fields. One-dimensional arrays are called
lists, and two-dimensional arrays are called forms or tables. Each field contains
a collection of information, usually text and possibly graphics. A table can be
easily identified on the screen as it consists of rows and columns of fields
(sometimes called cells) separated by horizontal and vertical lines. (Tables are
often implemented in spreadsheet applications.) A form is something the user
fills out, such as a tax form or credit-card application. Although the fields in a
form can be arranged in any appropriate way, your application always
considers these fields as being in a well-defined linear order.

Graphics are pictures, drawn either by the user or by the application.
Graphics in a document tend to consist of discrete objects, each of which can
be selected individually.

The sections that follow discuss the general methods of selecting and the
specific methods that apply to text applications, graphics applications,
and arrays.

Selection Methods 10
This section describes various selection techniques: selection by clicking,
selection by dragging, extending a selection, and discontinuous selection.
Figure 10-15 shows some of the methods.

Figure 10-15 Selection techniques

Clicking B selects B.

Range selection of A through

C selects A, B, and C.

Discontinuous selection.

(Range selection of A, B, and

C is extended to include E.)

C H A P T E R 1 0

Behaviors

Selecting 289

10
B

ehaviors

Selection by Clicking 10

The most straightforward method of selecting an object is by clicking it once.
Icons and most other things that can be selected are selected in this way. The
user positions the pointer over the desired object, then presses and releases
the mouse button.

Selection by Dragging 10

The user selects a range of objects by dragging through them. Although the
exact meaning of the selection depends on the type of application, the
procedure is always the same:

1. The user positions the pointer at one corner of the range and presses the
mouse button. This position is called the anchor point of the range.

2. Without releasing the mouse button, the user moves the pointer in any
direction. As the pointer is moved, visual feedback indicates the objects
that would be selected if the mouse button were released. For text and
arrays, the selected area is continuously highlighted. For graphics, a dotted
rectangle expands or contracts to show the range that will be selected. If
appropriate, the view should scroll to allow extending the selection beyond
one window.

3. When visual feedback shows the desired range, the user releases the mouse
button. The point at which the button is released is called the active end of
the range.

Changing a Selection With Shift-Click 10

A user can extend a selection by holding down the Shift key and clicking the
mouse button. This action is called Shift-clicking. Exactly what happens next
depends on the context.

In text or an array, the result of the Shift-click is always the selection of a
range. The position where the button is clicked becomes the new endpoint of
the range. If the user Shift-clicks within the current range, the new range will
be smaller than the old range. Usually, if the user then Shift-clicks in another
location, the additional data is included in the selection. In arrays, however, a
different paradigm can be implemented in which the selection always moves
from the current cell to wherever the user Shift-clicks, changing rather than
extending the selection. This model works only in applications such as arrays,
where the current cell is highlighted and the user can always see the active
cell. In this case, the user always knows the fixed point from which the
selection will start.

C H A P T E R 1 0

Behaviors

290 Selecting

Extended selections can be made, even across the panes of a split window.
Figure 10-16 shows the effect of extending and shrinking a range of text using
Shift-click.

Figure 10-16 Expanding and shrinking a text selection

There are two methods for extending a continuous selection using Shift-click:
the addition method and the fixed-point method. The addition method
is based on adding new text to a current selection. The fixed-point method
establishes a fixed location for the insertion point and allows the user to
extend the selection on either side of the fixed point. Figure 10-16 illustrates
the results of three consecutive steps in both the addition method and the
fixed-point method.

Figure 10-17 Extending text selections using the addition and fixed-point methods

The selection

2. The selection expands.

3. Shift-click here.

1. Shift-click here.

4. The selection shrinks.

Setting insertion

point

Extending selection

to the right

Extending selection

to the left

Addition

model

Fixed Point

model

C H A P T E R 1 0

Behaviors

Selecting 291

10
B

ehaviors

When considering which method to use in your application, keep in mind
that the addition method provides more flexibility by allowing users to
extend a selection in both directions rather than in only one direction, as in the
fixed-point method. The addition method also provides greater consistency in
terms of extending a selection; the fixed-point method can actually end up
shrinking a selection rather than extending it, as shown in Figure 10-16. In
both methods, if the user positions the insertion point within a selection and
Shift-clicks, the selection is shortened from the right side of the selection to
the location of the insertion point.

In graphics applications, objects aren’t usually considered to be in any
particular sequence. A selection is extended by adding objects to it, and the
added objects do not have to be adjacent to the objects already selected. The
user can add either an individual object or a range of objects to the selection
by holding down the Shift key before making the additional selection
(Shift-click). When the user does this, the objects between the current selection
and the new object are not automatically included in the selection. This kind
of selection is called discontinuous selection. If the user holds down the
Shift key and selects one or more objects that are already highlighted,
the objects are removed from the selection or are deselected. For more
information about discontinuous selections, see Inside Macintosh: Text.

Changing a Selection With Command-Click 10

In the case of graphics, all selections are discontinuous selections because
graphic objects are discrete. This is not the case with arrays and text, in which
an extended selection made by a Shift-click always includes everything
between the old anchor point and the new active end. In arrays and text,
discontinuous selections are made by clicking while holding down the
Command key.

To make a discontinuous selection in a text or array application, the user
selects the first piece in the usual way and holds down the Command key
while selecting the remaining pieces. Each piece is selected in the same way as
if it were the whole selection, but because the Command key is held down,
the new pieces are added to the existing selection instead of replacing it. If one
of the pieces selected with Command-click is already within an existing
part of the selection, then instead of being added to the selection, it’s removed
from the selection.

C H A P T E R 1 0

Behaviors

292 Selecting

Figure 10-18 shows the process of adding cells to and removing cells from a
discontinuous selection.

Figure 10-18 Discontinuous selection within an array

Not all applications support discontinuous selections, and those that do
might restrict the operations a user can perform on them. For example, a
word processor might allow the user to choose a font after making a
discontinuous selection, but not allow the user to type replacement
characters. In this situation, it wouldn’t be apparent to users which part of the
selection the characters would replace. Decide what makes sense in the
context of your application and test it with users to make sure that their needs
are met.

Selections in Text 10
In most applications, the user is required at some point to edit text. The
principle of consistency (both within and among applications) requires that
text be selected and edited in a consistent way, regardless of where it appears.

A block of text is a string of characters. A text selection is a substring of this
string, which can have any length from zero characters to the whole block.
Each of the text selection methods selects a different kind of substring.
Figure 10-19 shows different kinds of text selections.

2. The user holds down the

 Command key and clicks in D5.

3. The user holds down the

 Command key and clicks in C3.

1. Cells B2, B3, C2, and C3

A B C D
1

2

3

4

5

are selected.

1

2

3

4

5

1

2

3

4

5

A B C D

A B C D

Consis
te

ncy

C H A P T E R 1 0

Behaviors

Selecting 293

10
B

ehaviors

Figure 10-19 Text selections

The insertion point is a zero-length text selection. The user establishes
the location of the insertion point by clicking somewhere in the text. The
insertion point then appears at the nearest character boundary. If the user
clicks anywhere to the right of the last character on a line, the insertion point
appears immediately after the last character. If the user clicks to the left
of the first character on a line, the insertion point appears immediately
before the first character.

The insertion point shows where text will be inserted when the user begins
typing, or where the contents of the Clipboard will be pasted. As each
character is typed, the insertion point is moved to the right of that character.

Selecting With the Mouse 10

The range selection method can be applied to text. The user selects a range of
text by dragging through the range. A range can be a range of characters,
words, lines, or paragraphs, as defined by the application. If the user extends
the range, the way the range is extended depends on what kind of range it is.
If it’s a range of individual characters, it can be extended one character at a
time. If it’s a range of words (including a single word), it’s extended only by
whole words.

The user selects a whole word by double-clicking somewhere within that
word. If the user begins a double-click sequence, but then drags the mouse
between the mouse-down and the mouse-up of the second click, the selection
becomes a range of words. As the pointer moves, the application highlights or
unhighlights whole words at a time.

Range of characters

Word

Insertion point

Discontinuous selection

Range of words

C H A P T E R 1 0

Behaviors

294 Selecting

Selecting Ranges 10

A word or range of words can also be selected in the same way as any
other range; whether this type of selection is treated as a range of characters
or as a range of words depends on the operation. For example, in a word
processor, a range of individual characters that coincides with a range of
words is treated like characters for purposes of extending a selection, but is
treated like words for purposes of “intelligent cut and paste” (described in the
section “Intelligent Cut and Paste” on page 301).

The following definition of a word applies in the United States and Canada
and in some other countries. In many countries, the definition differs to reflect
local formats for numbers, dates, and currency. A word is defined as any
continuous string that contains any of the following characters:

■ a letter

■ a digit

■ a nonbreaking space (Option-space or Command-space)

■ a currency symbol ($, ¢, £, or ¥)

■ a percent sign

■ a comma between digits

■ a period before a digit

■ an apostrophe between letters or digits

■ a hyphen, but not Option-hyphen (–) or Option-Shift-hyphen (—)

If the user double-clicks any character not on this list, only that character
is selected.

These are examples of words:

■ $123,456.78

■ shouldn’t

■ 3 1/2 (with a nonbreaking space)

■ .5%

These are examples of strings treated as more than one word:

■ 7/10/6

■ blue cheese (with a breaking space)

■ “Wow!” (The quotation marks and exclamation point aren’t part of
the word.)

C H A P T E R 1 0

Behaviors

Selecting 295

10
B

ehaviors

In some contexts—in a programming language, for example—it may be
appropriate to allow users to select both the left and right parentheses in a
pair, as well as all the characters between them, by double-clicking either one
of them. The same feature could be implemented for braces and brackets. This
would mean that the user could select the entire expression

[x+y–(4*3)^(n–1)]

simply by double-clicking [or].

Selecting With the Arrow Keys 10

To use arrow keys to make a text selection, the user holds down Shift while
pressing an arrow key. If it’s important that your Macintosh application
makes use of the numeric keypad, you shouldn’t use these Shift–arrow key
combinations. This is because the keypad’s codes for the four Shift–arrow
key combinations are the same as those for the keypad’s +, *, /, and = keys.
If the use of a Shift–arrow key combination for making selections is more
important to your application than is the numeric keypad, the following
paragraphs describe how it should work.

When a Shift–arrow key combination is pressed, the active end of the
selection moves and the range over which it moves becomes selected. If both
the Shift key and another modifier key are held down, the end of the selection
moves as defined for the particular modifier key, and the range over which
it moves becomes selected. For example, Option–Shift–Left Arrow selects the
whole word that contains the character to the left of the insertion point (just
like double-clicking a word).

A selection made by using the mouse is no different from one made by using
arrow keys. A selection started with the mouse can be extended by using
Shift and Left Arrow or Right Arrow.

In a text application, pressing Shift and either Left Arrow or Right Arrow
selects a single character. If the Left Arrow key is used, the anchor point of
the selection is on the right side of the selection, the active end on the left.
Each subsequent Shift–Left Arrow adds another character to the left side
of the selection. In many applications, a Shift–Right Arrow at this point
shrinks the selection. In some applications, a Shift–Right Arrow at this
point extends the selection, making the right side of the selection the active
end (see the description of the addition and fixed-point methods for
extending text selections in “Changing a Selection With Shift-Click”
beginning on page 289). In this case, each subsequent Shift–Right Arrow
adds another character to the right side of the selection.

C H A P T E R 1 0

Behaviors

296 Selecting

Figure 10-20 summarizes these two different series of steps.

Figure 10-20 Selecting with Shift and arrow keys

Pressing Option-Shift and either Left Arrow or Right Arrow (in a text
application) selects the entire word containing the character to the left or right
of the insertion point. Assuming Left Arrow is pressed, the anchor point is at
the right end of the word, the active end at the left. Each subsequent
Option–Shift–Left Arrow adds another word to the left end of the selection,
as shown in Figure 10-21.

Figure 10-21 Selecting with Option-Shift and arrow keys

When a block of text is selected, either with a pointing device or with arrow
keys, pressing either Left Arrow, Right Arrow, Up Arrow, or Down Arrow
deselects the range. If Left Arrow is pressed, the insertion point goes to the
beginning of what had been the selection. If Right Arrow is pressed, the
insertion point goes to the end of what had been the selection.

2. Shift-

1. Insertion point is within a word.

is pressed.

3. Shift- is pressed again.

4. Shift- is pressed.

5. Shift-

 more times.

is pressed three

2. Option-Shift-

1. Insertion point is within a word.

3. Option-Shift-

is pressed.

is pressed again.

C H A P T E R 1 0

Behaviors

Selecting 297

10
B

ehaviors

Selections in Graphics 10
Several conventions exist for selecting graphic objects and giving selection
feedback. This section describes two ways to show selection feedback. Other
situations may require other solutions.

An object-based graphics document is a collection of individual graphic
objects. To select one of these objects, the user clicks the object once, which is
then bracketed with “handles.” (The user can stretch or shrink the object with
the handles.) Figure 10-22 shows the selection handles around graphic objects.

Figure 10-22 Selection in an object-based graphics document

In object-based graphics applications, there are two ways to select more
than one object. A range selection includes every object that falls completely
within the dotted rectangle outline that encloses the range as the user
drags the mouse. A discontinuous selection includes only those objects
explicitly selected.

A bitmap-based graphics document, in contrast, is a series of pixels—not
discrete objects. Selections are shown surrounded by a moving dashed line,
which is sometimes called a marquee or marching ants. Figure 10-23 shows a
selection marquee.

Figure 10-23 Selection in a bitmap-based graphics document

Fee
dbac

k a
nd D

ial
og

The “o” is selected.

C H A P T E R 1 0

Behaviors

298 Selecting

Selections in Arrays and Tables 10
An array is a one- or two-dimensional arrangement of fields. The user can
select one or more fields or part of the contents of a field.

To select a single field, the user clicks in the field. The user can also select a
field by moving to it with the Tab or Return key. Selecting a field by clicking is
illustrated in Figure 10-24.

Figure 10-24 Field selection in an array

To select part of the contents of a field, the user must first select the field. The
user then clicks again to select the desired part of the field. Because the
contents of a field are either text or graphics, selections within a field follow
the appropriate rules for either text or graphics. A table can support selection
of rows and columns. The most convenient way for the user to select a
column is to click in the column header. To select more than one column, the
user drags through several column headers. The same behavior applies to
selecting rows. Figure 10-25 shows column selection in an array.

Figure 10-25 Column selection in an array

Click here to select

Hawaii field.

2.1.

Click here to select

the column.

2.1.

C H A P T E R 1 0

Behaviors

Selecting 299

10
B

ehaviors

Figure 10-26 shows how a user selects a range in an array.

Figure 10-26 Range selection in an array

A table can also support discontinuous selection of fields in an array. The
user first clicks a field to select it. Then the user holds down the Command
key and clicks another field in the array. Figure 10-27 shows this technique.

Figure 10-27 Discontinuous selection in an array

Pressing the Tab key cycles the insertion point through the fields in an order
determined by your application. From each field, the Tab key selects the
“next” field. Typically, the sequence of fields is first from left to right, and then
from top to bottom. When the last field in a form is selected, pressing the Tab
key selects the first field in the form. The user can press Shift-Tab to navigate
in the opposite direction. That is, Shift-Tab moves the selection back one cell.
If there’s a good reason, an application may guide the user through the fields
in some order other than the order in which the fields appear on the screen.

The Return key selects the first field in the next row. The user can use
Shift-Return to navigate up to the previous row in an array. If the idea of rows
doesn’t make sense in a particular context, then the Return key should have
the same effect as the Tab key.

Drag through this area

to select a range.

2.1.

1. Click here.

2. Command-click here.

3. Command-click here.

4. Command-click here.

C H A P T E R 1 0

Behaviors

300 Editing Text

Editing Text 10

In addition to the different methods for selecting text, there are a number of
ways to edit text.

Inserting Text 10
To insert text, the user positions the insertion point by clicking where the text
is to go, then starts typing. The application continually moves the insertion
point to the right (or left, depending on the direction of the language) as each
new character is added.

Applications with multiple-line text blocks should support word wrap, the
automatic continuation of text from the end of one line to the beginning of the
next without breaking in the middle of a word.

Deleting Text 10
When the user presses the Delete (or Backspace) key, one of two things
happens:

■ If the current selection has one or more characters, it’s deleted. This
behavior is equivalent to choosing Clear from the Edit menu.

■ If there is no current selection, but only an insertion point, the character
preceding the insertion point is deleted.

In either case, the insertion point replaces the deleted character or characters
in the document. The deleted characters don’t go into the Clipboard, but
the user can undo the deletion by immediately choosing Undo from the
Edit menu.

You can also implement the keyboard combination Option-Delete (Backspace)
to delete the word that currently contains the insertion point. Be sure to
document this behavior if you implement it.

If a keyboard has a Forward Delete (Del) key, the character following the
insertion point is deleted each time the user presses the key.

C H A P T E R 1 0

Behaviors

Editing Text 301

10
B

ehaviors

Replacing a Selection 10
If the user starts typing when the selection has one or more characters, the
characters that are typed replace the selection. The deleted characters don’t go
into the Clipboard, but the user can undo the replacement by immediately
choosing Undo from the Edit menu.

Intelligent Cut and Paste 10
Intelligent cut and paste is a set of editing features that takes into account the
need for spaces between words. (Note that the features described in this
section don’t apply to all languages; for example, the Thai, Chinese, and
Japanese languages don’t contain spaces.) To understand why this feature is
helpful, consider the following sequence of events in a text application without
intelligent cut and paste:

1. A sentence in the user’s document reads
Returns are only accepted if the merchandise is damaged.

The user wants to change this to
Returns are accepted only if the merchandise is damaged.

2. The user selects the word only by double-clicking. The letters are
highlighted, but neither of the adjacent spaces is highlighted.

3. The user chooses Cut from the Edit menu, clicks just before the word if,
and chooses Paste.

4. The sentence now reads
Returns are accepted onlyif the merchandise is damaged.

Note the extra space between are and accepted and the lack of a space
between only and if. To correct the sentence, the user has to remove the
extra space between are and accepted and add one between only and if.

If your application supports intelligent cut and paste, follow these guidelines:

■ If the user selects a word or a range of words, the selection itself is
highlighted, but spaces adjacent to the selection are not highlighted.

■ When the user chooses Cut, if the character preceding the selection is a
space, cut that space along with the selection. If the character preceding the
selection is not a space, but the character following the selection is a space,
cut that space along with the selection.

■ When the user chooses Paste, if the character to the left or right of the
current selection is part of a word (but not inside a word), insert a space
before pasting.

C H A P T E R 1 0

Behaviors

302 Editing Text

If the left or right end of a text selection is a word, follow these rules at that
end, regardless of whether there’s a word at the other end. Figure 10-28 shows
two examples of intelligent cut and paste.

Figure 10-28 Intelligent cut and paste

Note that the selected text is not necessarily exactly the same range that will
be cut and, eventually, pasted. The range may include a space character.

Intelligent cut and paste should be used only if the application supports the
definition of a word, described in “Selections in Text” beginning on page 292,
rather than the definition of a word as “anything between two spaces.” These
rules apply to any selection consisting of one or more whole words, no matter
how the user made the selection.

Editing Fields 10
If an application isn’t primarily a text application, but does use text in text
entry fields (such as in a dialog box), you may not need to provide the full
text-editing capabilities described so far. In Macintosh applications, the
simplest way to implement text editing is to use TextEdit, or to use the Dialog
Manager, which in turn uses TextEdit. It’s important, however, that whatever
editing capabilities the application provides under these circumstances be
upward-compatible with the full text-editing capabilities. The application
should support the following editing capabilities:

■ The user can select the whole field and type in a new value, delete text,
select a substring of the field and replace it, and select a word by
double-clicking.

■ The user can choose Undo, Cut, Copy, Paste, and Clear, as described in
“The Edit Menu” beginning on page 109 in Chapter 4, “Menus.”

1. Select a word.

2. Choose Cut.

3. Select an insertion point.

4. Choose Paste.

1. Select a word.

2. Choose Cut.

3. Select an insertion point.

4. Choose Paste.

C H A P T E R 1 0

Behaviors

Editing Text 303

10
B

ehaviors

In addition, you can support intelligent cut and paste. (TextEdit does not
provide this.) Even applications with only minimal text editing should
perform appropriate edit checks. For example, if the only legitimate value
for a field is a string of digits, the application should alert the user if any
nondigits are typed. The alert message might remind the user that the letters
l and o can’t be used in place of the numerals 1 and 0. Alternatively, the
application could wait until the user is through typing before checking the
validity of a field’s contents. In this case, the appropriate time to check
the field is when the user clicks anywhere other than in the field or presses the
Return, Enter, or Tab key.

305

C H A P T E R 1 1

11

Language 11Figure 11-0
Listing 11-0
Table 11-0

Figure 1-12 Principals

Esprefk the onluvx erts anfr quiwlthe wllxi

Esprefk the onluvx erts anfr quiwl

Esprefk the onluvx erts anfr quiwlthe i

Esprefk the onluvx erts anfr quiwlthe wllxi

Esprefk the onluvx erts anfr quiwlthe wllxi

Esprefk the onluvx erts anfr quiwlthe

Esprefk the onluvx erts anfr quiwlthe wllxi

Esprefk the onluvx er
anfr quiwlthe wllxi

Esprefk the onluvx erts anfr quiwlthe wllxi

Esprefk the onluvx erts anfr

Esprefk the

Esprefk the onluvx erts anfr quiwlthe

Esprefk the onluvx erts anfr

Esprefk the onluvx erts anfr qui

Esprefk the onluvx erts anfr

Esprefk the onluvx erts anfr qui

Esprefk the onluvx erts anfr

Esprefk the onluvx erts anfr quiwlthe wllxi

Esprefk the onluvx erts anfr quiwl

Esprefk the onluvx erts anfr quiwlthe i

Esprefk the onluvx erts anfr quiwlthe wllxi

Esprefk the onluvx erts anfr quiwlthe wllxi

Esprefk the onluvx erts anfr quiwlthe

Thi d t t d ith F M k 4 0 4

C H A P T E R 1 1

Language

306

Style

This chapter describes how you should use language in your product.
Although the Macintosh interface uses graphics as the primary means of
user-computer interaction, much of the user interface still involves text of
some kind—names in buttons, labels for checkboxes and radio buttons,
messages in dialog boxes, online help systems, and manuals. Consistency in
the use of language helps users easily learn to use the Macintosh.

In certain situations, the computer displays textual messages to describe a
particular situation or ask the user for a specific decision. This chapter
provides guidance on how to construct these messages in language that users
understand. This chapter also contains information on how to write balloon
help and how to construct a useful online help system for your application.

This chapter presents guidelines for using language clearly, consistently, and
concisely throughout every aspect of your product, ranging from the user
interface to paper documentation. Any time words are involved in your
product, the design team should include a skilled writer who is responsible
for not only the documentation but also the use of language on the screen.

Style 11

Apple Computer, Inc., publishes the

Apple Publications Style Guide,

which codifies the way in which Apple documentation uses language.
This publication contains information about the specific terms that are used
to describe interface elements. It also defines style and usage issues such as
how certain terms are used and the preferred capitalization, spelling, and
hyphenation of those terms. Some parts of the style guide are excerpted in
this chapter to provide quick reference for key elements of the user interface.
Whenever you are constructing language for your application, you can
consult the

Apple Publications Style Guide

 to help you to create consistent and
usable language. You can obtain this publication through APDA.

For issues that aren’t covered in the

Apple Publications Style Guide

, publication
departments at Apple Computer rely on three other works:

The American
Heritage Dictionary, The Chicago Manual of Style,

and

 Words Into Type.

In cases
where these reference books give conflicting rules,

The Chicago Manual of Style

takes precedence for questions of usage and

The American Heritage Dictionary

for questions of spelling.

Consis
te

ncy

C H A P T E R 1 1

Language

Terminology

307

11

Language

Terminology 11

This section describes a few terminology issues to be aware of when you are
creating your product.

Developer Terms and User Terms 11

It’s very tempting to use the words that you’re familiar with when you’re
developing documentation, training materials, or elements on the screen.
However, it’s best to use terms that your

users

 are familiar with and that
are consistent across the Macintosh product line and developer products.
Don’t use technical jargon or computer science terminology. It’s especially
important not to use programming terms in menus, dialog boxes, or
user books.

Don’t use file type names to refer to Finder documents that users see. Call
documents by the terms that appear in the Kind column in Finder windows.
Table 11-1 lists the terms to use in place of the four-character type names,
as well as a few other preferred terms for user documentation.

Table 11-1

Translation chart for user documentation

Previously-used term Suggested terminology Examples

adev Network extension EtherTalk network extension

cdev Control panel Mouse control panel

DA Desk accessory Calculator desk accessory

ddev Database extension Data Access Language (DAL) database
extension

FKEY Function key F1 function key

INIT System extension
(

not

startup document)
File Sharing system extension

MultiFinder icon Active-application icon

RDEV Chooser extension LaserWriter Chooser extension, AppleShare
Chooser extension

Standard file dialog box Directory dialog box Directory dialog box for opening files

Kno
wled

ge
 of

 A
ud

ien
ce

C H A P T E R 1 1

Language

308

Terminology

Terms That Are Often Misused 11

This section contains specific terms that are often misused in user
documentation for the Macintosh.

Click 11

Click is the action of positioning the pointer over an object and briefly
pressing the mouse button. The user

clicks

 objects, not

clicks on

 objects. Thus
your documentation should say

■

Click the disk icon.

■

Click the Open button.

■

Click Auto Page Numbering.

It is OK to say

click

in

 a window, but the user

clicks

 all other onscreen
elements. Also, it’s not appropriate to say

click and drag

. The user clicks or the
user drags.

Checkbox 11

A checkbox is a standard Macintosh control that displays a setting, either
checked (on) or unchecked (off); it appears as a square with label text next to
it. The user

clicks

 a checkbox, not

checks

 a checkbox, to select or deselect the
corresponding option. When the option is on, an

x

 appears in the box. When
the option is off, the box is empty.

Document 11

Document

 refers to a file the user creates and can open, edit, and print.
HyperCard documents are called

stacks.

 Use the term

document

 in user-level
documentation and avoid the use of the term

file

, because it is more technical
and less well-defined.

File 11

File

 refers to any entity stored on a disk, regardless of whether the user can
open, edit, or print it. This use of the term has its origins in computer science
and is best avoided when possible. In developer documentation, it’s
permissible to use this term as long as it’s well defined.

C H A P T E R 1 1

Language

Labels for Interface Elements

309

11

Language

Utility Window 11

Utility window

 refers to a window appearing in some applications that
has some but not all of the features of a regular window. This window
is sometimes called a

palette

 or

miniwindow

.

Don

’

t

 use the term

windoid

 or

floating window

 to describe these windows.

Labels for Interface Elements 11

Make labels for interface elements easy to understand in order to help users
use your product. When you write labels for screen elements, try to speak in
the user’s language.

In labels or names for menu items, checkboxes, radio buttons, and push
buttons, use book title capitalization style. This style is referred to as caps/
lowercase. In general, this means that you capitalize every word except
articles (

a

,

an

,

the

), coordinating conjunctions (for example,

and

,

or

), and
prepositions of three or fewer letters (except when a preposition is part of a
verb phrase). The specific rules of this type of capitalization appears in detail
in the

Apple Publications Style Guide

. Figure 11-1 shows some examples of
elements that follow these capitalization rules.

Figure 11-1

Proper capitalization of screen elements

Consis
te

ncy

C H A P T E R 1 1

Language

310

Dialog Box Messages

Make sure that the title of the menu fits the items in the menu. For example,
the Font menu can contain names of font families such as Helvetica, Geneva,
and New York, but it should

not

 include editing commands such as Cut and
Copy. Use singular for menu titles unless a particular menu title doesn’t make
sense in the singular (such as Graphics). Apple recommends a number of
standard menu titles such as File, Edit, and Font. The most important factor is
that you be consistent in your use of menu titles. In other words, try not to
create a menu bar that contains both plural and singular menu titles–for
example, use Size and Style,

not

Sizes and Style.

Try to be as specific as possible in your labels or names for radio buttons,
push buttons, and checkboxes. It can be difficult to name a particular action or
option in a word or two, but it’s important to be concise and clear. In any case,
don’t sacrifice clarity for space. Figure 11-2 shows a good example of push
button names that are short and accurate.

Figure 11-2

Clear button names

For more information on names for push buttons, see “Button Names” on
page 206 in Chapter 7, “Controls.”

Dialog Box Messages 11

This section focuses mostly on messages in caution alert boxes and stop alert
boxes, but you can apply the principles to messages in other dialog boxes.

Dialog boxes and alert boxes communicate to the user. It is your responsibility
to make sure that the user can understand what is going on when you can’t be
there to explain. Dialog box and alert box messages should be descriptive
rather than evaluative. When you’re writing messages, try to put yourself in
the place of your users and imagine how they will feel when confronted with
your message.

C H A P T E R 1 1

Language

Dialog Box Messages

311

11

Language

A good alert box message says what went wrong, why it went wrong, and
what the user can do about it. Try to express everything in the user’s
vocabulary. Figure 11-3 shows an example of an alert box message that
provides little information and doesn’t suggest to the user what is really
going on.

Figure 11-3

A poorly written alert box message

You could improve this message by describing the problem in the user’s
vocabulary, as shown in Figure 11-4.

Figure 11-4

An improved alert box message

To really make this alert box useful to the user, you need to provide some
suggestion about what the user can do to get out of the current situation.
Figure 11-5 shows the optimal alert box message for this condition.

Figure 11-5

A well-written alert box message

C H A P T E R 1 1

Language

312

Dialog Box Messages

Some dialog boxes include categories of options presented as lists of radio
buttons or checkboxes with options. Often a phrase introduces the set of
options. Don’t include a colon after the phrase that introduces a list if that
list is a complement or object of a verb or preposition in the introductory
statement. In other words, don’t use a colon when the introductory phrase
is not a complete sentence and the items in the list complete the sentence.
For example, the phrase that follows does not contain a colon:

The objects included are

n

radio buttons

n

checkboxes

n

push buttons

n

text boxes

Though you may find some situations in which a colon is used to introduce
a bulleted list, Apple’s publications generally follow the style given in the

The Chicago Manual of Style

 and

Words Into Type

, which recommend

not

 using a
colon in that kind of construction. Another example that illustrates when you
would

not

 use a colon is shown in Figure 11-6.

Figure 11-6

Correct absence of a colon to introduce a list of options

Use a colon after an introductory statement that contains the words

as follows

or

the following.

 Figure 11-7 shows an example of when to use a colon.

Figure 11-7

Correct use of a colon

C H A P T E R 1 1

Language

User Documentation

313

11

Language

User Documentation 11

Documentation for users is an essential part of the user interface that you
provide. Try to give it the same degree of consideration and attention that you
give to your application’s user interface. Consider the audience that you
address with your product and tailor the documentation to its needs. It’s
often useful to provide alternate types of documentation for the different
types of users who make up your audience. Beginners have different needs
from those of expert users.

Plan an overall learning path for your users. This can help target your
documentation to specific types of users. A well-designed learning path can
help users approach the documentation according to their style of learning.
For example, some users may want to be shown exactly how to do
something and they may have an easier time learning about a product by
practicing using it. A tutorial would be perfect for this type of user. Other
users may want to explore and learn by their mistakes; they may read the
documentation only to learn about advanced features or to troubleshoot a
specific problem. A specific task-oriented set of instructions would be ideal
for this type of user. The following list presents a general model for a
learning path.

■

Setting up or installing the product.
Provide easy-to-follow, brief instructions that help users to set up the
hardware and install the software necessary to begin using the product.

■

Learning how to use the product.
Include a tutorial that introduces core concepts and fundamental skills, and
that explains why a user would want to use the product. Ideally this kind
of information should be interactive and lead users, via a series of
exercises, through several scenarios where they can learn the most
common features of the product.

■

Using the product.
Provide detailed instructions about how to accomplish specific tasks,
troubleshoot problems, and take advantage of advanced features.

Develop task-oriented documentation that teaches users how to
accomplish the tasks that you designed your application to perform.
Avoid system-oriented documentation that describes everything that
your application can do rather than teaching practical skills.

Use standard terminology and nontechnical language in user documentation.
Don’t pass on technical jargon to users; they may not understand it. When
you must use technical terms, be sure to define them at first occurrence,
and include a glossary if your document has many specialized terms. Be
consistent in your use of terminology. Make sure that messages and terms
that users see on the screen match what appears in the documentation.

Acc
es

sib
ilit

y

Kno
wled

ge
 of

 A
ud

ien
ce

C H A P T E R 1 1

Language

314 Online Help Systems

When you localize your software product, you’ll need to translate all user
documentation, including tutorials, online help, and books. Making
your documentation available in a user’s native language greatly enhances
the usability and marketability of your product.

Tutorials, manuals, online help, and other forms of documentation cannot
compensate for an interface that is hard to use. Documentation can’t “fix”
problems that need to be resolved in the interface itself. Thus, try to treat all
documentation as part of the end user product and as part of the interface
with which users must interact.

Online Help Systems 11

This section discusses the basic principles and guidelines for building a
useful online help system for your application. You can include your help
system in the Help menu by adding one or more menu items to it. For more
information about the Help menu, see “The Help Menu” on page 125 in
Chapter 4, “Menus.”

Provide Concurrent Help 11
A usable help system must present instructions within the users’ working
context so that they can actually do the actions that they are instructed to
perform. If a help system obscures or replaces users’ work, they might forget
the specifics of their problem. In addition, users would have to read and
memorize the help before returning to their work. When users activate help,
do not switch them to a separate application or mode for delivering the
information. Rather, display the information within the working context so
that the user’s application remains active or in control. In other words, allow
the user to find the necessary help information while working on their
particular task. Balloon Help is an example of help that doesn’t take users out
of their current context, but allows them to see the problem and solution
simultaneously. See “Balloon Help,” beginning on page 316, for a description
of Balloon Help.

Provide Multiple Levels of Help 11
Users who are just starting to learn how to use an application need a type
of help different from that which experienced users need. It’s a good idea
to provide more than one type of help so that you can meet the needs of users
at all levels. Use the Help menu to divide your help into components
for different levels of users. For example, an application might add
three commands to the Help menu: Tutorial, Help, and Shortcuts.

Use
r C

ontro
l

Kno
wled

ge
 of

 A
ud

ien
ce

C H A P T E R 1 1

Language

Online Help Systems 315

11
Language

The Tutorial command would provide an introduction for users who are new
to an application or need an overview of its features. The Help command
would assist casual and regular users who have reached an impasse using the
application. The Shortcuts commands would provide intermediate users with
tips to increase the efficiency with which they use the application.

Assist Users by Answering Their Questions 11
When users need help, they often have at least one question in mind. Users’
questions fall into a number of distinct categories, and those categories call for
different types of assistance. Provide different types of help for different
categories of questions. For example, there is a clear distinction between
the question “what is this?” and the question “how do I do this?” The
first question asks more about the nature of an object or task while the second
question requests instructions about performing a task. The ideal help system
tries to support three categories of questions: procedural, descriptive, and
troubleshooting. Table 11-2 gives examples of each type of question.

Balloon Help provides descriptive information for items that appear on the
user’s screen. The help system should augment these descriptions as
necessary especially for items that do not appear on the screen or that require
a more in-depth explanation.

Involving users in your product design process can help you identify the
types of questions that your users may ask about your products—especially
questions about tasks that users will want to perform. See the section
“Involving Users in the Design Process” in Chapter 3, “Human Interface
Design and the Development Process,” for information about how to conduct
user observations.

Showing users how to accomplish work should form the core of the help
system. Once you have a set of user questions, you can organize the answers—
and the ways to get to those answers—in ways that best serve your users.

Table 11-2 Categories of questions for help systems

Category Type of question

Procedural How do I copy a paragraph?

Descriptive What is an alias?

Troubleshooting Why do extra characters appear when I print?

C H A P T E R 1 1

Language

316 Balloon Help

Keep the Help System Simple 11
Help systems should present a sensible set of core actions to users without
overloading them with too many complex features. Although you can use a
few words of instruction to prompt users on how to use the help system (like
“click here” or “select a topic”), don’t turn the help system into a complicated
application that requires lengthy instructions. In general, users don’t really
want to spend time using a help system. They just want to find the
information they need and get back to their work.

Design Online Help as an Interactive Coach 11
As a method for communication, computers provide opportunities that books
can’t provide. The full benefits of online help appear when a help system can
interact with a user and make use of the context in which the user is working.
Where appropriate, a help system can also play sounds, run animations, and
play movies. Rather than producing an online document, a help system
should bring relevant information to users when they need it and guide them
through the interface just as a human teacher would. Your help system needs
to assist users with a problem as efficiently as possible without requiring the
users to study a topic in depth.

Balloon Help 11

Balloon Help provides onscreen descriptions of items in balloons shaped like
cartoon speech balloons. The user turns on Balloon Help when he or she
wants to find out something about an interface element. Once Balloon Help is
turned on, the balloon for an item appears when the user moves the pointer to
an item. The balloon stays on the screen until the user moves the pointer
away from the item. In this way, users get context-sensitive, task-oriented
information exactly when they need it. Figure 11-8 shows an example of a
help balloon.

Figure 11-8 A help balloon

C H A P T E R 1 1

Language

Balloon Help 317

11
Language

This section briefly describes the kinds of items for which you can add
balloons and provides some guidelines for writing the text in balloons.
For information on implementing Balloon Help in your application, see
Inside Macintosh: More Macintosh Toolbox. For complete information on writing
the text in balloons, see “How to Write Balloons,” a supplement to the
Apple Publications Style Guide. For additional information on creating balloons,
refer to the Balloon Writer User’s Guide, which is available from APDA.

When to Use a Help Balloon 11
Balloon Help is designed always to be available to users, even when a modal
dialog box is on the screen. This is so that users can get help when they need
it, without having to stop what they are doing and look in a separate location
for information about what they are doing.

Use help balloons to explain elements of your application’s interface that
might confuse a new user or elements that could help a user become an
expert user. The information provided in help balloons should identify
interface elements in your application or explain how to use them. When
considering whether or not to use a help balloon, try to think about the types
of questions users are most likely to have about elements in your application.
For example, are there any elements in your application that don’t usually
appear in other Macintosh applications? It’s helpful to think about the types
of users who will be using your application: are they novices or are they
experienced computer users? And finally, think about the terminology used in
your application that users may not be familiar with.

Help balloons should be short and easy to understand. Don’t include lengthy
instructions or numbered steps in balloons. Use clear, concise language in
balloons. Write help messages that describe what an object in your application
does; the user wants to know what will happen if he or she uses that
particular object.

It’s not necessary to name every object in your application in the balloons,
especially if they’re already named on screen. It’s more important that the
user find out how to use an object than it is for the user to know the object’s
exact name. Some exceptions to this guideline include items whose names
help describe how to use the item. These include tools in palettes, controls on
a ruler, controls in a paint program, or icons that don’t already have names
on the screen.

It’s a good idea to provide separate help balloons for each state of a menu
item or dialog item. For example, write separate balloons for the selected,
unselected, and unavailable state of radio buttons and checkboxes. Where
appropriate, use parallel wording for the balloons belonging to a single item.

Kno
wled

ge
 of

 A
ud

ien
ce

C H A P T E R 1 1

Language

318 Balloon Help

It’s especially important to write a separate help balloon for a situation
the user might find difficult to figure out. For example, if a selection in a
Preferences dialog box causes some menu command to be dimmed, a special
balloon for that command should appear when that selection is on.

For groups of controls, it may make sense to use one help balloon to describe
the whole group rather than providing a separate help balloon for each
control. For example, the help balloon for a group of radio buttons used to
set the margins of a document might describe all three options: left, right,
and center. Help balloons can also describe a complicated dialog box by
telling users what they can accomplish by using each of the features or
options in the dialog box.

How to Write a Balloon 11
Users turn on Balloon Help when they need information about something
they don’t understand. Sometimes this happens when they are exploring the
interface. Other times, users are looking for some helpful information to get
them out of a situation that confuses them. Users are most likely to read and
understand your balloons in either situation if you use the fewest possible
words. If your balloons will be translated from English into another language,
the text will most likely get longer. The text in balloons can be up to
255 characters long, or it can use up to 32 KB if you include graphics such
as styled text. In order to keep translated balloons within this limit, it’s a
good idea to limit messages to a maximum of approximately 180 characters
in English.

Use active voice in your help balloons. Active voice uses fewer words and is
easier to read than passive voice. For example, you could say “To resize the
window, drag this box.” In passive voice the same explanation would be
“This size box is used to resize the window. The box is dragged to resize the
window.” The second example is a lot longer than the first and requires
the user to think about two sentences before acting.

In help balloons, you can use sentence fragments, leaving out the subject
of the sentence if the item is named on screen. Put the thing that the user
really wants to know first in the balloon. For example, you could write
“Saves changes to the active document” to describe what the Save command
does. This sentence fragment makes it immediately clear to the user what
the command will do if the user chooses it. Use sentences fragments with
menu commands, checkboxes and radio buttons that aren’t available, and
radio buttons that are selected.

C H A P T E R 1 1

Language

Balloon Help 319

11
Language

Define unfamiliar words by using other words that explain the concept,
especially for menu items and buttons. This helps users who aren’t sure what
the item means. For example, don’t describe the Undo command by writing
“Undoes your last action.” Instead, use different wording that has the same
meaning, such as “Cancels your last action.”

When you are describing how to use an onscreen element, include only one
way of doing something. You can include descriptions of other ways to do
actions in your printed or online documentation. In help balloons, describe
just the simplest method.

You can use help balloons to draw a user’s attention to a few interesting
features in your application that the user may not readily discover on his or
her own. But be selective about the features for which you provide hints.
Don’t provide help balloons for obscure features that few users will ever
need. And if you do include a hint, place it on a separate line at the end of
the balloon. Be careful not to include too many hints because this will make
your balloons longer and more difficult to understand.

Wording for Specific Balloon Types 11
Use similar wording in similar balloons to make it easier for the user to read
the balloon messages. Unnecessary variations in wording are distracting.
Using phrasing similar to that described here will help your users quickly
assimilate the information since the structure of the information will
be familiar.

Buttons With Words 11

For buttons that appear in dialog boxes, use the construction

“To [perform action], click this button.”

Figure 11-9 shows an example of a help balloon for a button.

Figure 11-9 Help balloon for a button

Per
ce

ive
d S

ta
bilit

y

C H A P T E R 1 1

Language

320 Balloon Help

Menu Titles 11

For pull-down menu titles, give the title of the menu and then describe what
kinds of commands are in the menu. You provide the title of the menu
because some menus on the menu bar are icons, not words. Figure 11-10
shows an example of this type of help balloon.

Figure 11-10 Help balloon for a menu title

For pop-up menus, describe what to do with the menu. Don’t give the menu a
name. For example, you could say, “Use this pop-up menu to describe items
you want to find.”

Menu Items 11

Don’t name the individual items in a menu. Begin with a verb describing
what happens when you choose the item. Figure 11-11 shows an example of a
help balloon for a common menu item and an example of how to write a help
balloon for the same menu item when it’s unavailable (dimmed).

Figure 11-11 Help balloon for a menu item

C H A P T E R 1 1

Language

Balloon Help 321

11
Language

For menu items that require more information and display a dialog box, it’s
not necessary to say that a dialog box appears. The user wants to know what
choosing the menu item ultimately accomplishes.

Radio Buttons 11

It’s best to provide separate balloons for selected, unselected, and unavailable
radio buttons. For selected radio buttons, describe what the button does,
beginning with a verb. At the end of the balloon, say that the button is
selected. Figure 11-12 shows an example of this.

Figure 11-12 Help balloon for a selected radio button

For an unselected radio button, describe what happens when you select the
button. For example, you could say, “To align the objects at the left margin of
the document, click this button.” For a button that’s not available, describe
what the button does when selected using a sentence fragment beginning
with a verb. Then explain why it is not available. For example, a balloon
might say, “Aligns objects at the left margin of the document. Not available
because no objects are selected.”

Checkboxes 11

For checkboxes, you need to provide several pieces of information. Describe
the current state of the system (what the system does currently, given whether
the option is selected or not), an explanation of the option provided by the
checkbox, and how to turn it on or off. Don’t describe the current state of the
system if it’s obvious or if it would involve saying merely, “This option is
not on.” Also, don’t include an explanation of the option if your users don’t
need one.

C H A P T E R 1 1

Language

322 Balloon Help

Figure 11-13 shows an example of a help balloon for a checkbox.

Figure 11-13 Help balloon for a checkbox

Note that the help balloon shown in Figure 11-13 tells the user about the
current state of the system by the way it phrases the sentence: “To turn on
text smoothing, click this box.” (This means that text smoothing is not
currently being used.) If the sentence were phrased like this: “To turn off text
smoothing, click this box,” it would tell us the opposite information about the
current state of the system (that text smoothing is currently being used).

For unavailable checkboxes, describe what the box does when it’s selected
and then explain why it is not available. This case is similar to that of an
unavailable radio button.

Groups of Checkboxes or Radio Buttons 11

You can provide a single balloon for an entire group of radio buttons, or for a
group of closely related checkboxes. When providing one balloon for a group
of options, describe what you can do with the options, how to implement the
options, and how you can tell whether an option is selected.

C H A P T E R 1 1

Language

Balloon Help 323

11
Language

Figure 11-14 Help balloon for a group of radio buttons

Tools in Palettes 11

It’s a good idea to name tools in palettes, because the name can help the user
figure out what the tool is for. After naming the tool, describe one or two
likely ways to use it. Don’t describe every shortcut or trick you can do with
the modifier keys. Figure 11-15 shows one example of a help balloon for a tool
in a palette.

Figure 11-15 Help balloon for a tool palette

C H A P T E R 1 1

Language

324 Balloon Help

Window Parts 11

Apple provides standard balloons for standard window parts. If your
windows have nonstandard parts, use the general guidelines for writing
balloons to describe them. Name only the parts of the window that it’s
necessary for the user to know.

Modal Dialog Box on the Screen 11

When there is a dialog box on the screen, you can add the following wording
to the end of each balloon that refers to an unavailable item:

“Not available because a modal dialog box is on the screen.”

Icons 11

Apple provides standard balloons for icons. If you wish, you can provide
your own balloons for your application and its associated special files, but
don’t provide balloons for your application’s document icons.

You don’t need to describe how to open icons; you can assume that Macintosh
users know how. Figure 11-16 shows the standard help balloons for an
application icon and a document icon.

Figure 11-16 Help balloons for an application icon and a document icon

C H A P T E R 1 1

Language

Balloon Help 325

11
Language

Text Entry Boxes 11

When you describe text entry boxes in dialog boxes, use here to describe
the area. You don’t have to name the area, or describe standard Macintosh
editing procedures. Figure 11-17 shows an example of a help balloon for a text
entry box.

Figure 11-17 Help balloon for a text entry box

A
P

P
E

N
D

IX
E

S

Appendixes

The appendixes provide additional information about the topics discussed
in this book. Appendix A describes resources such as professional societies
and conferences from which you can get additional information. Appendix B
is a bibliography that presents major works on topics discussed in the book.
Refer to this appendix when you want to find where to get more extensive
information or training on a topic such as color or menus. Appendix C
provides a checklist for you to use when evaluating your product to
make sure it meets the intent and purpose of the Macintosh human
interface guidelines.

Thi d t t d ith F M k 4 0 4

Association for Computing Machinery (ACM)

329

A P P E N D I X A

A

R
esources

Resources A

This appendix lists some resources that provide more information about
human interface design or human-computer interaction.

Association for Computing Machinery (ACM) A

The ACM is a large organization consisting of many special interest groups,
or SIGs. It is dedicated to the development of information processing as a
discipline and to the responsible use of computers in an increasing diversity
of applications. Contact the ACM at

Association for Computing Machinery
11 West 42nd Street
New York, NY 10036
212-869-7440

Communications of the ACM A

Communications of the ACM

 is a journal published monthly by the ACM.
It contains topical articles, a calendar of events, and listings for available
positions in the fields of computer science, information science, and
engineering.

SIGCHI A

SIGCHI (Special Interest Group in Computer Human Interaction) is a special
interest group of the ACM concerned with computer and human interaction.
SIGCHI encompasses all aspects of the human-computer interaction process,
including research and development efforts leading to the design and
evaluation of user interfaces. This group focuses on how people communicate
and interact with computer systems.

There are some local SIGCHI groups that meet monthly and present
programs on human-computer interaction. Contact the ACM for more
information.

The

SIGCHI Bulletin

 is a journal published by SIGCHI. It contains articles,
news about the group’s activities, and a calendar of events.

The Computer Human Interaction Conference (called CHI) is a yearly
conference on human-computer interaction. The conference has papers,
panels, posters, lab reviews, and small group meetings on topics of interest.

Figure A-0
Listing A-0
Table A-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X A

Resources

330

Association for Computing Machinery (ACM)

This conference is held in the spring. The conference proceedings are
published as a special edition of the

SIGCHI Bulletin

.

The Symposium on User Interface Software and Technology is a joint
conference of SIGCHI and SIGGRAPH, the special interest group devoted to
computer graphics and animation. It is usually held in the fall.

SIGGRAPH A

SIGGRAPH (Special Interest Group on Graphics) is a special interest group
of the ACM concerned with computer graphics and animation. SIGGRAPH
addresses all types of professionals involved in the computer graphics
community. SIGGRAPH publishes a research journal and sponsors an annual
conference.

There are a number of local SIGGRAPH groups that discuss graphics issues
and participate in related projects. Contact SIGGRAPH through the ACM for
more information about local groups and events.

Computer Graphics

 is the official journal of SIGGRAPH. Published three times
a year,

Computer Graphics

presents book reviews, conference information,
research papers, articles on graphics-related topics, and a calendar of
upcoming events.

SIGGRAPH is an annual conference that provides a forum for the
presentation and publication of scholarly papers on computer graphics.
The conference includes technical programs and courses, discussion panels,
exhibits, and technical papers; and provides a marketplace for computer
graphics hardware, software, and systems. It is usually held in the summer.

CSCW A

CSCW (Computer Supported Cooperative Work Conference) is a biannual
conference on cooperative work in the computer environment, sponsored
jointly by SIGCHI and SIGOIS (Special Interest Group Office Information
Systems). The conference looks at all aspects of CSCW, including
meeting-coordination software, mail systems, and other collaborative efforts.
In particular, the sessions focus on the social considerations of cooperative
work from an anthropological standpoint. The conference proceedings are
published by the ACM.

A P P E N D I X A

Resources

Human Factors Society

331

A

R
esources

Human Factors Society A

The Human Factors Society is an interdisciplinary organization of
professional people involved in the field of human factors. The human factors
field concerns the characteristics of human beings that are applicable to the
design of systems of people, machine, and environments.

The Human Factors Society sponsors various technical groups that focus on
particular aspects of the human factors field. The technical groups hold
meetings, sponsor symposia and conferences, publish newsletters and
proceedings, and sponsor technical sessions at the Human Factors Society
Annual Meeting.

The Human Factors Society has chapters throughout the United States and in
Europe that sponsor local meetings and publications. Contact the Human
Factors Society at

Human Factors Society
P.O. Box 1369
Santa Monica, CA 90406
FAX: 310-394-2410
Phones: 310-394-1811; 310-394-9793

Human Factors Society Annual Meeting A

The Human Factors Society Annual Meeting is usually held in September or
October. It includes a technical program consisting of research reports, panel
discussions, and workshops; a business meeting; exhibits; an awards
ceremony and banquet; and tours of local facilities of interest.

Human Factors A

The bimonthly journal

Human Factors

 presents original papers of scientific
merit that contribute to the understanding and advance the systematic
consideration of human factors. It features articles on methodology and
procedures, literature reviews, broad technical research results; articles on
research applications; and papers of general professional interest.

A P P E N D I X A

Resources

332

Apple Developer Information

Human Factors Society Bulletin A

The monthly journal

Human Factors Society Bulletin

 features articles of interest
to human factors practitioners; timely information about conferences,
elections, publications, employment opportunities, and local chapter
and technical group activities; and book reviews, editorials, and letters to
the editor.

Apple Developer Information A

Apple Computer, Inc. offers developers a number of different sources of
information. This section lists several developer organizations and describes
how to contact the organizations to learn more about them.

APDA A

APDA is Apple’s worldwide source for over 300 development tools, technical
resources, training products, and information for anyone interested in
developing applications on Apple platforms. Customers receive the quarterly

APDA Tools Catalog

 featuring all current versions of Apple and the most
popular third-party development tools. Ordering is easy; there are no
membership fees, and application forms are not required for most APDA
products. APDA offers convenient payment and shipping options including
site licensing.

To order products or to request a complimentary copy of the

APDA Tools
Catalog,

 contact APDA at

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, New York 14207-0319
Phone: 800-282-2732 (U.S.)
800-637-0029 (Canada)
716-871-6555 (International)
FAX: 716-871-6511
AppleLink: APDA
CompuServe: 76666,2405
GEnie: A.DEVELOPER3
Internet: APDA@applelink.apple.com

A P P E N D I X A

Resources

Apple Developer Information

333

A

R
esources

Developer Support Center A

If you are developing a product you plan to sell commercially, please call
408-974-4897 for information on the developer support programs available
from Apple. The Developer Support Center provides technical support only
to those developers who are members of these programs.

For information on registering unique Creator and File Types, please contact

Developer Support Center
Apple Computer, Inc.
20525 Mariani Avenue, M/S 75-3T
Cupertino, CA 95014-6299
408-974-4897
AppleLink: DEVSUPPORT

In-House Development Support A

If you create custom applications for internal use within your organization,
call 1-800-950-2442 for information on how to obtain technical documentation
and direct access to Apple development support engineers to help you
integrate the Macintosh into existing enterprise computing solutions.

develop A

Apple’s quarterly technical journal,

develop,

 helps reduce development time
and enhance programming savvy by providing an in-depth look at code and
techniques that show the “Apple way” of doing things. The journal contains
full-length articles, columns, and question-and-answer sections. In addition,
each issue of the journal comes with the latest Developer CD Series disc,
which contains the source code for that issue, all back issues of

develop

,

Inside Macintosh

, technical notes, sample code, and more.

335

A P P E N D I X B

B

B
ibliography

Bibliography B

This bibliography contains a list of sources of additional information on
the topics discussed in this book. The bibliography lists books and journal
articles in sections organized by topic. The following symbols help you to
identify the nature of some of the works listed.

■

This symbol indicates a work of general interest or an overview
of the topic. It’s a place to start if you know little or nothing
about a topic.

■

This symbol indicates a work that is seminal in its field. Consult
a reference marked with this symbol to find out about the basic
research and original ideas on the topic.

■

This symbol indicates a work that requires that you have a
great deal of knowledge in the field in order to find the
work useful.

This bibliography presents materials on the following topics:

■

Animation

■

Cognitive Psychology and Human Factors

■

Color

■

Environmental Design

■

Graphic and Information Design

■

History of Human Interface

■

Human-Computer Design

■

Human-Computer Interaction

■

Language

■

Programming

■

Special Applications

■

Universal Access

■

Visual Thinking

■

Worldwide Software

Figure B-0
Listing B-0
Table B-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X B

Bibliography

336

Animation

Animation B

Blair, Preston.

Cartoon Animation.

In How to Draw and Paint Series. Tustin,
CA: Walter Foster, 1989.

Blair, Preston.

 How to Animate Film Cartoons.

 In How to Draw and Paint Series.
Tustin, CA: Walter Foster, 1989.

Muybridge, Eadweard.

Animals in Motion.

New York: Dover, 1957.

Shows step-by-step photographs of 34 different animals in 123 kinds of
motion. Contains a selection of plates from the 1887 original work. These
illustrations are useful to anyone creating animations of animals.

Muybridge, Eadweard.

The Human Figure in Motion.

 New York: Dover, 1955.

Shows step-by-step photographs of 163 different kinds of human action.
Contains a selection of plates from the 1887 original work. These
illustrations are useful to anyone creating animations of people.

Noake, Roger.

Animation Techniques

. New York: Chartwell House, 1989.

Thomas, Frank, and Ollie Johnston.

Disney Animation, The Illusion of Life.

New York: Abbeville Press, 1981.

Presents animation techniques as they evolved at the Disney studios.
This 575-page book, heavily illustrated with Disney characters, covers
animation’s evolution since 1923 and discusses aspects such as story,
character development, backgrounds, and animation techniques.

Cognitive Psychology and Human Factors B

Fitts, P. M. “The Information Capacity of the Human Motor System in
Controlling Amplitude of Movement.”

Journal of Experimental Psychology

 47
(1954): 381–391.

Lindsay, Peter H., and Donald A. Norman.

Human Information Processing:
An Introduction to Psychology.

 New York: Academic Press, 1977.

An engaging textbook that covers a wide range of issues in
cognitive psychology.

Long, J., and A. Whitefield.

 Cognitive Ergonomics and Human-Computer
Interaction.

Cambridge, England: Cambridge University Press, 1989.

Miller, G. A. “The Magical Number Seven, Plus or Minus Two: Some Limits
on Our Capability for Processing Information.”

Psychological Review

 63 (1956):
81–97.

A well-written, classic paper describing the size of short-term memory.

A P P E N D I X B

Bibliography

Color

337

B

B
ibliography

Norman, Donald A.

Learning and Memory.

 San Francisco: W. H. Freeman, 1982.

Provides a good introduction to the processes involved in learning and
memory. An excellent presentation of many of the basic concepts of
cognitive psychology in little more than a hundred pages.

Norman, Donald A.

Memory and Attention: An Introduction to Human
Information Processing,

second edition. New York: Wiley, 1976.

Provides a thorough treatment of the processes involved in attending to,
acquiring, and remembering information. This 254-page book approaches
most issues by setting the stage, presenting excerpts from one or more
groundbreaking papers in the area, and then discussing and commenting
on them. This book is fairly accessible to most audiences.

Sanders, Mark, and Ernest J. McCormick.

Workbook for Human Factors in
Engineering and Design.

Dubuque, IA: Kendall/Hunt, 1990.

Tillman, Barry, and Peggy Tillman.

Human Factors Essentials: An Ergonomics
Guide for Designers, Engineers, Scientists, and Managers.

 New York:
McGraw-Hill, 1991.

Color B

Albers, Josef.

Interaction of Color.

 New Haven, CT: Yale University Press, 1963.

Favre, Jean-Paul, and Andre November.

Color and Communication

. Zürich:
ABC Verlag, 1979.

Itten, Johannes.

The Elements of Color.

 New York: Van Nostrand Reinhold, 1970.

Murch, Gerald M. “Physiological Principles for the Effective Use of Color.”

IEEE Computer Graphics and Applications

4, no. 11 (November 1984): 49–55.

Salomon, Gitta. “New Uses for Color.” In

The Art of Human Computer Interface
Design

, edited by Brenda Laurel, 269. Reading, MA: Addison-Wesley, 1990.

Discusses the use of color in human computer interface design. This article
describes a variety of interface-related issues, including interfaces for
choosing colors and using color for visualization and mnemonic purposes.

Sloane, Patricia.

 The Visual Nature of Color.

 Blue Ridge Summit, PA:
TAB Books, 1989.

Thorell, L. G., and W. J. Smith.

Using Computer Color Effectively.

 Englewood
Cliffs, NJ: Prentice-Hall, 1990.

Wyszecki, Gunter, and W. S. Stiles.

Colour Science.

 New York: Wiley, 1982.

A P P E N D I X B

Bibliography

338

Environmental Design

Environmental Design B

Alexander, Christopher, Sara Ishikawa, and Murray Silverstein.

A Pattern
Language, Towns/Buildings/Construction.

New York: Oxford University
Press, 1977.

Bentley, Ian, and others.

Responsive Environments: A Manual for Designers.

London: Architectural Press, 1985.

Contains design principles and examples directed toward urban designers,
architects, and landscape architects. In spite of its practical orientation, the
design principles—permeability, variety, legibility, robustness, visual
appropriateness, richness, and personalization—can be easily transposed
to the human interface domain.

Gehl, Jan.

Life Between Buildings.

 Translated by Jo Koch. New York: Van
Nostrand Reinhold, 1986.

Discusses attributes of the physical environment that make small urban
spaces (for example, squares and streets) more or less supportive of
human-human interaction.

Lynch, Kevin.

The Image of the City

. Cambridge, MA: MIT Press, 1960.

A classic work that describes the author’s studies of the regularities of
mental maps formed by the inhabitants of three cities. His analysis of the
five basic elements of city images, and the ways in which they contribute to
the legibility and navigability of their environments, can be applied to a
variety of representation and navigation problems within the HCI
(human-computer interaction) domain.

Places: A Quarterly Journal of Environmental Design

. Cambridge, MA: MIT Press.

This journal is aimed at architects, urban and landscape designers,
and others concerned with imbuing their designs with a sense of place.
It’s relevant to the field of human-computer interaction in two ways.
First, understanding how the large-scale physical environment shapes
human interaction can be important in the design of systems such as public
information kiosks. Second, lessons about how the physical environment
facilitates human interaction can be transposed to the domain of
human-computer interaction. These lessons can be applied directly to
the HCI domain as 3-D environments within the computer become
more prevalent. The lessons also can be applied indirectly as computer
interfaces–whether 2-D or 3-D–take on more of the richness and flexibility
that characterize the real world.

Whyte, William H.

City: Rediscovering the Center.

 New York: Anchor Books,
Doubleday, 1988.

A uniformly fascinating study of the behaviors of people in urban spaces.
Focuses particular attention to the physical factors that affect
human-human and human-city interaction.

A P P E N D I X B

Bibliography

Graphic and Information Design

339

B

B
ibliography

Graphic and Information Design B

This section includes resources on several different subjects related to the
design of graphic user interfaces.

Graphic Design and Drawing B

Bang, Molly.

Picture This: Perception and Composition.

 Boston:
Little, Brown, 1991.

Introduces the basic principles of graphic composition with elegance and
simplicity. Provides an excellent overview of the ideas and concepts
involved in graphic design.

Berryman, Greg.

Notes on Graphic Design and Visual Communication.

Los Altos,
CA: William Kaufmann, 1984.

Discusses logos, colors, and many other topics related to graphic design.

Bertin, Jacques.

Semiology of Graphics.

 Madison: University of Wisconsin
Press, 1983.

Galitz, W. O.

Handbook of Screen Format Design.

 Wellesley, MA: QED
Information Sciences, 1985.

Henri, Robert.

The Art Spirit.

 New York: HarperCollins, 1984.

Kerlow, Isaac, and Judson Rosebush.

Computer Graphics for Designers
and Artists.

 New York: Van Nostrand Reinhold, 1986.

Tufte, Edward.

Envisioning Information.

Cheshire, CT: Graphics
Press, 1990.

Tufte, Edward.

The Visual Display of Quantitative Information.

 Cheshire,
CT: Graphics Press, 1983.

Wurman, Richard S.

Follow the Yellow Brick Road: Learning to Give, Take, and Use
Instructions

. New York: Bantam Books, 1992.

Wurman, Richard S.

 Information Anxiety: What to Do When Information Doesn’t
Tell You What You Need to Know.

 New York: Bantam Books, 1990.

Icons and Symbols B

Diethelm, Walter.

Signet Sign Symbol.

 Zürich: ABC Verlag, 1976.

Dreyfuss, Henry.

Symbol Sourcebook: An Authoritative Guide to International
Graphic Symbols.

 New York: Van Nostrand Reinhold, 1984.

Presents thousands of symbols, presented first by subject, then by shape,
and finally in the index by name. This book provides a fertile source for the
designer seeking icons or other stylized design images.

A P P E N D I X B

Bibliography

340

History of Human Interface

Frutiger, Adrian.

Signs and Symbols: Their Design and Meaning.

 New York:
Van Nostrand Reinhold, 1989.

Holmes, Nigel, with Rose DeNeve.

Designing Pictorial Symbols.

New York:
Watson-Guptil, 1985.

Presents 54 case studies of how concepts were transformed into icons.
This book is useful because it not only shows the finished icon but also
explains the stages and thoughts that the designer went through to create
each icon.

Modley, Rudolf.

Handbook of Pictorial Symbols.

 New York: Dover
Publications, 1976.

Wildbur, Peter.

Information Graphics.

 New York: Van Nostrand Reinhold, 1989.

Typography B

Bigelow, C., and D. Day. “Digital Typography.” S

cientific American

 249,
no. 2 (1983): 94–105.

Carter, Rob, Ben Day, and Philip Meggs.

Typographic Design: Form and
Communication.

 New York: Van Nostrand Reinhold, 1985.

Describes the evolution and function of typography and illustrates several
typefaces in different sizes. Devoted almost entirely to print technology,
this book provides a thorough understanding of typography’s roots.

Frutiger, Adrian.

Type Sign Symbol.

 Zürich: ABC Verlag, 1980.

Tinker, M. A.

Legibility of Print.

Ames: Iowa State University Press, 1963.

History of Human Interface B

Engelbart, D. C., and W. K. English. “A Research Center for Augmenting
Human Intellect.”

Proceedings of the FJCC

33 (1968): 395–410.

Johnson, Jeff, and others. “The Xerox Star: A Retrospective.”

Computer

 22,
no. 9 (September 1989): 11–26, 28–29.

Describes the Xerox 8010 Star information system, which was designed as
an office automation system. The article identifies the distinctive features of
Xerox Star and examines changes to its original design. It includes a history
of Xerox Star development and relates some of the lessons learned during
its design.

Kay, A. “Inventing the Future (Computer Industry).” In

AI Business:
The Commercial Uses of Artificial Intelligence,

 103–112

.

Cambridge, MA:
MIT Press, 1984.

A P P E N D I X B

Bibliography

Human-Computer Design

341

B

B
ibliography

Proceedings: ACM Conference on the History of Personal Workstations.

New York:
ACM, 1986.

Smith, D. C., and others. “Designing the Star User Interface.”

BYTE

 7, no. 4
(April 1982): 242–282.

Tesler, Larry. “The Legacy of the Lisa.”

MacWorld

 (September 1985): 17–22.

A description of how the Lisa computer changed personal computing,
written by a member of the Lisa design team.

Human-Computer Design B

This section presents information about a number of different subjects related
to human-computer design. It includes resources for several of the human
interface principles described in Chapter 1, “Human Interface Principles.”

Consistency B
Grudin, J. “The Case Against User Interface Consistency.” Communications of
the ACM 32 (October 1989): 1164–1173.

Polson, P. G. “The Consequences of Consistent and Inconsistent User
Interfaces.” In Cognitive Science and Its Applications for Human-Computer
Interaction, edited by R. Guindon. Hillsdale, NJ: Lawrence Erlbaum
Associates, 1988.

Tognazzini, Bruce. “Consistency.” In The Art of Human-Computer Interface
Design, edited by Brenda Laurel, 75–77. Reading, MA: Addison-Wesley, 1990.

Direct Manipulation B
Hutchins, E. L., J. D. Hollan, and D. A. Norman. “Direct Manipulation
Interfaces.” In User Centered System Design, edited by D.A. Norman
and S. Draper. Hillsdale, NJ: Lawrence Erlbaum Associates, 1986.

Minsky, M. R. “Manipulating Simulated Objects With Real-World
Gestures Using a Force and Position Sensitive Screen.” Computers & Graphics
(July 1984): 195–203.

Myers, B. A., and W. Buxton. “Creating Highly-Interactive Graphical User
Interfaces by Demonstration.” Computer Graphics (August 1986): 249–256.

Schneiderman, Ben. “Direct Manipulation: A Step Beyond Programming
Languages.” IEEE Computer 16, no. 8: 57–69.

Schneiderman, Ben. “The Future of Interactive Systems and the Emergence of
Direct Manipulation.” Behaviour and Information Technology 1 (1982): 237–256.

A P P E N D I X B

Bibliography

342 Human-Computer Design

Menus B
Miller, D. P. “The Depth-Breadth Trade-off in Hierarchical Computer Menus.”
In Proceedings of the Human Factors Society 25th Annual Meeting, 296–300.
Santa Monica, CA: Human Factors Society, 1981.

Norman, K. L. The Psychology of Menu Selection: Designing Cognitive Control at
the Human/Computer Interface. Norwood, NJ: Ablex, 1990.

Walker, N., and J. B. Silencer. “A Comparison of Selection Times From
Walking and Pull-Down Menus.” CHI ‘90 Conference Proceedings (April 90):
221–225.

A seminal paper on why pull-down menus are superior to any other kind.
Everyone who designs for the screen must read this paper.

Metaphors B
Carroll, J. M., and others. “Interface Metaphors and User Interface Design.”
In Handbook of Human-Computer Interaction, edited by M. Helander.
North-Holland: Elsevier Science Publishers B.V., 1988.

A comprehensive review of research and theoretical work on metaphors,
coupled with a discussion of designing with metaphors.

Erickson, T. D. “Working With Interface Metaphors.” In The Art of Human
Computer Interface Design, edited by Brenda Laurel. Reading, MA:
Addison-Wesley, 1990.

A discussion of the role of metaphors in the human interface, and a
discussion and example of how to design interface metaphors.

Lakoff, George, and Mark Johnson. Metaphors We Live By. Chicago: University
of Chicago Press, 1980.

A delightful book that discusses the ubiquity of metaphors in language.
It makes the point that metaphors are not so much picturesque uses of
words, as systems of concepts that affect how we describe, think about,
and experience the world.

Malone, T. W. “How Do People Organize Their Desks: Implications for
Designing Office Automation Systems.” ACM Transactions on Office Information
Systems 1 (1983): 99–112.

Wozny, L. A. “The Application of Metaphor, Analogy, and Conceptual Models
in Computer Systems.” Interacting With Computers 1, no. 3 (December 1989):
273–283.

A paper that clearly describes the differences between metaphor,
analogy, and conceptual models and discusses their applications in
the computer domain.

A P P E N D I X B

Bibliography

Human-Computer Design 343

B
B

ibliography

Product Design B
International Design. New York: International Design.

A bimonthly design magazine focusing on product design. It shows
innovative designs ranging from toasters and lamps to computer systems.

Norman, Donald. Design of Everyday Things (formerly Psychology of Everyday
Things). New York: Basic Books, 1988.

An engaging and thoughtful book that discusses interface issues that arise
in the design of door knobs, VCRs, cameras, and microwave ovens. This
book offers an excellent introduction and overview for readers who are
new to the field of human-computer interaction (HCI) and provides useful
information for experienced HCI professionals.

Usability Testing B
Bewley, W., T. L. Roberts, D. Schroit, and W. L. Verplank. “Human Factors
Testing in the Design of Xerox’s 8010 ‘Star’ Office Workstation.” CHI ‘83
Conference Proceedings, 72–77.

Bruning, J. L., and B. L. Kintz. Computational Handbook of Statistics, third
edition. Glenview, IL: Scott, Foresman, 1987.

Holleran, Patrick A. “A Methodological Note on Pitfalls in Usability Testing.”
Behavior and Information Technology 10 (1991): 345–357.

Ramey, J. “Usability Testing: Conducting the Test Procedure Itself.”
Proceedings of the International Professional Communication Conference (1987):
127–130.

Runyon, R. P., and A. Haber. Fundamentals of Behavioral Statistics, third edition.
Reading, MA: Addison-Wesley, 1979.

Schriver, K. A, ed. Designing Computer Documentation: A Review of the Relevant
Literature. Communications Design Center Technical Report No. 31,
Pittsburgh, PA: Carnegie Mellon University, 1986.

Suter, W. N., and H. C. Lindgren. Experimentation in Psychology. Boston:
Allyn & Bacon, 1989.

This book describes how to design tests for studies. It provides information
on how to minimize biases and avoid common pitfalls.

A P P E N D I X B

Bibliography

344 Human-Computer Interaction

User-Centered Design B
Carroll, John M., ed. Designing Interaction: Psychology at the Human-Computer
Interface. Cambridge, England: Cambridge University Press, 1991.

This book consists of articles by a number of leading HCI researchers and
practitioners. It focuses on trying to bridge the gap between psychological
theory and HCI design practice. Other themes in the book include close
examinations of the design process and discussions of what can be learned
from looking at real-world artifacts and situations. This collection will be of
particular interest to those people with an interest in the theoretical and
conceptual foundations of HCI design.

Greenbaum, Joan, and Morten Kyng, eds. Design at Work: Cooperative Design of
Computer Systems. Hillsdale, NJ: Lawrence Erlbaum Associates, 1991.

An excellent collection that strikes a nice balance between practice and
theory. In general, the articles reflect what has been called the Scandinavian
approach, emphasizing participatory design and trying to ensure that
computer systems enhance human work rather than mechanize it.
Although the articles draw on concepts from anthropology, sociology,
and linguistics, the book’s strength is in its many examples and its
practical orientation.

Norman, D. A., and S. Draper, eds. User Centered System Design. Hillsdale, NJ:
Lawrence Erlbaum Associates, 1986.

Schneiderman, B. “How to Design With the User in Mind.” Datamation 28,
no. 4 (1982): 125–126.

Winograd, Terry, and Fernando Flores. Understanding Computers and Cognition:
A New Foundation for Design. Reading, MA: Addison-Wesley, 1987.

This book lays a foundation for interface design by grounding it in human
behavior, language, and the social and cultural contexts within which they
occur. The book provides a perspective on human-computer interface
design very different from the more traditional approach described by
Card, Moran, and Newell’s GOMS (goals, operators, methods, and
selectors) model.

Human-Computer Interaction B

Baecker, R. M., and W. A. S. Buxton. Readings in Human-Computer Interaction:
A Multidisciplinary Approach. Los Altos, CA: Morgan Kaufmann, 1987.

A complete reference compendium of papers on human interface. It
has a good subject index, so you can look up specific topics without
going through the whole book cover to cover. It is a necessity for the
serious designer.

A P P E N D I X B

Bibliography

Human-Computer Interaction 345

B
B

ibliography

Behaviour and Information Technology. England: Taylor & Francis.

This wide-ranging, bimonthly journal contains articles covering topics such
as the role of managers in the introduction of new technology and studies
on the learnability of HyperCard.

Brown, Lin. Human-Computer Interaction Guidelines. Norwood, NJ: Ablex, 1988.

Card, S. K., T. P. Moran, and A. Newell. Applied Information-Processing
Psychology. Hillsdale, NJ: Lawrence Erlbaum Associates, 1983.

Card, S. K., T. P. Moran, and A. Newell. The Psychology of Human-Computer
Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, 1983.

CHI Conference Proceedings. Reading, MA: Addison-Wesley.
Published annually.

Gardiner, Margaret M., and B. Christie, eds. Applying Cognitive Psychology to
User Interface Design. New York: Wiley, 1987.

Helander, M. Handbook of Human-Computer Interaction. Amsterdam:
Elsevier, 1990.

Interacting With Computers: The Interdisciplinary Journal of Human-Computer
Interaction. England: Butterworth Scientific.

Published three times a year, this journal focuses on human-computer
interaction issues. Material covered in journal ranges from empirical
studies of the workplace and computer systems to theoretical and
review articles.

Laurel, Brenda, ed. The Art of Human-Computer Interface Design. Reading, MA:
Addison-Wesley, 1990.

This collection of papers covers topics in interface design including various
how-to articles, project descriptions, commentary by experts in the field,
and more.

Laurel, Brenda. Computers as Theatre. Reading, MA: Addison-Wesley, 1991.

Schneiderman, B. Designing the User Interface, Second Edition. Reading, MA:
Addison-Wesley, 1992.

Suchman, Lucy. Plans and Situated Actions: The Problem of Human-Machine
Communication. New York: Cambridge University Press, 1987.

Provides a good introduction to the psychology behind interface issues and
human-machine interaction. It reviews many of the issues involved in the
application of psychology, anthropology, and sociology to people’s
everyday actions. The author uses examples such as an analysis of Xerox
copier machines to argue that people’s thought processes occur within a
specific framework or context.

Tognazzini, Bruce. Tog on Interface. Reading, MA: Addison-Wesley, 1992.

A P P E N D I X B

Bibliography

346 Language

Language B

Apple Computer, Inc. Apple Publications Style Guide. Cupertino, CA:
APDA, 1991.

Duffy, T. M., and R. Waller, eds. Designing Usable Texts. New York: Academic
Press, 1985.

Elbow, Peter. Writing With Power: Techniques for Mastering the Writing Process.
New York: Oxford University Press, 1981.

Introduces ways to write and revise that will strengthen, not strangle, your
voice. It discusses techniques for separating writing from revising, for
addressing an audience, for using feedback, and for writing with power.

Price, Jonathan. How to Write a Computer Manual. A Handbook of Software
Documentation. Menlo Park, CA: Benjamin/Cummings, 1984.

Simpson, H., and S. M. Casey. Developing Effective User Documentation:
A Human Factors Approach. New York: McGraw-Hill, 1988.

Strunk, William, Jr., and E. B. White. The Elements of Style, third edition.
New York: Macmillan, 1979.

Gives a few memorable rules for writing well. The book is short and covers
the survival elements of usage, composition, and style. The guidelines,
such as “Omit needless words” and “Revise and rewrite,” are clear.

University of Chicago Press. The Chicago Manual of Style, thirteenth edition.
Chicago: University of Chicago Press, 1982.

Provides a complete reference for English punctuation, usage, and style.

Zinsser, William. On Writing Well: An Informal Guide to Writing Nonfiction,
fourth edition, rev. New York: HarperCollins, 1990.

Programming B

Apple Computer, Inc. Inside Macintosh. Reading, MA: Addison-Wesley.

A set of books that describe how to write an application for the Apple
Macintosh family of computers. Inside Macintosh is the definitive guide and
reference for anyone writing software for the Macintosh computer. Current
titles of the books that comprise Inside Macintosh include Macintosh Toolbox
Essentials, QuickTime, Memory, Processes, and Files. This list presents books
that are already available on the market or that will be published within
several months of the publication date of this book.

Grogono, P., and S. H. Nelson. Problem Solving and Computer Programming.
Reading, MA: Addison-Wesley, 1982.

A P P E N D I X B

Bibliography

Special Applications 347

B
B

ibliography

Simpson, H. K. Programming the Macintosh User Interface. New York:
McGraw-Hill, 1986.

Special Applications B

This section presents resources for several different types of applications,
including applications that support collaborative computing, hypertext,
and multimedia capabilities.

Collaborative Computing B
Erickson, T.D. “Interfaces for Cooperative Work: An Eclectic Review of CSCW
‘88.” SIGCHI Bulletin 21, no. 1 (July 1989). New York: ACM.

Although this nine-page paper summarizes results presented at a
particular conference, it is a good summary of many of the most important
interface issues that arise in trying to provide computer support for
cooperative work.

Foster, G., and M. Stefik. “Cognoter, Theory and Practice of a Collaborative
Tool.” CSCW Proceedings (1986): 7–15.

Greif, Irene, ed. Computer-Supported Cooperative Work: A Book of Readings. San
Mateo, CA: Morgan Kaufmann, 1988.

A collection of 28 papers on cooperative work. The papers include many of
the classic papers from the history of the field as well as more recent work
including theoretical discussions, project descriptions, empirical studies of
how people use CSCW (computer-supported cognitive work) systems,
and more.

Grudin, J. “Why CSCW Applications Fail: Problems in the Design and
Evaluation of Organizational Interfaces.” CSCW Proceedings (1988): 85–93.

Discusses three reasons why commercial CSCW applications often fail.

Hypertext B
Barrett, Edward, ed. The Society of Text, Hypertext, Hypermedia, and the Social
Construction of Information. Cambridge, MA: MIT Press, 1989.

Discusses hypertext, hypermedia, and online information systems design.

Barrett, Edward, ed. Text, ConText and HyperText, Writing With and for the
Computer. Cambridge, MA: MIT Press, 1988.

Jonassen, D. H., ed. The Technology of Text. Vol. 2. Englewood Cliffs, NJ:
Educational Technology, 1985.

Nelson, Theodor H. Computer Lib. Schooleys Mountain, NJ: Nelson, 1974.

Nelson, Theodor H. Literary Machines. Schooleys Mountain, NJ: Nelson, 1981.

A P P E N D I X B

Bibliography

348 Special Applications

Multimedia B
Buxton, W. “A Directory of Sources for Interactive Technologies.” SIGCHI
Bulletin (July 1986): 58–63.

Tognazzini, B. “Principles of Multimedia Visible Interface Design.” Multimedia
Review 1, no. 4 (Winter 1990): 18–22.

Online Documentation and Online Help B
Aaronson, A., and J. M. Carroll. “Intelligent Help in a One-Shot Dialog:
A Protocol Study.” In CHI + GI’87 Conference Proceedings: Human Factors
in Computing Systems and Graphics Interface, edited by J. M. Carroll and
P. P. Tanner, 163–168. New York: ACM, 1987.

Brockmann, R. John. “The Documentation Problem.” Part I of Writing Better
Computer User Documentation: From Paper to Hypertext, Version 2.0. New York:
Wiley, 1990.

Cohill, A., and R. Williges. “Retrieval of HELP Information for Novice Users
of Interactive Computer Systems.” Human Factors 27, no. 3 (1985): 335–343.

Conklin, J. “Hypertext: An Introduction and Survey.” IEEE Computer
(September 1987): 17–41.

Duffy, T., B. Mehlenbacher, and J. Palmer. “The Evaluation of Online Help
Systems: A Conceptual Model.” In The Society of Text: Hypertext, Hypermedia,
and the Social Construction of Reality, edited by E. Barrett, 362–387. Cambridge,
MA: MIT Press, 1989.

Horton, William K. Designing and Writing Online Documentation: Help Files to
Hypertext. New York: Wiley, 1990.

Kearsley, G. Online Help Systems: Design and Implementation. Norwood, NJ:
Ablex, 1988.

Queipo, L. “User Expectations of Online Information.” IEEE Transactions on
Professional Communications 29, no. 4 (1986): 11–15.

Rubens, P., and R. Krull. “Application of Research on Document Design to
Online Displays.” Technical Communication 32, no. 4 (1985): 29–34.

Schriver, K. A., J. R. Hayes, and M. D. Langston. “The Design of Information
for Computer Users: A Review of the Literature on Hardcopy and Online
Documentation.” In Designing Computer Documentation: A Review of the
Relevant Literature, edited by K. A. Schriver. Communications Design Center
Technical Report No. 31, Pittsburgh, PA: Carnegie Mellon University, 1986.

Walker, J. “Issues and Strategies for Online Documentation.” IEEE Transactions
on Professional Communication 30 (1987): 235–248.

A P P E N D I X B

Bibliography

Universal Access 349

B
B

ibliography

Universal Access B

Apple Computer, Inc. Macintosh Disability Resources Stack. Cupertino, CA:
Worldwide Disability Solutions Group, 1991.

Available as an online HyperCard stack.

Berliss, Jane, ed. Trace Resource Book: The 1991–92 Edition: Assistive Technologies
for Communication, Control and Computer Access. Madison, WI: Trace Research
and Development Center, 1991.

Enders, Alexandra, and Marian Hall. Assistive Technology Sourcebook.
Washington, DC: RESNA Press, 1990.

This sourcebook provides an exhaustive listing of resources for individuals
with a disability and the professionals working with them. It also contains
helpful, brief articles explaining major concepts, philosophies, and
technical information on all the major areas of assistive technology.

Green, Peter, and Alan J. Brightman. Independence Day—Designing
Computer Solutions for Individuals With Disability. Allen, TX: DLM/Teaching
Resource, 1990.

Vanderheiden, Gregg C., and Katherine R. Vanderheiden. Accessible Design of
Consumer Products: Guidelines for the Design of Consumer Products to Increase
Their Accessibility to People With Disabilities or Who Are Aging. Madison, WI:
Trace Research and Development Center, 1991.

Visual Thinking B

Adams, J. L. Conceptual Blockbusting, second edition. New York: Norton, 1979.

Hanks, Kurt, and Jerry Belliston. Rapid Viz: A New Method for the Rapid
Visualization of Ideas. Los Altos, CA: William Kaufmann, 1980.

Presents drawing as a way of capturing ideas quickly and casually, not as a
means of producing a finished illustration. The book shows how simple
techniques such as contour drawing can make drawing a more useful tool
for anyone.

McKim, Robert H. Experiences in Visual Thinking, second edition. Boston:
PWS, 1980.

Discusses thinking and introduces drawing as a means of strengthening
the thinking process. The book weaves together research findings, citations
for further reading, quotations, mental exercises, and drawing techniques.

A P P E N D I X B

Bibliography

350 Worldwide Software

Worldwide Software B

Apple Computer, Inc. Guide to Macintosh Software Localization. Reading, MA:
Addison-Wesley, July 1992.

Describes how application software written for the Macintosh computer is
localized for Japan, France, Germany, and more than 50 other markets
around the globe. It tells you how to give an application the most
successful look, feel, and behavior for each market. It is an essential
manual for software designers, programmers, publishers, marketers,
translators, and localization specialists.

Apple Computer, Inc. Localization for Japan. Cupertino, CA: APDA, 1992.

This book is written for software developers and publishers who wish to
market their products in Japan. If you are interested in designing,
programming, translating, marketing, or republishing software for the
Japanese market, you will find valuable information in this book, which is
available through APDA.

Hibi, Sadao. Japanese Detail • Architecture. San Francisco: Chronicle
Books, 1989.

Koike, Kazuko, and Ikko Tanaka, eds. Japan Color. San Francisco:
Chronicle Books, 1982.

Nielsen, Jakob, ed. Designing User Interfaces for International Use. Vol. 13
of Advances in Human Factors/Ergonomics. Amsterdam: Elsevier, 1990.

General Considerations

351

A P P E N D I X C

C

C
hecklist

Checklist C

This checklist contains questions about the Macintosh interface that you can
ask yourself while reviewing software. These questions will help bring to
mind the particulars of the guidelines.

The questions here cover all the guidelines except those for selection. The
selection standards of the guidelines are detailed, so refer to “Selecting” on
page 286 in Chapter 10, “Behaviors,” for information about them.

You must be able to answer every question “yes” to ensure conformity with
the guidelines. However, sometimes it is necessary to make tradeoffs in your
application in order to provide the most usable interface. Remember to
maintain the spirit of the guidelines and the principles when reviewing
your product.

General Considerations C

■

Does the application have the “look” of the Macintosh desktop interface
(including, but not limited to, desktop, windows, and menus)?

■

Does the application have the “feel” of the Macintosh desktop interface
(including, but not limited to, pointing, selecting, and keyboard input)?

■

If a metaphor is being used, is it suitable for the application? Does the
metaphor match a “real” visual and behavioral representation, as with the
desktop, so that the users do not have to carry a “map” in their head?

■

Does the application always provide some indication that an activity is
being carried out in response to a command?

■

Is suitable feedback provided during task processing? Is the completion of
a processing task indicated somehow? Is the duration of the task indicated?

■

Does the user always have the option of finding an object or action on the
screen? In other words, does your interface follow the see-and-point
principle of design?

■

Are the operations consistent with the standard elements of the interface;
that is, if a user is familiar with such applications as MacPaint, MacDraw,
and MacWrite, will the application seem like familiar territory?

■

Is a printout a replica of what the user sees on the screen? In other words,
is it WYSIWYG (what you see is what you get)?

■

Is an explanation offered if a particular action cannot be carried out?
Are alternatives offered?

Figure C-0
Listing C-0
Table C-0

Thi d t t d ith F M k 4 0 4

A P P E N D I X C

Checklist

352

General Considerations

■

Are there warnings about risky actions? Are there different warnings for
different levels of risky actions? Are there enough warnings without being
too many? Are users allowed to back away gracefully from risky territory?

■

Is there a feeling of stability?

■

If an operation can be interrupted, do you provide a Cancel or Stop button?
Can Escape or Command-period be used to cancel or stop these operations?

■

Is your application forgiving and explorable by supporting Undo?

■

Do you avoid assigning new behaviors to existing objects?

■

Do you make all changes clearly visible?

■

Do you interpret user’s responses consistently?

■

Do you use progressive disclosure, as appropriate?

■

When your application runs in the background, do you gently call the
user’s attention to a task completion or request for input by using the
Notification Manager?

If an immediate response is crucial and the user
doesn’t respond to a notification request, does your application handle the
situation gracefully? A background application should not take control
from the user by placing an alert box on the screen when the user hasn’t
activated the application.

■

Is your application MultiFinder friendly? Better workflow is possible when
the user can easily switch back and forth between applications.

■

If there are modes, is there a clear visual indication of the current mode?
Does the visual indication of the mode appear near the object most affected
by the mode? Are there enough landmarks to remind the user what area of
the application he or she is in? For example, the MacPaint pointer changes
to a pencil in draw mode and to a paint brush in paint mode.

■

Is each mode absolutely necessary? Do the modes within the application
properly track the user’s own modes? Do users consistently avoid the kind
of errors caused by the program being in a mode other than what the user
wants or expects? Making a mode visually apparent is no guarantee that
the user will track it: test the application on users and find out what sorts
of mistakes they are making. If the errors are caused by modes, eliminate
the modes.

■

Can the user save a document or quit an application at any time, unless he
or she is in a modal dialog box?

■

Are the widest possible range of user activities available at any time?
The user should spend most of his or her time in the event loop.

■

Will a user unable to distinguish colors be able to use the application? Will
someone without a color monitor be able to use it? The information
conveyed by color coding should also be presented in another form,
such as text, position, highlighting, gray-scale variations, or pattern.
(These questions do not apply to programs in which the task to be carried
out requires full-color vision on a color monitor.)

A P P E N D I X C

Checklist

Graphic Design

353

C

C
hecklist

■

Will a user with a hearing disability be able to use the application? Audible
messages should be supplemented with visual cues or should allow the
user to choose visible instead of audible messages. (This question may not
apply to music programs.)

Graphic Design C

■

Did you use graphics to illustrate commands, features, and parameters of
the applications, as well as all of the user’s data, whenever possible?

■

Do the graphics resemble items that users are familiar with? Did you leave
out insignificant detail (which unnecessarily complicates a graphic)?

■

Does the screen look “clean” and free from clutter?

■

Does the user have control over the design of the workplace, allowing him
or her to individualize it?

■

Is the information in windows organized so that the most important
information can be read first?

■

Does your design look good at different bit depths on all Macintosh
computers?

■

Do you use a consistent light source, one that always comes from the
upper-left corner of the screen?

■

Do you use white space and graphics to break up long pieces of text?

Color C

■

Do you always design for black and white first and then colorize
your design?

■

Are your black-and-white designs two-dimensional?

■

Do you avoid using color as the only means of communicating important
information?

■

Are the colors carefully chosen? Are bright colors used sparingly and only
in small areas? Do you use light or subtle colors for large areas?

■

Do you maintain a close visual relationship between a black-and-white
design and its colorized version?

■

Do you use true gray instead of a 50 percent gray pattern when a color
monitor is present?

■

Do you use the Color Picker where appropriate?

■

Do any custom elements, such as tool palettes or special window controls,
follow the color scheme of the operating system? Do the colors get updated
when the user changes the color in the Color control panel?

A P P E N D I X C

Checklist

354

Icons

Icons C

■

Do your icons represent objects that users are familiar with?

■

Do your icons fit in with the desktop metaphor?

■

Do you provide complete icon families, with

'ICN#'

,

'ics#'

,

'icl4'

,

'ics4'

,

'icl8'

, and

'ics8'

 icons?

■

Are icon colors chosen from the palette of 34 colors?

■

If your application supports stationery pads, the Edition Manager, or the
Data Access Manager, do you provide icons that distinguish the stationery
pads, editions, or query documents for your application?

Windows C

■

Do the standard window size and position take into account the
dimensions of the screen?

■

Is the standard state of a window best suited to working on the document
(such as no wider than the page width), and not necessarily as large as the
full screen?

■

Does your application make sense when it chooses to open a window in
either the standard or the user-selected state?

■

Can each sizable window be made as large as the smaller of either the
maximum document size or the maximum size of the displays, including
multiple monitor displays?

■

Is the default position of a window contained on a single screen?

■

Is each additional window opened below and to the right of its
predecessor?

■

If a user drags a window from one monitor to another monitor, does your
application open subsequent windows on the second monitor?

■

Do you use the lowercase letters “untitled” in a new window title? Do
you avoid using additional punctuation in window titles? Do you avoid
using blank titles? Do you avoid adding a number to the title of the first
new window?

■

Before closing a window, do you check to see if the user has changed its
size or position? Do you save window positions, and then reopen windows
in the size and position in which the user left them?

■

Before reopening a window, do you make sure that the size and position
are reasonable for the user’s current monitor or monitors, which may not
be the same as the monitor on which the document was last open?

A P P E N D I X C

Checklist

Dialog Boxes

355

C

C
hecklist

■

When zooming from the user state to the standard state, do you check if
the size of the standard state would fit completely on the screen without
moving the upper-left corner? If so, is the upper-left corner anchored? If
not, is the window moved to an appropriate default location?

■

When a window becomes inactive, do the close box, zoom box, size box,
stripes in the title bar, and scroll bars disappear?

■

Do you avoid displaying the selection in an inactive window? (You can use
a secondary selection technique such as an outline to indicate where the
selection is in an inactive window.)

Dialog Boxes C

■

Are questions in dialog boxes posed in a straightforward and positive
way–for example, “Do you want to erase everything on the disk named
“James Bond?” rather than “Do you not want to alter the contents of
this disk?”

■

Do dialog boxes and alert boxes appear on the screen where the user’s
focus of attention is, not necessarily where the menu bar is?

■

Are dialog boxes horizontally centered either on the screen or over the
active window if the window is on a large screen or on a screen other than
the one the menu bar appears on?

■

If a movable modal dialog box is displayed, can the application run in the
background?

■

Do you provide access to the menu bar when you display a movable modal
dialog box? Are the Help, Edit, Keyboard, and Application menus enabled
as appropriate?

■

Are movable modal dialog boxes truly modal within the application?

■

Do movable modal dialog boxes have a drag region (title bar)? Do movable
modal dialog boxes not have a close box? For black-and-white monitors, do
movable modal dialog boxes have a two-pixel-wide outline within the
content region to signify that it is a modal dialog box?

■

Can the Help menu be used when a modal dialog box is displayed?

■

If there is an active editable text box in a modal dialog box, can the Cut,
Copy, Paste, and Undo menu commands in the Edit menu be used?

■

Do keyboard equivalents of the standard Edit menu commands operate
correctly in a modal dialog box containing editable text items?

■

When a scrolling list is present in a dialog box, can type selection be used?
Can the arrow keys be used to move the selection by one item in the
direction of the arrow?

■

Does the active area of a dialog box have an indicator if there is more than
one possible active area? (Active areas are those that accept typing such as
scrolling lists with type selection or text boxes.)

A P P E N D I X C

Checklist

356

Dialog Boxes

■

Does clicking a desired element move the active area to that element?

■

Does pressing the Tab key cycle through the available elements? Does
Shift-Tab cycle in the reverse direction?

■

When appropriate, are buttons named with a verb that describes the action
that it performs, such as Erase rather than OK?

■

Do you provide a Cancel button wherever possible, especially in progress
dialog boxes? Does pressing Escape or Command-period indicate Cancel in
a dialog box or alert box? (Pressing Escape should never cause the user to
lose information.)

■

If an operation can be halted midstream, with possible side effects, is the
button named Stop instead of Cancel?

■

Do the Return and Enter keys map to the default button, which is usually
the button with the safest result or the most likely response?

■

Are default buttons outlined with an additional border of three black
pixels, separated by a border of one white pixel?

■

Do you avoid displaying a default border around any button when you use
the Return key in editable text boxes?

■

When a button is activated by keyboard equivalents, is the button
highlighted for eight ticks of the clock to give visual feedback that the item
has been chosen?

■

Are buttons 20 pixels high? Are they wide enough for their text names
(with a minimum of 8 pixels on each side of the text)?

■

Are buttons placed in functional and consistent locations, both within your
application and across all applications that you develop? Is the action
button placed in the lower-right corner with the Cancel button to its left or
above (for Western readers)?

■

Do you use a consistent amount of white space between the border of the
dialog box and its elements, thus creating a balanced appearance in
the dialog box?

■

When a dialog box or alert box refers to a document or an application, do
you use the name of the document or application in the text?

■

Do you use curly quotation marks (single and double) instead of straight
quotation marks? (This also applies to apostrophes.)

■

When you must unavoidably nest dialog boxes, do you dim the
background dialog box and buttons, so that the frontmost dialog box
stands out?

■

Do your modeless dialog boxes have a close box? Such dialog boxes should
not have buttons that dismiss the dialog box.

■

Has room been left to allow the dialog box to grow during localization?
Most languages require more characters than English to convey
equivalent messages.

A P P E N D I X C

Checklist

Alert Boxes

357

C

C
hecklist

■

Are display rectangles of dialog box items (for example, radio buttons and
checkboxes) the same size? When the alignment of dialog box items is
reversed, the items should align on the opposite side.

Alert Boxes C

■

Do alert boxes have the proper level of severity and show the proper icon
associated with each severity level?

■

Are alert boxes vertically positioned so that one-fifth of the remaining
desktop area is above the alert box?

■ Do the alert icon and message fit the situation?

■ Does your application use the system alert sound (SYSBEEP) so that the
user’s menu bar automatically flashes (inverts rapidly) if the sound is
turned off when they receive an alert message?

■ Does the alert message not only tell the user what is wrong, but also offer
suggestions as to what to do to correct it? The best alert messages answer
the following questions: What happened? Why did it happen? What can I
do about it?

■ Is this alert box necessary? Often, the user can be prevented from making
an error. For example, if the application cannot handle an 80-character
filename, don’t display an 80-character field in which to enter it.

Scrolling C

■ Does the window use either the standard scroll bar mechanism or the hand
for scrolling? If it uses the hand, does the pointer either always become a
hand in the window or appear highlighted in a tool palette?

■ Does clicking a scroll arrow cause the document to move a distance of one
unit in the chosen direction? (The unit should be appropriate and
meaningful for the application.)

■ Does clicking in the scroll bar below the scroll box advance the document
by a windowful? (A windowful is the height or width of a window, minus
a one-unit overlap.) Does clicking above the scroll box move the document
back by a windowful?

■ If the user drags the scroll box and then moves the pointer well outside the
scroll bar, does the scroll box snap back to its original position?

■ Is the function of the arrow keys different from the function of the scroll
bar? (Arrow keys should not substitute for scroll arrows.)

■ Are the scroll bars inactive when the document is no larger than
the window?

A P P E N D I X C

Checklist

358 Menus

■ Are the scrolling keys on the keyboard (Page Up, Page Down, Home, End)
supported? Note that these keys do not move the insertion point and do
not affect the selection.

■ Does the scroll box indicate the approximate position of the visible part of
the document in comparison to the whole document?

Menus C

■ Are the Apple, File, and Edit menus present, with at least the standard
items? (These menus are needed for desk accessories, even when the
application doesn’t use them.)

■ Has enough room been left on the right side of the menu bar for the menu
that some desk accessories add to the menu bar? Is there also enough extra
room to allow for the expansion that almost always occurs during
translation into other languages?

■ Do the unique menus of the application have names that are appropriate?
Are the names sufficiently different from the standard menu names? Can
the user understand and remember their meaning?

■ Are frequently used menu items available at the top level rather than in a
submenu or a dialog box? If not, can the user move them up?

■ When an item in a menu is currently disabled, is it dimmed in the menu
rather than missing from it?

■ If all the items in a menu are currently disabled, is the menu title dimmed?
Can the user still pull down the menu and see the dimmed names of
the operations?

■ Are toggled menu items either unambiguously a verb or unambiguously a
state of being?

■ Are menu titles and items in caps/lowercase unless there is a compelling
reason to have a different style, such as ALL CAPS in a Style menu?

■ Do menu items have an ellipsis character (…) if more information is
required from the user before completing the command?

■ Do menu items blink briefly, and is the menu title highlighted until the
command is complete?

■ Are the dotted lines in menus (as well as dimmed items) unselectable?
These items should not be highlighted when the user moves the mouse
pointer over them.

■ Are the menu items truly menu items? Menu items should not be used as
text, section titles, or status indicators.

■ In a hierarchical menu, does the title of the submenu have a right-pointing
triangle? Are submenus used only for lists of related items?

A P P E N D I X C

Checklist

Pop-Up Menus 359

C
C

hecklist

■ Can the user see all the commands, items, and submenu titles in a menu
without scrolling? Scrolling should be necessary only for menus that users
have added to or for menus that spill over because the user has selected a
large system font.

■ Does the application support Undo, Cut, Copy, and Paste?

■ If the application is text oriented, can the user change the font and style by
using menu commands?

Pop-Up Menus C

■ Do pop-up menus have a downward-pointing triangle and a one-pixel
drop shadow? While the menu is showing, is its title inverted and is the
current value checked? If the menu must be scrolled, is this indicated by a
triangle pointing up or down?

■ Are pop-up menus used to allow the user to choose only one of a set
of several choices? Pop-up menus should not be used for choosing
more than one item from a set of several choices.

■ Do you avoid adding menu items that contain verbs (actions) in
pop-up menus?

■ Is the same font used for the normal state and the open state of a
pop-up menu?

■ Do you avoid making the pop-up menu narrower in the open state
than in the closed state?

Palettes and Tear-Off Menus C

■ If a tool palette is present, is the selected symbol (icon, pattern, character, or
drawing) highlighted?

■ Do palettes provide tracking feedback when the mouse button is down?

■ Does any change in selection in palettes occur only when the mouse button
is released?

■ If a menu has been torn off and moved, can the user still get access to it
from the menu bar? When it is torn off a second time, does the first
instance disappear?

■ Do tear-off menus have a drag region with a 25 percent black-and-white
pattern and a close box?

■ Do tear-off menus always appear on top of open document windows?

A P P E N D I X C

Checklist

360 Mouse Standards

Mouse Standards C

■ If the user initiates an action by pressing the mouse button, does the action
take place only when the button is released?

■ Are there ways other than double-clicking to perform a given action?
Double-clicking should never be the only way to do something; it should
only be a shortcut.

Text C

■ Can arrow keys be used in all text boxes (including dialog boxes)? Can the
Shift key be used with the arrow keys to extend the selection (including in
dialog boxes)?

■ If text is selected, does pressing an arrow key cause the insertion point
to go to the corresponding end of the range and deselect it?

■ Are discontinuous selections made with the Command key modifier
(for text and arrays)? The Shift key is used for graphics selections.

■ Do you support intelligent cut-and-paste where appropriate?

■ Do you use Command-arrow and Option-arrow for moving the insertion
point in larger semantic units? (Note that when multiple script systems are
available, Command–Left Arrow and Command–Right Arrow are
intercepted by the Script Manager and used for changing the script system.)

■ If your application supports TrueType fonts, do you support all font sizes
instead of imposing a size limit?

■ Do the users have a way to choose whatever font size they desire?

■ Does the active font size in a menu have a checkmark next to it?

■ Are available font sizes shown in outline in the menu items?

■ Do you avoid making assumptions about font sizes? For example,
the system font may have a different size in other countries.

Balloon Help C

■ Do you provide Balloon Help for items in dialog boxes, alert boxes,
and menus?

■ Do you provide Balloon Help for application window contents?

A P P E N D I X C

Checklist

Keyboard Equivalents 361

C
C

hecklist

■ Do you provide a custom help balloon for your application icon,
if appropriate?

■ Do your help balloons answer at least one of these questions:

n What is this?

n What does this do?

n What happens if I click this?

■ Is the content of the help balloons short and easy to understand?

■ Do you use clear, concise phrases and active constructions?

■ Do you use terminology consistently?

■ When a balloon appears, is it positioned so that it does not obstruct any
interface elements being referred to by the balloon?

■ Do you provide different balloon messages for different states of an item
(such as enabled, disabled, and checked)?

■ Do you add a menu item for help-related information to the Help menu?
Does this menu item use the name of your application?

Keyboard Equivalents C

■ Are Apple-reserved keyboard equivalents used properly? Even if your
application doesn’t support one of these menu commands, it shouldn’t use
these keyboard equivalents for another function.

■ Do you avoid using Command–Space bar and Command–modifier
key–Space bar in your application, since they are reserved for use by the
Script Manager?

■ Do keyboard equivalents appear where appropriate? Are the keyboard
equivalents case-independent? (This second rule does not apply if the
product uses both cases in the keyboard equivalents and enables the user
to predict which case to use.)

Edition Manager C

■ If your application implements the capabilities of the Edition Manager, do
you provide the following commands in the Edit menu, separated from the
standard commands by a gray line?

n Create Publisher…

n Subscribe To…

n Publisher/Subscriber Options… (context-sensitive toggle command)

n Show/Hide Borders (optional context-sensitive toggle command)

n Stop All Editions (optional command)

A P P E N D I X C

Checklist

362 Documentation

■ Do publishers have borders that are three pixels wide with 50 percent gray
lines, when appropriate?

■ Do subscribers have borders that are three pixels wide with 75 percent
gray lines?

■ Are the contents of the section separated from the border itself by one pixel
of white space?

Documentation C

■ Does the manual include a glossary of potentially confusing terms that
relate to the application or to the application’s topic?

■ If the manual refers the user to another document, is the reference more
appropriate than having the information in the manual itself?

■ For those who cannot handle book-form manuals, is any part of the
manual available in electronic form?

■ Is the manual written for its audience?

363

accumulating attribute group

A group of
attributes of which any number of attributes can
be in effect at the same time. For example, the
Style menu allows users to apply a number of
different style attributes, such as italics, bold, and
underline, to a single piece of text. (In dialog
boxes, accumulating attributes are represented by
checkboxes.) Compare

mutually exclusive
attribute group.

activate

To make an inactive window active by
clicking anywhere inside it.

active application

The application with which
the user is currently interacting. Its icon appears
on the right end of the menu bar.

active end

The point at which the user releases
the mouse button when selecting a range of
objects (text, arrays, and graphics) by dragging
through them. Compare

anchor point.

active window

The frontmost window on the
desktop; the window where the next action will
take place. The active window is the window on
the screen that has horizontal lines in its title bar.

addition method

A method for extending a
continuous selection of text, using Shift-click,
which

adds

 new text to a current selection.
Compare

fixed-point method.

additive color

A model of color based
on adding the basic hues together to make
additional colors.

alert

A warning or report of an error in the
form of an alert box, a sound from the
computer’s speaker called an alert sound, or both.

alert box

A window that appears on the screen
to warn the user or to report an error. An alert
box may or may not be accompanied by an
alert sound.

alert sound

An audible warning from the
computer speaker that warns the user of an
unusual or potentially undesirable situation.
An alert sound may or may not be accompanied
by an alert box.

anchor point

The point at which the user
presses the mouse button to begin selecting a
range of objects by dragging through them. The
anchor point is at one corner of the range of
objects. Compare

active end.

Apple menu

The menu farthest to the left in
the menu bar, indicated by an Apple symbol,
which contains items the user puts in the
Apple Menu Items folder.

application

A program that performs a specific
task, such as word processing, database
management, or graphics. An application’s
file type is 'APPL'.

Application menu

The menu farthest to the
right in the menu bar, which displays a list of the
applications that are currently running on a
user’s computer. Allows users to change
applications by choosing an item, typically the
name of an application, in this menu.

array

An arrangement of fields containing
information (text or graphics) through which a
user navigates using the Tab key.

arrow keys

The four directional keys in the
lower-right corner of the keyboard. The user can
use the arrow keys to move around in an
application.

auto-key event

An event generated repeatedly
when the user presses and holds down a
character key on the keyboard or keypad.

auto-repeat

See

auto-key event.

Glossary

Thi d t t d ith F M k 4 0 4

G L O S S A R Y

364

Balloon Help

An onscreen help system
consisting of balloons that describe items on the
screen. A help balloon appears when the user
moves the pointer to an item and disappears
when the user moves the pointer away from
the item.

bitmap

A set of bits that represents the
positions and states of a corresponding set of
items, such as pixels.

bitmap-based graphics application

A graphics
application that creates images by turning on
individual pixels on the screen. Each graphic is a
collection of pixels.

brightness

A measurement of the amount of
black in a color—the less black, the brighter the
color. Brightness is equivalent to lightness in the
HLS color system, and it is equivalent to value in
the HSV color system.

button

An image, often resembling a push
button, in dialog boxes that the user clicks to
designate, confirm, or cancel an action. Compare

mouse button, radio button.

Cancel

button

A button that appears in many
dialog boxes. Clicking it closes the dialog box
and returns the computer to the state it was in
before the dialog box appeared.

caret

A generic term for a symbol that indicates
where the next text will be inserted. The caret
used in Macintosh text is a vertical bar (|).

cell

The intersection of a row and a column in a
spreadsheet. A cell can hold a number, label,
function, or formula.

character

Any symbol that has a widely
understood meaning and thus can convey
information. Some characters—such as letters,
numbers, and punctuation—can be displayed on
the monitor screen and printed on a printer.

character

code

An integer representing
the character that a key or key combination
stands for.

character key

A key on a keyboard that
sends characters to the computer. Compare

modifier key.

checkbox

A standard Macintosh control that
displays a setting, either checked (on) or
unchecked (off). Clicking a checkbox or its text
label reverses its setting. One or more checkboxes
can be checked. Compare

radio button.

Clear

A command in the Edit menu that
removes selected material without placing it on
the Clipboard. The user can restore the material
with the Undo command.

Clear key

A key on the numeric keypad that
has the same effect as choosing the Clear
command from the Edit menu.

click

(v.) To position the pointer on something,
and then press and quickly release the mouse
button. (n.) The act of clicking.

Clipboard

The holding place for what the
user last cut or copied; a buffer area in memory.
Information on the Clipboard can be pasted
into documents.

close

To turn a window back into the icon that
represents it by choosing the Close command or
by clicking the close box on the left end of the
window’s title bar.

close box

The square box on the left end of the
title bar of an active window. Clicking it closes
the window.

Close View

A control panel, included with
system software, for people with a visual
disability. It enlarges everything on the screen
up to sixteen times the standard size and allows
users who have difficulty seeing black on
white to invert screen images to white on a
black background.

collaborative computing

A shared computing
environment or an application that facilitates
communications and teamwork among a group
of people.

command

An instruction that causes a device
such as a computer or printer to perform some
action. A command can be selected from a menu
with a hand-held device (such as a mouse), typed
from a keyboard, or embedded in a program.

G L O S S A R Y

365

Command key

A key that, when held down
while another key is pressed, causes a command
to take effect. The Command key is marked with
a propeller-shaped symbol. On some keyboards,
the Command key has both the propeller symbol
and the Apple symbol on it.

context sensitive

Able to perceive the situation
in which an event occurs. For example, if an
application program presents help information
specific to the particular task the user is
performing, rather than a general list
of commands, that help is said to be
context sensitive.

control

An object in a window on the
Macintosh screen with which the user, by using
the mouse, can cause instant action with visible
results or change settings to modify a future
action. The control is internally represented in a
control record.

control panel

A utility that lets the user change
global features such as the speaker volume, the
keyboard repeat speed and delay, mouse
tracking, and number of colors displayed.

cursor

See

pointer.

database

(1) A collection of information
organized in a form that can be readily
manipulated and sorted by a computer user.
(2) Short for

database management system

.

default

A value, action, or setting that a
computer system assumes unless the user gives
an explicit instruction to the contrary.

default button

In an alert box or a modal
dialog box, the button whose effect occurs if the
user presses Return or Enter. In an alert box, it’s
boldly outlined; in a modal dialog box, it’s boldly
outlined or it’s the OK button.

delete

To remove something, such as a
character or word from a file, or a file from a
disk. Keys such as the Delete key and the
Backspace key can remove one character at a
time by moving to the left (in languages that read
from left to right). The Cut command removes
selected text and places it on the Clipboard; the
Clear command removes selected text without
placing it on the Clipboard. (The Undo command
can reverse the action of Clear and of the Delete
or Backspace key if it is used immediately.)

Delete

key

A key that moves the insertion
point backward, removing the previously typed
character, or that removes the current selection.
Its function is identical to that of the Backspace
key on the original Macintosh keyboards.
Compare

Forward Delete key.

desk accessory

A small application that
provides a specific, limited capability for a
particular task, for example, the Calculator, the
Note Pad, and Key Caps. In versions of system
software earlier than System 7, desk accessories
were always in the Apple menu. In System 7, a
desk accessory can be in the Apple menu or
anywhere in the file system. From the user’s
point of view, there is little distinction between
desk accessories and applications.

desktop

The working environment on the
computer—the background on which icons and
windows are displayed (minus the menu bar).

dial

See

slider.

dialog

box

A box that appears on the screen
to solicit information from the user or to report
that the computer is waiting for a process to
complete. For example, a typical printing dialog
box requests the user to specify such options as
number of copies of a document to print. A
dialog box is internally represented in a dialog
record. See also

modal dialog box, modeless
dialog box,

 and

 movable modal dialog box.

dimmed

Used to describe words or icons that
appear in gray. For example, menu commands
appear dimmed when they are unavailable;
folder icons are dimmed when they are open.

dimmed

icon

An icon that represents an
opened disk or folder or a disk that has
been ejected.

disabled

Describes a menu item or an item in a
dialog box or alert box that cannot be chosen; the
item appears dimmed.

discontinuous selection

A selection that
consists of objects that are

not

 adjacent to
one another.

document

A file the user creates and can open,
edit, and print. See also

file.

G L O S S A R Y

366

document

window

The window that displays
the content of a document.

double

click

(n.) Two clicks in quick
succession, interpreted as a single command.
The action of a double click is different from that
of a single click. For example, clicking an icon
selects the icon; double-clicking an icon opens it.

double

click

(v.) To press and release the mouse
button twice in quick succession without moving
the mouse.

drag

To position the pointer on something, for
example, a window icon, press and hold the
mouse button, move the mouse, and release the
mouse button.

drag region

A region in a window frame;
usually the title bar. Dragging inside this region
moves the window to a new location and makes
it the active window. (The window doesn’t
become active if the Command key is down
while the window is dragged.)

Easy Access

A feature of system software that
assists people who have difficulty typing on the
keyboard or manipulating the mouse. See also

Mouse Keys, Slow Keys, Sticky Keys.

edit

To change or modify. For example,
to insert, remove, replace, or move text in
a document.

edition

The data written to an edition container
by a publisher. A publisher writes data to an
edition whenever a user saves a document
that contains a publisher, and subscribers in
other documents may read the data from the
edition whenever it is updated. See also

publisher, subscriber.

Edit menu

A menu that contains editing
commands such as Copy, Cut, and Paste.

Enter key

A key that notifies the application
that the user is through entering information in a
particular area of the document, such as a field in
a database record. The user can also press the
Enter key (like the Return key) to dismiss dialog
boxes and alert boxes.

ergonomics

The science of designing work
environments that allow people and products to
interact efficiently and safely. Examples include
screen ergonomics and workplace ergonomics.
Sometimes called

human engineering.

Escape key

A key that allows the user to
quickly get out of a situation while working on
a computer. In many applications, pressing the
Escape key allows the user to stop an operation
in progress. The user can also press the Escape
key as an alternate to clicking the Cancel button
in a dialog box.

event-driven

Describes a kind of program that
responds to user input in real time by repeatedly
testing for events posted by interrupt routines.
An event-driven program does nothing
until it detects an event such as a click of the
mouse button.

extension

A software program that adds some
feature to the operating system.

field

A data item separated from other data
by blanks, tabs, or other specific delimiters.
A particular type or category of information
in a database.

file

Any named, ordered collection of
information stored on a disk. Application
programs and operating systems on disks are
files as well as documents that users create.
A Macintosh file consists of a data fork and a
resource fork. See also document.

File menu

A menu that contains commands
that affect whole documents such as Open, Save,
Print, and Quit.

file server

A combination of controller software
and a mass-storage device that allows computer
users to share common files and applications
through a network. A file server on an AppleTalk
network system typically consists of a Macintosh
computer with AppleShare software and one or
more hard disks.

Finder

The application that maintains the
Macintosh desktop and starts up other programs
at the request of the user. The user uses the
Finder to manage documents and applications,
and to get information to and from disks.

G L O S S A R Y

367

fixed-point method

A method for extending a
continuous selection of text, using Shift-click,
which extends the selection on

either

 side (but not
both) of a fixed point. Compare

additive method.

folder

A holder of documents, applications,
or other folders on the desktop. Folders act as
subdirectories, allowing users to organize
information in any way they want.

font

A complete set of characters in one design,
size, and style. In traditional typography usage,
fonts may be restricted to a particular size and
style or may comprise multiple sizes, or multiple
sizes and styles, of a typeface design.

Font menu

A menu that contains text fonts,
such as Geneva and Chicago, available on a
system (residing in a user’s System Folder).
See also

font.

font size

The size of a font of characters in
points; equivalent to the distance between the
ascent line and the descent line of one line of text.
Examples of font size are 12 point and 18 point.

font style

A set of stylistic variations other than
size, such as italic, bold, and underline.

Forward Delete key

A key on the Apple
Extended Keyboard that causes the character
to the right of the insertion point to be deleted
in left-to-right systems. The insertion point does
not move: the characters to its right are
“vacuumed” in toward it as each is deleted.
Compare

Delete key.

graphics

Information presented in the form of
pictures or images. Compare

text.

grow region

A window region, usually within
the content region, where dragging changes the
size of an active window.

Help menu

The menu directly to the left of the
Application menu in the menu bar, indicated by
a help balloon symbol, which contains on-screen
help information.

(Users can turn on Balloon
Help from the Help menu.)

hierarchical menu

A menu in which one or
more individual menu items can themselves
contain a submenu.

highlight

To make something visually
distinct, typically when it’s selected. Usually
done by reversing black and white areas or by
darkening colors.

hot spot

The portion of the pointer that must be
positioned over a screen object before mouse
clicks can have an effect on that object.

hot zone

The area that the pointer’s hot spot
much be within in order for mouse clicks to have
an effect.

icon

A symbol that graphically represents
an object or a concept. Screen icons represent
such objects as disks, documents, tools, and
application programs. Icons on the outside of the
computer can be used to show where to plug
cables, such as the disk drive icon on the back
panel that marks the disk drive connector.

Info window

The window that appears when
you select an icon and choose Get Info from the
File menu. It supplies information such as size,
type, and date, and it includes a comment box for
adding information.

input

Information transferred into a computer
from some external source, such as the keyboard,
a disk drive, or a modem. Compare output.

input device A device that sends information
to the microprocessor. The mouse and keyboard
are the Macintosh computer’s primary input
devices. Compare output device.

insertion point The position where text
will be inserted, usually marked by a blinking
vertical bar.

Installer A utility program that users can use to
update system software or add resources.

invert To highlight by changing white pixels to
black and vice versa.

keyboard equivalent Keystrokes that invoke a
menu item from the keyboard. A keyboard
equivalent is usually the combination of a
modifier key and a character key.

keyboard layout Software that specifies the
mapping of keys on a physical keyboard to
character codes.

G L O S S A R Y

368

Keyboard menu A menu, located between
the Help menu and the Application menu icons
in the menu bar, that contains script system,
keyboard layout, and input method items. It
appears when more than one script system is
installed and enabled or when a localizable
flag is set.

keyboard shortcut A keystroke that you can
use instead of a mouse action to perform a task.
For example, pressing the Command and the X
keys at the same time is the same as choosing the
Cut command from the Edit menu.

little arrows A control, consisting of two
arrows pointing in opposite directions, that
allows users to increase or decrease values in a
series by clicking or pressing the arrows.

localization The process of adapting software
to a particular region, language, and culture.
Script and language adaptations are necessary
but not sufficient for this process. Localization
also includes date and time formats, number
formats, text behavior formats, keyboard
resources, and fonts.

locked file A file whose data cannot be
changed.

Macintosh Operating System The combination
of ROM-based and disk-based routines that
together perform basic tasks such as starting the
computer, moving data to and from disks and
peripheral devices, and managing memory space
in RAM.

Macintosh user interface The standard
conventions for interacting with Macintosh
computers. The interface ensures users a
consistent means of interacting with all
Macintosh computers and the applications
designed to run on them.

main event loop In a standard Macintosh
application program, a loop that repeatedly calls
the Event Manager to get events and then
responds to them as appropriate.

mainstreaming programs Educational
programs in which children with special needs
(including those with physical disabilities) are
included in “mainstream” classes with children
who don’t necessarily have special needs.

menu A list of choices presented by a program.
In the desktop interface, menus appear when
users point to and press menu titles in the menu
bar. Dragging through the menu and releasing
the mouse button while a command is
highlighted chooses that command.

menu bar The horizontal strip at the top of the
screen that contains menu titles.

menu item A choice in a menu, usually a
command to the current application.

menu title A word, a phrase, or an icon in the
menu bar that designates a menu. Pressing on the
menu title causes the title to be highlighted and
its menu to appear below it.

modal dialog box A dialog box that puts the
user in the state or “mode” of being able to work
only inside the dialog box. (A modal dialog box
resembles an alert box.) The user cannot move a
modal dialog box, and the user can dismiss it
only by clicking its buttons. Compare modeless
dialog box and movable modal dialog box.

modeless dialog box A dialog box that looks
like a document window without a size box or
scroll bars. The user can move a modeless dialog
box, make it inactive and active again, and close
it like any document window. Compare modal
dialog box and movable modal dialog box.

modifier key A key on a keyboard that
changes the behavior or action of a character key
when pressed at the same time as the character
key. A modifier key can also change or accentuate
the meaning of a mouse action. Compare
character key.

movable modal dialog box A modal dialog box
that has a title bar (with no close box) that allows
the user to move the dialog box. Compare
modeless dialog box.

monitor See video monitor.

monochrome monitor A monitor capable of
displaying in only one color.

mouse button The button on the top of the
mouse. In general, pressing the mouse button
initiates some action on whatever is under the
pointer, and releasing the button confirms
the action.

G L O S S A R Y

369

Mouse Keys An Easy Access feature that lets
users use keys on the numeric keypad to control
the pointer.

mutually exclusive attribute group A group of
attributes of which only one attribute can be in
effect at any time. For example, the Left, Center,
and Right commands in a graphics menu are
a set of three commands, only one of which
can be in effect at any time. (In dialog boxes,
mutually exclusive attributes are represented
by radio buttons.) Compare accumulating
attribute group.

network A collection of interconnected,
individually controlled computers, together with
the hardware and software used to connect them.
A network allows users to share data and
peripheral devices such as printers and storage
media, to exchange electronic mail, and so on.

operating system Low-level software that
controls a computer by performing basic tasks
such as input/output, memory management, and
interrupt handling.

Option key A modifier key that gives a
different meaning or action to another key
or to a mouse action.

outline fon t A collection of outline glyphs in a
particular typeface and style with no size
restriction. The Font Manager can generate
thousands of point sizes from the same TrueType
font. See also TrueType font.

outline triangle A control that allows users
to view the contents of a folder without opening
it. (The triangles appear when the user chooses
to view the contents of their file system in a
list view.)

output Information transferred from a
computer to some external destination, such as
the display screen, a disk drive, a printer, or a
modem. Compare input.

output device A device that receives
information from the microprocessor. The
monitor is the Macintosh computer’s primary
output device. Compare input device.

palette The name for a tear-off menu when it’s
been torn off. A palette remains visible on the
screen so you can use it without having to pull
down the menu. A palette can also be part of a
window that provides tools or choices such as
colors or patterns.

password A unique word or set of characters
used to ensure security. For example, a user
enters a password to log on to a volume on a
file server.

paste To place the contents of the Clipboard—
whatever was last cut or copied—at the
insertion point.

peripheral card A removable printed-circuit
board that plugs into one of the computer’s
expansion slots, allowing the computer to use a
peripheral device or to perform some subsidiary
or peripheral function.

peripheral device A piece of hardware—such
as a video monitor, disk drive, printer, or
modem—used in conjunction with a computer
and under the computer’s control. Peripheral
devices are often (but not necessarily) physically
separate from the computer and connected to it
by wires, cables, or some other form of interface.
Such devices sometimes require peripheral cards.

pixel Short for picture element; the smallest dot
you can draw on the screen. Also a location in
video memory that corresponds to a point on the
graphics screen when the viewing window
includes that location. In the Macintosh
monochrome display, each pixel can be either
black or white, so it can be represented by a bit;
thus, the display is said to be a bitmap. For color
or gray-scale video, several bits in RAM may
represent the image. Thus, the display is not a
bitmap but rather a pixel map.

pixel map A set of values that represents the
positions and states of the set of pixels making
up an image.

point (1) A unit of measurement for type.
Twelve points equal 1 pica, and 6 picas equal 1
inch; thus, 1 point equals approximately 1⁄72
inch. (2) The intersection of a horizontal grid line
and a vertical grid line on the coordinate plane,
defined by a horizontal and a vertical coordinate.

G L O S S A R Y

370

pointer A small shape on the screen that
follows the movement of the mouse or shows
where the user’s next action will take place.
The pointer can be an arrow, an I-beam, a
crossbar, a wristwatch, or other appropriate
image. Called the cursor in Macintosh technical
manuals. See also insertion point.

pop-up menu A menu not located in the menu
bar, which appears when the user presses the
mouse button in a particular place.

progressive disclosure A technique by
which the most common options are presented in
a simple interface and additional choices or
information are disclosed by activating
some control.

publisher A portion of a document that makes
its data available to other documents or
applications. A publisher stores its data in an
edition whenever a user creates or edits the data
in the publisher and then saves it. See also
edition and subscriber.

pull-down menu A menu that is hidden until
you move the pointer to its title and press the
mouse button.

radio button A standard Macintosh control
that displays a setting, either on or off, and is
part of a group in which only one button can be
on at a time.

Read Me document A plain text document that
is included on application and system software
disks and provides late-breaking information
about the product.

resource Data or code stored in a resource file
and managed by the Resource Manager.

Return key A key that causes the cursor or
insertion point to move to the beginning of
the next line. It’s also used in some cases to
confirm a command and to dismiss dialog boxes
and alert boxes.

RGB Abbreviation for red-green-blue; a method
of displaying color video by transmitting the
three primary colors as three separate signals.
There are two ways of using RGB with
computers: TTL RGB, which allows the color
signals to take on only a few discrete values; and
analog RGB, which allows the color signals to
take on any values between their upper and
lower limits, for a wide range of colors.

RGB monitor A type of color monitor that
receives separate signals for each color (red,
green, and blue).

saturation A measurement of how much white
a color contains—the less white, the more
saturated the color.

save To store information by transferring it
from main memory to a disk. Work not saved
disappears when you switch off the computer or
when the power is interrupted.

screen The part of the monitor where
information is displayed. Also called
display screen.

script A writing system, such as Cyrillic or
Arabic. The English language uses Roman script.

script system A collection of software facilities
that provides for basic differences between
writing systems, such as character sets, fonts,
keyboards, text collation, and word breaks.
Examples of script systems are Roman, Japanese,
Arabic, Traditional Chinese, Simplified Chinese,
Hebrew, Greek, Thai, and Korean.

scroll To move a document or directory in its
window so that a different part of it is visible.

scroll arrow An arrow at either end of a scroll
bar. Clicking a scroll arrow moves a document or
directory one line. Pressing a scroll arrow moves
a document continuously.

scroll bar A rectangular bar that may be along
the right or bottom of a window. Clicking or
dragging in the scroll bar causes the view of the
document to change.

scroll box The solid box in a scroll bar. The
position of the scroll box in the scroll bar
indicates the position of what’s in the window
relative to the entire document.

G L O S S A R Y

371

See Files The AppleShare file server access
privilege that gives the right to open and copy
documents and applications in a folder.

See Folders The AppleShare file server access
privilege that gives the right to see folders within
a folder.

select To designate where the next action will
take place. To select using a mouse, you click an
icon or drag across information.

selection A series of characters, or a character
position, at which the next editing operation
will occur. Selected characters in the active
window are inversely highlighted. Also called
selection range.

shared resource A resource, such as a
document, an application, or a storage medium,
that is being used, often simultaneously, by a
group of users on a computer network.

Shift-click To click while the Shift key is down.
Shift-clicking extends or shortens a selection.

Shift-drag To drag while the Shift key is
down. Shift-dragging allows users to select
multiple objects.

Shift key A key that, when held down, causes
the subsequent letter typed to appear in
uppercase or the top symbol on a two-character
key to be produced. The Shift key can also
modify mouse actions. See also Shift-click,
Shift-drag.

size box A box in the lower-right corner of
some active windows. Dragging the size box
resizes the window.

Size menu A menu that contains sizes,
measured in points, for fonts.

slider A control that graphically represents the
ranges of values that a user can set or that simply
displays the value, magnitude, or position of
something. Also called a dial.

Slow Keys An Easy Access feature that lets the
user set a delay before each keystroke is accepted
by the computer.

Space bar The long, unlabeled bar along
the bottom of the keyboard that generates a
space character.

space character A text character whose printed
representation is a blank space. Generated by
pressing the Space bar.

split bar A control appearing in a scroll bar that
allows users to split a window into separate
window panes. See also split line, window pane.

split line The line, which appears when a user
splits a window, that visually separates the
resulting window panes. See also split bar,
window pane.

stack A HyperCard document.

standard file dialog box A dialog box that
allows users to perform actions (such as viewing,
opening, and saving) on files residing on any
type of storage media. Also allows users to view
elements on their desktops.

Standard File Package A Macintosh package
for presenting the standard user interface when a
file is to be saved or opened.

standard state The initial size and location of a
window. This state is determined by the
application.

Sticky Keys An Easy Access feature that lets
the user type combination keystrokes without
actually pressing the keys simultaneously.

Style menu The menu that contains style
attributes, such as bold, italic, and condense,
for fonts.

subscriber A portion of a document that
automatically obtains current data from other
documents and applications. A subscriber
reads data from an edition. See also edition
and publisher.

system font The font that the system uses
(in menus, for example). In Roman-based writing
systems, the system font is 12-point Chicago.

TeachText An application that lets you open
text and graphics documents, particularly if the
original application that created the document is
not available.

G L O S S A R Y

372

tear-off menu Any menu that you can detach
from the menu bar by pressing the menu title and
dragging beyond the menu’s edge. The torn-off
menu appears in a window or a utility window
on the desktop. Once torn off, these menus are
called palettes.

text Information presented in the form of
readable characters. Compare graphics.

text box The place or places in a dialog box
where information can be typed. Also called text
entry field.

TextEdit The part of the Toolbox that supports
basic text entry and editing capabilities of a
standard Macintosh application.

text entry field An area, usually a rectangular
box, located in a dialog box and into which the
user enters text to identify something, such as the
name of a document.

toggled menu item A menu item that has two
states. The menu item changes from one state to
the other each time a user chooses it.

tokens (1) An abbreviation of a string of
characters. (2) A sequence of characters delimited
so as to be indentified by a compiler.

TrueType font A type of outline font
supplied with Macintosh system software.
See also outline font.

type-ahead The process by which the computer
stores keystrokes (typed faster than the computer
can process) in a queue for later processing.

type selection The ability to select an item from
a list of items by typing the beginning character
or characters of its name.

user interface The rules and conventions by
which a computer system communicates with the
person operating it.

user state The size and location a user sets
for a window.

utility A type of software that helps people
manage the computer environment.

utility window A type of box that has some but
not all features of a regular window. A utility
window has a bar at the top by which it can be
dragged and a close box, but does not necessarily
have a title, and is nonscrolling. Also called a
miniwindow. Compare palette.

value An item of information that can be stored
in a variable, such as a number or a string.

video monitor A display device that can
receive video signals by direct connection and
cannot receive broadcast signals such as
commercial television; it can be connected
directly to the computer.

window An object on the desktop that presents
information such as a document or message.
Each window is internally represented in a
window record.

window pane A part of a window after it has
been split into two or more parts

word processor An application program that
provides tools for creating, editing, and
formatting text.

word wrap The automatic continuation of text
from the end of one line to the beginning of the
next without breaking in the middle of a word.

zoom box A small box with a smaller box
enclosed in it found on the right side of the title
bar of some windows. Clicking the zoom box
toggles the window between the standard state
and the user state.

373

Index

Numerals

16-by-16 pixel (small) icons 234, 244–245, 252
32-by-32 pixel (large) icons 234
45-degree angles in icon design 231
4-bit color icons 234
80 percent solution 35
8-bit color icons 234

A

About command 98
accessibility 14
access privileges 28
access to help systems 315
accumulating attribute groups 65
activating windows 155
active-application icon, as correct term 307
active area in dialog boxes 199
active keyboard 125
active windows 135

and dialog box positions 150–151
using color to distinguish 135

adev, correct terminology for 307
aesthetic integrity, as design principle 11–12
alert boxes

and ellipsis character in menus 70
appearance of 194
as special case of modal dialog box 189
caution 195
closing 194
color in 177
compared with other dialog boxes 177
default display positions of 150–152
defined 193
layout of 196
location of buttons in 197
note 194
providing feedback in 9
save changes 102–104, 201–202
stop 196
types of 194–196
warning of data loss in 195
worldwide issues and 197

alignment of elements in dialog boxes 20–22
alternating icons in menu bar 71–72
ambiguous command names 77

American Heritage Dictionary

306
anti-aliasing in icons 243–244
Apple icon color set 240–241
Apple menu 98
Apple Menu Items folder 98

Apple Publications Style Guide

306
Apple reserved keyboard equivalents 128–129
application icons 246
Application menu 71–72, 127

alternating icon in 71–72
background notification techniques and 71–72

application menu titles 54
applications, naming in dialog box messages 199
Apply button 209
arrays

and arrow keys 281
defined 288
discontinuous selection in 292, 299
navigating with the Tab key 299
Return key and 299
selecting in 298–299
Tab key and 299

arrow keys 281–284, 295–296
and modifier keys 282–284
and scroll bars 281
selecting with 295–296

arrow pointer 270
ascent line for fonts 24
attribute groups in menus 61, 64–66
audible notifications 72
audience 13–14

.

See also

users
augmentative and assistive communication 27
automatic scrolling 166–167
auto-repeat 280

B

background operations and movable modal dialog
boxes 187

Backspace key.

See

Delete key
Balloon Help 125, 316–325
balloons.

See

help balloons
bit depths of monitors 235
bitmap-based graphics 297
bitmapped fonts 123
black-and-white design, and color 263–264

Thi d t t d ith F M k 4 0 4

I N D E X

374

black-and-white icons, designing 238, 254
blue in color design 265
borders

for active scrolling lists 198
for icons 239

button names
Apply 209

buttons
balloons for 319
behavior of 205–206
capitalization of names of 206
default 206
defined 204
Dialog Manager and 205, 206
feedback and 205
in caution alert boxes 195
in modal dialog boxes 188–189
in modeless dialog boxes 180
in movable modal dialog boxes 185
in note alert boxes 194
in stop alert boxes 196
labels for 310
names of 102, 206–209
placement of in alert boxes 197
.

See also

radio buttons
size of 205
standard height of 205

C

calendars, variations in worldwide 17
Cancel button 207–208
Cancel Publisher button 119
Cancel Subscriber button 120
capitalization of interface elements 309
Caps Lock key 279
caution alert boxes 195
cdev, correct terminology for 307
character keys 275–278
characters in menus 64–72
checkboxes

balloons for 322
balloons for groups of 322
choices in 213
defined 211
labels for 212–213, 309–310
use of terminology with 308
versus pop-up menus 85–86

checkmarks in menus 64–66

Chicago Manual of Style

306
Chooser extension, as correct term 307
Chooser extension icons 251
choosing menu items 56–57

Clear command (Edit menu) 117
Clear key 277
clicking

and selecting 289
Command-clicking 291–292
components of 271
correct terminology for 308
Shift-clicking 289–291
use of 271

Clipboard 112
close boxes 134, 180, 186
Close command (File menu) 102–104
closing

alert boxes 194
menus 56
modal dialog boxes 188
modeless dialog boxes 180
movable modal dialog boxes 185
windows 102, 152–154

collaborative computing 27–31
colons in dialog boxes 312
color 258–265

and black-and-white design 263–264
and progressive disclosure 262
and small objects 265
and standard interface elements 258–260
choices of for windows 137
degradation of across monitors 241
for categorizing information 265
in alert boxes 177
in icon design 240–242
in modeless dialog boxes 177
in movable modal dialog boxes 177
number of in designs 264
pattern substitutions for keyboard icons 254

Color control panel 259
color-deficient vision 25
color icons 238–243

labeling mechanism for 242–243
selection mechanism for 241–242

color palettes 262
color tables 264
column selection in arrays 298
Command-/ 285
Command-? 285
Command-clicking 291
Command key

and arrow key combinations 128, 283–284
combinations 128–129, 280, 282–284
labels on 280
.

See also

keyboards
Command key equivalents.

See

keyboard equivalents
Command–Left Arrow 128, 282–284
command-line interfaces, and pointers 269
Command–

modifier key

–Space bar 128–129

I N D E X

375

Command–Option–Space bar 128
Command–Right Arrow 128, 282–284
commands, menu

About (Apple menu) 98
Clear (Edit menu) 117
Close (File menu) 102–104
Copy (Edit menu) 115
Create Publisher (Edit menu) 117–118
Cut (Edit menu) 114
Find (File menu) 67
for Edition Manager 110–111
Get Info (File menu) 69
New (File menu) 99–100
Open (File menu) 101–102
Page Setup (File menu) 108
Paste (Edit menu) 115–116
Print (File menu) 108–109
Publisher/Subscriber Options (Edit menu) 118–120
Quit (File menu) 99, 109
Reduce to Fit 157
Revert (File menu) 107
Save (File menu) 104–105
Save As (File menu) 106–107
Select All (Edit menu) 117
Show Clipboard/Hide Clipboard (Edit menu) 112,

117
Subscribe To (Edit menu) 118
Undo/Redo (Edit menu) 113–114

Command–Space bar 128–129
communications with other users 30
complexity of interface design 35–38
conceptual space on multiple monitors 156
concurrent help systems 314
consistency

as design principle 7–8
in use of icon elements 233
within icon families 233, 245

context as a clarifying tool 228
context clues for communication 30
context-sensitive help 314
control definition functions 259
Control key 280
control panels

Color 259
Mouse 272
providing icons for 251
Sound 26

controls
alignment of 20
buttons 204–209
checkboxes 211–213
defined 204
help balloons for 318
in document windows 134
in scroll region 161, 162

little arrows 216–217
not supported by the Macintosh Toolbox 214–218
outline triangle 218
radio buttons 210–211
scrolling lists 220–221
sliders 214–215
standard toolbox 204–213
text-entry fields 219–220

Copy command (Edit menu) 115
Create Publisher command (Edit menu) 117–118
crosshairs pointer 270
cultural values 17
cursors 269
custom icons 245–255

for applications 246–247
for control panels 251
for documents 247
for editions 250
for extensions 251
for keyboards 252–255
for preferences 250
for query documents 249
for stationery pads 248–249

Cut command (Edit menu) 114

D

DA, correct terminology for 307
dashes in menus 64–66
database extension, as correct term 307
data encryption 30
data loss and alert boxes 195
dates 17
ddev, correct terminology for 307
deaf people.

See

hearing disabilities
default color tables 264
default icons 245–255

for applications 246
for documents 247
for editions 250
for extensions 250
for keyboards 252
for query documents 249
for stationery pads 249

Del (Forward Delete) key 285
Delete (Backspace) key 277
deleting

text 300
using the Cut command 114

design principles 4–14
desk accessory, as correct term 307
desktop metaphor 5
desktop pattern and icons 239

I N D E X

376

diacritical marks 24
dialog boxes 176–202

alignment of elements in 20–22
and ellipsis character in menus 68–70
and pop-up menus 82, 83–85
as windows 176
color design for 258
default display positions in 150–152
dismissing with the Return key 276
for font size 123
keyboard input in 198–199
messages in 199, 310–312
modal 188–193
movable modal 185–188
position in window display order 144
preferences and 38
Print 108–109
providing feedback in 9
Publisher Options 118–120
Save As 106–107
.

See also

alert boxes
standard file 101, 200
Subscriber Options 118–120
type selection in 198

dialog box messages, how to write 310–312
Dialog Manager 191, 192
diamond mark in Application menu 71–72
dimmed items in menus 60
direct manipulation 6, 226
directory dialog box, as correct term 307
disabilities 24–27

hearing 26
physical 25
.

See also

universal access
seizure disorder 27
speech and language 27

discontinuous selections 291, 299
dividers in menus 62–63
documentation

avoiding jargon in 307, 313
learning paths in 313

document icons 247–248
document names in dialog box messages 199
documents

and outline triangles 218
and windows 132
defined 308
names of and window titles 142–143
opening 101–102
.

See also

windows
document windows.

See

windows
Done button 208
dots in menus.

See

ellipsis character
double-clicking 272–273
dragging 274, 289

duplicating data 115

E

editing
in fields 302–303
passwords 29
shared information 30
text 300–303

edition icons 250
Edition Manager commands 110–111, 117–120
Edit menu 109–120, 187–188, 191–192

adding commands to 110
and modal dialog boxes 191
and movable modal dialog boxes 187–188
Clear command in 117
Clipboard and 111–112
Copy command in 115
Create Publisher command in 117–118
Cut command in 114
Edition Manager commands in 110–111, 117–120
Paste command in 115–116
Publisher/Subscriber Options command in 118–120
Select All command in 117
Show Clipboard/Hide Clipboard command in 117
Subscribe To command in 118
Undo/Redo command in 113–114

electronic documentation help systems 314–316
ellipsis character

and modeless dialog boxes 180
as subpalette indicator 39
in menus 67–70

empty documents and the insertion point 282
End key 285
entering data

with the Enter key 275
with the Return key 276

Enter key 275
error checking in modeless dialog boxes 182
error messages, how to write 311
Escape (Esc) key 277
extension icons 250

F

F (function) keys 164, 284–286
feature cascade 35
feedback

and asynchronous operations 56
and changes in modeless dialog boxes 182
and selecting 286

I N D E X

377

and the Escape key 278
and windows 133
during long operations 271
in menus 56–57

feedback and dialog, as design principle 9–10
fields, text entry 219–220
fields in arrays 288, 298–299
file, use of term 308
File menu 67, 69, 99–109

Close command in 102–104
Find command in 67
Get Info command in 69
New command in 99–100
Open command in 101–102
Page Setup command in 108
Print command in 108–109
Quit command in 99, 109
Revert command in 107
Save As command in 106–107
Save command in 104–105

file types, user terms for 307
Find command (File menu) 67
Finder icon families 234–236
Finder icon family editor 240
FKEY, correct terminology for 307
flags for keyboard icons 253–254
flashing the menu bar 26
flexibility

and modeless dialog boxes 178
and movable modal dialog boxes 178, 187
and using modal dialog box for temporal status 190

flicker frequencies 27
floating windows on desktop 145
font icons 252
Font menu 120–122
fonts

in pop-up menus 88–89
worldwide compatibility and 23–24

font size dialog box 123
forgiveness, as design principle 10
Forward Delete (Del) key 285
function key, as correct term 307
function keys 164, 284–286
fuzzy appearance of icons 244

G

Get Editions radio button 120
Get Info command (File menu) 69
glyphs 23–24
grammar and localization 19
graphic language 8, 12
graphics

and cultural values 17
defined 288
selecting 297

gray area of scroll bar 158, 164
gray background and color 265
grouping items in menus 60–62

H

hand element in application icons 246
handicaps.

See

universal access
hardware

icons to represent 236
indicator lights on 26
latches on 25

hearing disabilities 26
help balloons 316–325

for buttons 319
for checkboxes 322
for controls 318
for groups of checkboxes 322–323
for groups of radio buttons 322–323
for icons 324
for menu items 320
for menu titles 320
for modal dialog boxes 324
for pop-up menus 320
for radio buttons 321
for states of menus 317
for text entry boxes 325
for tools in palettes 323
for window parts 324
how to write 318–319
length of messages in 317, 318
when to use 317–318

Help key 285
Help menu 125
help systems, online 314–316
Hide Clipboard/Show Clipboard command 112, 117
hierarchical menus 79–82
hierarchical pop-up menus, avoiding 86
highlighting, color design for 260
Home key 285
hot spot 270
hot zone 270
human interface design principles.

See

principles of
human interface design

human interface design process
and 80 percent solution 35
and feature cascade 35
and features inspired by market pressures 34

humor and icons 230

I N D E X

378

I, J

I-beam pointer 270
icon families 234–236
icon masks 244
icons 224–255

4-bit color 235
8-bit color 235
against the desktop pattern 239
and humor 230
anti-aliasing in 243–244
balloons for 324
black-and-white 238
color degradation of 241
consistent use of elements in 233
conventions for types of documents and 247–248
design process for 236–237
for control panels 251
for edition files 250
for extensions 250
for movable resources 252
for page layout documents 248
for PICT files 248
for preferences files 250
for query documents 249
for representing actions 228
for text-only documents 248
in Application menu 71–72
in Keyboard menu 126–127, 252, 255
keyboard 22, 126–127, 252–255
label text for 228
large (32-by-32 pixel) 234
limitations of 227–228
masks for 234, 244
outlines of 239
.

See also

icon families
selection mechanism for 238
sizes of 234–236
small (16-by-16 pixel) 234
stationery pad 249
suites of 235
three-dimensional effects in 231
to represent hardware devices 236
use of metaphors in 229
versus verbal representations in 224

icon suites 235
inactive scroll bars 160
inactive windows, moving 155
indicators

for subpalettes 39–40
in hierarchical menus 79
in pop-up menus 87
in scrolling menus 78

informal user observations 43–46
INIT, correct terminology for 307

input devices and accessibility 14
input methods, for double-byte scripts 22
inserting copied information 115
inserting text 300
insertion point

and clicking 293
and command-line interfaces 269
defined 269
moving 282

intelligent cut and paste 301–302
interface elements, standard

and color design 258–260
avoiding new behaviors for 39–40

international keyboards 281
International Standards Organization 281

K

keyboard equivalents 128–129
keyboard icons 22, 126–127, 252–255

modification indicators in 254
pattern substitution for color in 254

keyboard input in dialog boxes 198–199
keyboard layouts 22–23, 126–127
Keyboard menu 22, 125–127
keyboard resources 125–127
keyboards 126, 275–286
keys

arrow 281–284, 295–296
Caps Lock 279
character 275–278
Clear 277
Command
Control 280
Delete (Backspace) 277
End 285
Enter 275
Escape (Esc) 277
Forward Delete (Del) 285
function 284–286
Help 285
Home 285
modifier 278–280, 282–284
Option 279, 282–283
Page Down 286
Page Up 286
Return 276, 299
Shift 278, 299
Tab 276, 299

knowledge of your audience 13–14

I N D E X

379

L

labels
and pop-up menus 87
color for in icons 242–243
color labeling for icons 242
for checkboxes 212–213
for icons 228
for interface elements 309–310
for little arrows 216
on keyboards 281
.

See also names

language disabilities 27
language in the interface 306–325
large (32-by-32 pixel) icons 234
learning paths for users 313
lights on hardware 26
light source on Macintosh screen 232, 262
little arrows 216–217
localization 14, 16–24

of documentation 314
of icons 230
text operations and 19–20
translating text and 18–19
using resources to facilitate 17

look and feel of interface elements 39

M

Macintosh script management system 16
Macintosh Toolbox, controls not supported by 214–218
market pressures, features inspired by 34
masks, icon 244
maximum window size 156
menu bar

flashing as notification 26
menu bar access

Dialog Manager and 191–192
from modal dialog boxes 191–192
from movable modal dialog boxes 187–188

menu bars 52–55
and modal dialog boxes 57
and standard menus 52
size of 52–53
use of space in 52–53
width of 53

menu commands.

See

commands, menu
menu elements 58–60
menu items

balloons for 320
capitalizing 59
choosing 56
hierarchical 79–82

labels for 309
names of 58–60
.

See also

commands, menu
toggled 73, 75–77
unavailable 60

menus 50–129, 260
Apple 98
Application 127
attribute groups in 64–66
behavior of 55–57
checkmarks in 64–66
closing 56
color design for 260
dashes in 64–66
dividers in 62–63
Edit 109–120
ellipsis character in 67–70
feedback about actions in 56–57
File 99–109
Font 120–122
fonts used in 60
grouping items in 60–62
Help 125
hierarchical 79–82
highlighting titles of 56, 57
Keyboard 22–23, 125–127
nonstandard elements in 72
opening 56
pop-up 82–92
scrolling 78–79
Size 122–123
standard characters in 64–72
standard Macintosh 98–127
standard pop-up 87–91
Style 73–75, 124
tear-off 93–95
text styles in 73–74
titles of 54
type-in pop-up 91–92

menu titles
balloons for 320
choosing 310

messages
in dialog boxes 199, 310–312
in help balloons 317, 318–319

metaphors
consistency of 8
use of as design principle 4–5
use of for icons 229

minimum window size 156
miniwindows 309
modal dialog boxes 57, 177, 188–193, 324

and balloons when on the screen 324
appearance of 190
behaviors of 191–193

I N D E X

380

buttons in 188
closing 188
compared with other dialog boxes 177
Edit menu access to 191
immobility of 188
menu bar access 57
menu bar access to 191–192
stacking 192–193
when to use 189–190

ModalDialog procedure 205
modeless dialog boxes 176, 178–184

appearance of 180–181
behaviors of 181–184
changing attributes with 182–184
closing 180–181
color in 177
compared to other dialog boxes 176
comparing information in 178
completing actions in 184
dynamic nature of 184
error checking in 182–183
feedback and changes to 182
intermediate security states of 183
presetting values in 179
titles of 180
when to use 178

modelessness, as design principle 12–13
modification indicators for keyboard icons 254
modifier keys 278–280, 282–284
monitors

and icon display 232, 235
and window size 156
multiple

alert box positions in 152
and work space 156
and zooming 170
dialog box positions in 152
window positions in 148–150

Monitors control panel 156
mouse actions 271–274, 293

clicking 271
double-clicking 272–273
dragging 274
pointing 269
pressing 273
selecting 293

Mouse control panel 272
mouse devices 269
movable modal dialog boxes 177, 185–188

and background operations 187
appearance of 186
behaviors of 187
closing 185
color in 177, 188
display order of on desktop 146

flexibility and 187
menu bar access to 187–188
when to use 178

movable resource icons 252
moving the pointer 269
moving windows 154–155
MultiFinder icon, correct terminology for 307
multimedia effects in help systems 316
multiple modifier-key combinations 283
mutually exclusive attribute groups 64

N

names
of buttons 206–209
of documents and window titles 142–143
of interface elements 309–310
of menu items 58–60
of modeless dialog boxes 180
.

See also

 labels
network extension, as correct term 307
networks 31
New command (File menu) 99–100
nonexclusive attribute groups 65–66
non-Roman script systems 19
nonstandard marks in menus 72
note alert boxes 194
notification techniques 71–72
nouns as icons 228
numbers in window titles 142

O

object-based graphics 297
objects

and clicking 272–273
hot zone of 270
moving by dragging 274
selecting 286–299

OK button 207
online help systems 314–316
Open command (File menu) 101–102
opening

documents 101–102
menus 56
pop-up menus 87
windows 141–143

Option-Delete 277
Option-dragging to copy objects 279
Option key 279, 282–283
outline triangle 218

I N D E X

381

P

Page Down key 164, 286
page indicator in window frame 162
page layout document icons 248
Page Setup command (File menu) 108, 189
Page Up key 164, 286
palettes 92, 96–97

and subpalettes 39
and tracking feedback 96
balloons for 323
in window frames 97
tool 96–97

panes of windows 170–173
passwords 30
Paste command (Edit menu) 115–116
pattern substitutions for keyboard icons 254
perceived stability, as design principle 11
physically impaired individuals 25
PICT file icons 248
plus sign pointer 270
pointers 96, 260, 268–271

and tools 96
changing shape of 270
color design for 260
moving 269
types of 270

pointing devices 268–271
pop-up menus 82–92

and keyboard equivalents 86
behavior of 83, 87–91
fonts in 88–89
standard 87–91
type-in 91–92
versus checkboxes 85–86
versus radio buttons 85
width of 89

preferences, implementing 37–38
preferences icons 250
pressing the mouse button 273
principles of human interface design 4–14

accessibility 14
aesthetic integrity 11–12
consistency 7–8
direct manipulation 6
feedback and dialog 9–10
forgiveness 10
knowledge of your audience 13–14
modelessness 12–13
perceived stability 11
see-and-point 7
use of metaphors 4–5
user control 9
WYSIWYG 8

Print command (File menu) 108–109

privacy and collaborative computing 28–30
privileges for access, symbols for 28
product development process 34–46
product names in icons 236
programming terms 307
progressive disclosure 8, 35–37, 262
protecting data 28–30
Publisher Options dialog box 118–120
Publisher/Subscriber Options command (Edit

menu) 118–120
punctuation in window titles 143
push buttons.

See

buttons

Q

query document icons 249
Quit command (File menu) 99, 109
QWERTY transliteration of keyboard layouts 254

R

racing stripes in title bar 135
radio buttons 210–211

balloons for 321
balloons for groups of 322–323
defined 210
labels for 309
.

See also buttons

versus pop-up menus 85
range selection 294–295, 299
RDEV, correct terminology for 307
read-only access 28
Redo/Undo command (Edit menu) 113–114
Reduce to Fit command 157
references for usage and style 306
remote resources 31
repeating characters automatically 280
replacing a selection 301
ResEdit utility 240
reserved keyboard equivalents 128–129
Return key 276, 299
reversible actions 10
Revert command (File menu) 107
Roman script system 19

S

Save a Copy command, avoiding 107
Save As command (File menu) 106–107

I N D E X

382

save changes alert box 103–104, 201
Save command (File menu) 104–105
screens.

See

monitors
script management system 16
Script Manager 16
script systems

and worldwide compatibility 16
enabled 125
icons for 125–127, 252
keyboard handling of 22, 125
Roman and non-Roman 19

scroll arrows 158, 163
scroll bars 158, 158–162

and arrow keys 281
and other controls in same region 161–162
inactive 160
in split windows 170–173
versus sliders 215

scroll boxes 158, 165
scrolling lists 198, 220–221
scrolling menus 78–79
scrolling windows 158–167, 172

automatically 166–167
by position 165
by unit 163
by windowful 164
panes of 172

security of information 28–30
security states and modeless dialog boxes 183
see-and-point, as design principle 7
seizure disorders 27
Select All command (Edit menu) 117
selecting 286–299

and scrolling 166–167
by clicking 271, 289
by Command-clicking 291–292
by double-clicking 272–273
by dragging 274, 289
by Shift-clicking 289–291
color design for 260
fields in an array 298–299
graphics 297
in arrays and tables 298–299
ranges 294–295
text 292
with the arrow keys 295–296
with the mouse 293

selection mechanism
for color icons 241–242
for icons 238

selections
extending 167
extending with Shift key 278
replacing 301

semantic modifiers 283

shared computing environment 27–31
shared resources 28
sharing information 27–31
Shift-clicking 289–291
Shift key 278, 299
shortcuts

documenting in help systems 315
double-clicking 272
.

See also

keyboard equivalents
Show Clipboard/Hide Clipboard command 117

in Edit menu 112
size

of menu bars 52–53
of pop-up menus 89

size boxes 134, 157
Size menu 122–123
sizes of icons 234–236
sliders 214–215
small (16-by-16 pixel) icons 233–234, 244–245
small objects and color 265
sound, as notification 72
Sound control panel 26
sound icons 252
Speaker Volume control 26
speech synthesizers, for people with a speech

disability 27
split bars 170–171
split lines 170–171
splitting windows 170–173
stack icons 248
stacking modal dialog boxes 192–193
stacks, HyperCard 308
standard characters in menus 64–72
standard file dialog boxes 101, 200
standard file dialog boxes, correct terminology for 307
standard interface elements

and color design 258–260
avoiding new behaviors for 39–40

standard Macintosh menus 98–127
standard save changes alert box 102–104, 201–202
standard state of a window 168–170
standard toolbox controls 204–213
stationery documents, icons for 249
status bar in window frame 162
stepped interfaces 8
stop alert boxes 196
Stop button 208–209
Style menu

guidelines for 124
text styles in 73–74

style of language 306
submenus 79–82
subpalettes, indicators for 39–40
Subscriber Options dialog box 118–120

I N D E X

383

Subscriber/Publisher Options command (Edit
menu) 118–120

Subscribe To command (Edit menu) 118
suites of icons 235
symbols

in icons 224–226
in menus 64–72

synchronization of keyboards and fonts 125
system beep 26
system extension, as correct term 307
system font, in menus 60

T

Tab key 276, 299
tables 288, 298–299
target audience 13–14

.

See also

users
task analysis, for defining your audience 13
task-oriented documentation 313
tear-off menus 93–95
temporal status and modal dialog boxes 190
terminology in the interface 307–309
text

and arrow keys 281–284
and the insertion point 293
as a type of object 287–288
deleting 300
editing 300–303
handling of, and worldwide issues 19
in dialog boxes 199
inserting 300
putting in resources 17
selecting 292–296
selections, extending 167
selections, extending with Shift key 278
sizes of 17
translating 18–19

text entry fields
and Save As dialog boxes 219
editing 302–303
providing text-editing capabilities in 219

text in icons 230
text-only document icons 248
text styles 73–74, 124
think-aloud protocols 43
three-dimensional effects in icons 231
tilted document page in application icons 246
title bars 134, 135
titles

of menus 54
of modeless dialog boxes 180
of windows 142–143

.

See also

labels
toggled menu items 73, 75–77
tools, balloons for in palettes 323
translating text 18–19
transparency of networks 31
triangles

in hierarchical menus 79
in pop-up menus 87
in scrolling menus 78

triple-clicking 273
TrueType fonts 123

.

See also

fonts
tutorials 313, 315
two-dimensional designs 263
type-ahead 280
type-in pop-up menus 91–92
type selection in scrolling lists 198

U

Undo/Redo command (Edit menu) 113–114
universal access 14, 24–27
untitled documents 101–102
untitled windows 142–143
uppercase characters and the Shift key 278
usability testing 41–46, 315
user choices in pop-up menus 85–87
user control, as design principle 9
user input, restricting with modal dialog boxes 189
user observations, steps for conducting 43–46
users

anticipating their questions in help systems 315
documentation for 313–314
identifying in collaborative computing 28
meeting expectations of 8
.

See also

audience
with a disability 24–27

user state of a window 168–170
utility windows 137–138, 145, 309

display order of on desktop 145
terminology for 309

V

views of documents.

See

windows
visual disabilities 25
visual feedback and collaborative computing 30

I N D E X

384

W

width of menu bar 53
windoid, correct terminology for 309
window boundaries 274
window definition functions 177, 259
window frames 134
window panes 170–173
windows 132–173

activating 155
and dialog boxes 176
and documents 132
and feedback 133
and icon design 237
and pop-up menus 82
appearance of 134–138
behavior of 139–173
changing the size of 156–157
closing 102, 152–154
color design for 258
color in 135–137
controls in 134
display order of on desktop 143–146
help balloons for 324
location of when opening 146–152
moving 154–155
opening 141–143
parts of 134
position of palettes in 97
positions of 146–152
scrolling 158–167
.

See also

window panes
size, changing 156–157
sizes of, recommended 170
splitting into panes 170–173
standard and user states 168–170
titles of 142–143
types of 132
utility 137–138
zoom box effect 168–170

word definitions 294
word order and localization 19
words in the interface 306–312

Words Into Type

306
words versus symbols 225
word wrap 300
workflow and modeless dialog boxes 178
worldwide compatibility 16–24, 230
worldwide software and accessibility 14
wristwatch pointer 270
WYSIWYG, as design principle 8

Z

zoom boxes 134, 168–170

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter II

NTX

 printer. Final page
negatives were output directly from text
files on an AGFA ProSet 9800 imagesetter.
Line art was created using
Adobe



 Illustrator. PostScript



, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino



 and display type is
Helvetica



. Bullets are ITC Zapf
Dingbats



. Some elements, such as
program listings, are set in Apple Courier.

Thi d t t d ith F M k 4 0 4

	Macintosh Human Interface Guidelines
	Contents
	Figures and Tables
	About This Book
	Who Should Read This Book
	What’s New in Macintosh Human Interface From Apple
	About Making It Macintosh
	What’s in This Book
	The Basic Philosophy
	The Interface Elements
	Appendixes

	Visual Cues Used in This Book

	Fundamentals
	Human Interface Principles
	The Human Interface Design Principles
	Metaphors
	Direct Manipulation
	See-and-Point
	Consistency
	WYSIWYG (What You See Is What You Get)
	User Control
	Feedback and Dialog
	Forgiveness
	Perceived Stability
	Aesthetic Integrity
	Modelessness

	Additional Issues to Consider
	Knowledge of Your Audience
	Accessibility

	General Design Considerations
	Worldwide Compatibility
	Cultural Values
	Resources
	Language Differences
	Text Display and Text Editing
	Default Alignment of Interface Elements
	Keyboards
	Fonts

	Universal Access
	People With a Physical Disability
	People With a Visual Disability
	People With a Hearing Disability
	People With a Speech or Language Disability
	People With a Seizure Disorder

	Collaborative Computing
	Concern for Other Users
	User Identification
	Access Privileges
	Passwords
	Data Encryption for Security
	Clear Communications
	Displaying the Current State of Data
	Communicating With Other Environments
	Network Transparency

	Human Interface Design and the Development Process
	Design Decisions
	Features Inspired by Market Pressures
	Feature Cascade
	The 80 Percent Solution

	Managing Complexity
	Using Progressive Disclosure
	Implementing Preferences

	Extending the Interface
	When to Go Beyond the Guidelines
	Build on the Existing Interface
	Don’t Assign New Behaviors to Existing Objects
	Create a New Interface Element Cautiously

	Involving Users in the Design Process
	Define Your Audience
	Analyze Tasks
	Build Prototypes
	Observe Users
	Ten Steps for Conducting a User Observation

	The Interface Elements
	Menus
	The Menu Bar
	Menu Behavior
	Menu Elements
	Menu Item Names
	Grouping Items in Menus
	Menu Dividers

	Standard Characters and Text Style in Menus
	Checkmarks and Dashes in Menus
	The Ellipsis Character in Menus
	A Diamond Mark in the Application Menu
	Avoid Nonstandard Marks in Menus
	Text Styles in Menus

	Toggled Menu Items
	Scrolling Menus
	Hierarchical Menus
	Pop-Up Menus
	Standard Pop-Up Menus
	Type-In Pop-Up Menus

	Tear-Off Menus and Palettes
	Tear-Off Menus
	Palettes

	Standard Macintosh Menus
	The Apple Menu
	File Menu
	The Edit Menu
	The Font Menu
	The Size Menu
	The Style Menu
	The Help Menu
	The Keyboard Menu
	The Application Menu

	Keyboard Equivalents

	Windows
	Window Appearance
	Document Window Controls
	Use of Color in Windows
	Utility Windows

	Window Behaviors
	The Active Window
	Opening Windows
	Window Display Order
	Window Positions
	The Default Position on a Single Screen
	The Default Position on Multiple Screens
	Dialog Box and Alert Box Positions
	Closing a Window
	Moving a Window
	Changing the Size of a Window
	Scrolling a Window
	The Zoom Box and Window Behavior
	Splitting a Window

	Dialog Boxes
	Modeless Dialog Boxes
	Modeless Dialog Box Appearance
	Modeless Dialog Box Behaviors

	Movable Modal Dialog Boxes
	Movable Modal Dialog Box Appearance
	Movable Modal Dialog Box Behaviors

	Modal Dialog Boxes
	Modal Dialog Box Appearance
	Modal Dialog Box Behaviors

	Alert Boxes
	Alert Box Appearance
	Note Alert Boxes
	Caution Alert Boxes
	Stop Alert Boxes

	Basic Dialog Box Layout
	Keyboard Navigation in Dialog Boxes
	Dialog Box Messages
	Standard File Dialog Boxes
	Save Changes Alert Box

	Controls
	Standard Toolbox Controls
	Buttons
	Radio Buttons
	Checkboxes

	Controls Not Supported by the Macintosh Toolbox
	Sliders
	Little Arrows
	Outline Triangles

	Other Elements for User Interaction
	Text Entry Fields
	Scrolling Lists

	Icons
	Why Icons Work
	Limitations of Icons
	Designing Effective Icons
	Use Appropriate Metaphors
	Think About Worldwide Compatibility
	Avoid Text in Icons
	Design for the Macintosh Display
	Use a Consistent Light Source
	Optimize for Your Target Display
	Maintain a Consistent Visual Appearance in an Icon Family Consistency
	Use Icon Elements Consistently

	The Finder Icon Family
	An Icon Design Process
	Black-and-White Icons
	Color Icons
	Icon Colors
	Anti-Aliasing

	Small Icons
	Default and Custom Icons
	Application Icons
	Document Icons
	Stationery Pad Icons
	Query Document Icons
	Edition Icons
	Preferences Icons
	Extension Icons
	Control Panel Icons
	Movable Resource Icons
	Keyboard Icons

	Color
	Color Design of Standard Interface Elements
	Windows and Dialog Boxes
	Menus
	Pointers
	Highlighting and Selection

	Color Application Guidelines
	Match Complexity to the Level of User
	Design for the Macintosh
	Design for Black and White First
	Limit the Number of Colors
	Colors on Gray
	Beware of Blue
	Small Objects
	Color for Categorizing Information

	Behaviors
	The Pointing Device
	Mouse Actions
	Clicking
	Double-Clicking
	Pressing
	Dragging

	The Keyboard
	Character Keys
	Modifier Keys
	Type-Ahead and Auto-Repeat
	International Keyboards
	Arrow Keys
	Function Keys

	Selecting
	Selection Methods
	Selections in Text
	Selections in Graphics
	Selections in Arrays and Tables

	Editing Text
	Inserting Text
	Deleting Text
	Replacing a Selection
	Intelligent Cut and Paste
	Editing Fields

	Language
	Style
	Terminology
	Developer Terms and User Terms
	Terms That Are Often Misused

	Labels for Interface Elements
	Dialog Box Messages
	User Documentation
	Online Help Systems
	Provide Concurrent Help
	Provide Multiple Levels of Help
	Assist Users by Answering Their Questions
	Keep the Help System Simple
	Design Online Help as an Interactive Coach

	Balloon Help
	When to Use a Help Balloon
	How to Write a Balloon
	Wording for Specific Balloon Types

	Appendixes
	Resources
	Association for Computing Machinery (ACM)
	Communications of the ACM
	SIGCHI
	SIGGRAPH
	CSCW

	Human Factors Society
	Human Factors Society Annual Meeting
	Human Factors
	Human Factors Society Bulletin

	Apple Developer Information
	APDA
	Developer Support Center
	In-House Development Support
	develop

	Bibliography
	Animation
	Cognitive Psychology and Human Factors
	Color
	Environmental Design
	Graphic and Information Design
	Graphic Design and Drawing
	Icons and Symbols
	Typography

	History of Human Interface
	Human-Computer Design
	Consistency
	Direct Manipulation
	Menus
	Metaphors
	Product Design
	Usability Testing
	User-Centered Design

	Human-Computer Interaction
	Language
	Programming
	Special Applications
	Collaborative Computing
	Hypertext
	Multimedia
	Online Documentation and Online Help

	Universal Access
	Visual Thinking
	Worldwide Software

	Checklist
	General Considerations
	Graphic Design
	Color
	Icons
	Windows
	Dialog Boxes
	Alert Boxes
	Scrolling
	Menus
	Pop-Up Menus
	Palettes and Tear-Off Menus
	Mouse Standards
	Text
	Balloon Help
	Keyboard Equivalents
	Edition Manager
	Documentation

	Glossary
	Index

