

I n s i d e M a c O S X

Aqua
Human Interface Guidelines
June 2002

 Apple Computer, Inc.
© 2002 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer
for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, AirPort,
AppleScript, AppleTalk,
AppleWorks, Aqua, Cocoa, Final Cut
Pro, FireWire, iMac, Keychain, Mac,
Macintosh, QuickDraw, QuickTime,
Sherlock, and WorldScript are

trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
Balloon Help, Carbon, Finder,
iMovie, iPhoto, iTunes, and ResEdit
are trademarks of Apple Computer,
Inc.
Objective-C is a trademark of NeXT
Software, Inc., registered in the
United States and other countries.
Java is a trademark of Sun
Microsystems, Inc., registered in the
U.S. and other countries.
Simultaneously published in the
United States and Canada
Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

Contents

Figures and Tables 13

Chapter 1 Introduction to the Aqua Human Interface Guidelines 21

The Benefits of Applying the Interface Guidelines 22
Deciding What to Do First 23
Tools and Resources for Applying the Guidelines 24
If You Have a Need Not Covered by the Guidelines 25

Chapter 2 Human Interface Design 27

Human Interface Design Principles 27
Metaphors 27
See-and-Point 28
Direct Manipulation 28
User Control 29
Feedback and Communication 29
Consistency 30
WYSIWYG (What You See Is What You Get) 30
Forgiveness 31
Perceived Stability 31
Aesthetic Integrity 31
Modelessness 32

Knowledge of Your Audience 33
Worldwide Compatibility 33

Cultural Values 34
Language Differences 34
Text Display and Text Editing 35
Default Alignment of Interface Elements 36
Resources 36
3
  Apple Computer, Inc. June 2002

C O N T E N T S

Universal Accessibility 37
Visual Disabilities 38
Hearing Disabilities 38
Physical Disabilities 39

Chapter 3 The Dock 41

The Dock’s Onscreen Position 41
Dock Notification Behavior 42
Dock Menus 43
Clicking in the Dock 44

Chapter 4 Menus 45

Menu Elements 45
Menu Titles 46
Menu Items 46
Grouping Items in Menus 47
Hierarchical Menus (Submenus) 48

Menu Behavior 49
Scrolling Menus 50
Toggled Menu Items 50
Sticky Menus 51

Standard Pull-Down Menus (The Menu Bar) 52
The Apple Menu 53
The Application Menu 54

The Application Menu Title 54
The Application Menu Contents 55

The File Menu 56
The Edit Menu 59
The View Menu 61
The Window Menu 61
The Help Menu 63
Menu Bar Status Items 63
Other Menus 63

Contextual Menus 64
4
  Apple Computer, Inc. June 2002

C O N T E N T S

Using Special Characters and Text Styles in Menus 65
Using Symbols in Menus 65
Using Text Styles and Fonts in Menus 67
Using Ellipses in Menus and Buttons 67

Chapter 5 Windows 69

Window Layering 70
Window Appearance and Behavior 70

Textured Windows 72
Opening and Naming Windows 74
Positioning Windows 76
Closing Windows 79
Moving Windows 80
Resizing and Zooming Windows 80
Active and Inactive Windows 81
Click-Through 82
Scroll Bars and Scrolling Windows 85

Automatic Scrolling 87
Minimizing and Expanding Windows 88
Windows With Changeable Panes 88

Special Windows 88
Drawers 88

When to Use Drawers 89
Drawer Behavior 90

Utility Windows 91
The About Window 92

Chapter 6 Dialogs 95

Types of Dialogs and When to Use Them 95
Document-Modal Dialogs (Sheets) 96

Sheet Behavior 97
When to Use Sheets 98
When Not to Use Sheets 98

Alerts 98
5
  Apple Computer, Inc. June 2002

C O N T E N T S

Dialog Behavior 101
Accepting Changes 101
The Open Dialog 102
Saving, Closing, and Quitting Behavior 105

Save Dialogs 105
Closing a Document With Unsaved Changes 109
Saving Documents During a Quit Operation 110
Saving a Document With the Same Name as an Existing Document 113

The Choose Dialog 114
The Printing Dialogs 115

Chapter 7 Controls 119

Control Behavior and Appearance 120
Push Buttons 120

Push Button Specifications 121
Radio Buttons and Checkboxes 122

Radio Button and Checkbox Specifications 123
Selections Containing More Than One Checkbox State 124

Pop-Up Menus 124
Pop-Up Menu Specifications 126

Command Pop-Down Menus 127
Command Pop-Down Menu Specifications 127

Combination Boxes 128
Combo Box Specifications 129
The Text Entry Field 129
The Scrolling List 130

Placards 130
Bevel Buttons 131

Bevel Button Specifications 132
Toolbars 133
Pop-Up Icon Buttons and Pop-Up Bevel Buttons 134
Slider Controls 137

Slider Control Specifications 137
Tab Controls 138

Tab Control Specifications 139
Progress Indicators 141
6
  Apple Computer, Inc. June 2002

C O N T E N T S

Text Fields and Scrolling Lists 144
Tools for Creating Lists 144
Text Input Field Specifications 145
Scrolling List Specifications 146

Image Wells 147
Disclosure Triangles 148

Chapter 8 Layout Guidelines 149

Positioning Controls in Dialogs and Windows 149
Group Boxes 151
Sample Dialog Layouts 154
Using Small Versions of Controls 160

Chapter 9 User Input 163

The Mouse and Other Pointing Devices 163
Using the Mouse 164

Clicking 164
Double-Clicking 164
Pressing 165
Dragging 165

The Keyboard 166
The Functions of Specific Keys 166

Character Keys 166
Modifier Keys 169
Arrow Keys 170
Function Keys 174

Reserved and Recommended Keyboard Equivalents 176
Key Combinations Reserved by the System 176
Recommended Keyboard Equivalents 179

Creating Your Own Keyboard Equivalents 180
Keyboard Focus and Navigation 182

Full Keyboard Access Mode 184
Type-Ahead and Auto-Repeat 185
7
  Apple Computer, Inc. June 2002

C O N T E N T S

Selecting 185
Selection Methods 186

Selection by Clicking 186
Selection by Dragging 187
Changing a Selection With Shift-Click 187
Changing a Selection With Command-Click 188

Selections in Text 189
Selecting With the Mouse 190
What Constitutes a Word 190
Selecting Text With the Arrow Keys 192

Selections in Graphics 192
Selections in Arrays and Tables 192

Editing Text 193
Inserting Text 193
Deleting Text 193
Replacing a Selection 194
Intelligent Cut and Paste 194
Editing Text Fields 195
Entering Passwords 196

Chapter 10 Fonts 197

Chapter 11 Icons 201

Icon Genres and Families 202
Application Icons 204

User Application Icons 204
Viewer, Player, and Accessory Icons 206
Utility Icons 207

Non-Application Icons 207
Document Icons 207
Icons for Preferences and Plug-ins 209
Icons for Hardware and Removable Media 209

Toolbar Icons 211
Icon Perspectives and Materials 213
8
  Apple Computer, Inc. June 2002

C O N T E N T S

Conveying an Emotional Quality in Icons 216
Suggested Process for Creating Aqua Icons 216
Tips for Designing Aqua Icons 218

Chapter 12 Drag and Drop 219

Drag and Drop Design Overview 219
Drag and Drop Semantics 220

Move Versus Copy 220
When to Check the Option Key State 221

Selection Feedback 222
Single-Gesture Selection and Dragging 222
Background Selections 222

Drag Feedback 223
Destination Feedback 223

Windows 223
Text 224
Multiple Dragged Items 224
Automatic Scrolling 225
Using the Trash as a Destination 225

Drop Feedback 225
Finder Icons 226
Graphics 226
Text 226
Transferring a Selection 226
Feedback for an Invalid Drop 227

Clippings 227

Chapter 13 Language 229

Style 229
Terminology 230

Developer Terms and User Terms 230
Labels for Interface Elements 230

Capitalization of Interface Elements 231
Using Contractions in the Interface 232

Writing Good Alert Messages 232
9
  Apple Computer, Inc. June 2002

C O N T E N T S

Chapter 14 User Help and Assistants 235

Apple’s Philosophy of Help 235
Help Viewer 237
Providing Access to Help 237
Help Tags 238

Help Tag Guidelines 239
Setup Assistants 241

Chapter 15 Files 245

Installing Files 245
Where to Put Files 247
Handling Plug-ins 249
Naming Files and Showing Filename Extensions 249
Displaying Pathnames 251

Chapter 16 Speech Recognition and Synthesis 253

Speech Recognition 254
Speakable Items 255
The Speech Recognition Interface 255
Speech-Recognition Errors 257
Guidelines for Implementing Speech Recognition 257

Speech Synthesis 258
Guidelines for Implementing Speech Synthesis 258

Spoken Dialogues and Delegation 260

Appendix A Checklist for Creating Aqua Applications 261

General Considerations 261
Installation and File Location 263
Graphic Design 263
Menus 263
Pop-Up Menus 264
Windows 265
10
  Apple Computer, Inc. June 2002

C O N T E N T S

Utility Windows 266
Scrolling 266
Dialogs 267
Feedback and Alerts 268
The Mouse 269
Keyboard Equivalents 269
Text 270
Icons 270
User Documentation 271
Help Tags 271

Appendix B Mac OS X Terminology Guidelines 273

Appendix C Document Revision History 285

Glossary 289

Index 297
11
  Apple Computer, Inc. June 2002

C O N T E N T S
12
  Apple Computer, Inc. June 2002

Figures and Tables

Chapter 2 Human Interface Design 27

Figure 2-1 Make text display rectangles the same size to facilitate
translation 36

Chapter 3 The Dock 41

Figure 3-1 An example of a badged Dock icon: The Mail application icon
indicates there are unread messages 42

Figure 3-2 The iTunes Dock menu 43

Chapter 4 Menus 45

Figure 4-1 A pull-down menu and its parts 46
Figure 4-2 Grouping items in menus 48
Figure 4-3 A hierarchical menu 49
Figure 4-4 Avoid ambiguous toggled menu items 51
Figure 4-5 The menu bar displayed when the Finder is active 52
Figure 4-6 The Apple menu 53
Figure 4-7 The Mail application menu 54
Figure 4-8 The File menu 57
Figure 4-9 The Edit menu 59
Figure 4-10 A Window menu 62
Figure 4-11 A contextual menu for a text selection in a document (left) and an

icon in the Finder 64
Figure 4-12 Don’t use arbitrary symbols in menus 65
Figure 4-13 Symbols in menus 66
Figure 4-14 A Font menu displayed with different fonts 67
13
  Apple Computer, Inc. June 2002

F I G U R E S A N D T A B L E S

Chapter 5 Windows 69

Figure 5-1 Standard window parts 71
Figure 5-2 The close button in its unsaved changes state 71
Figure 5-3 Document path pop-up menu, opened by Command-clicking the

proxy icon 72
Figure 5-4 The “textured” window appearance 73
Figure 5-5 Appropriate titles for a series of unnamed windows 74
Figure 5-6 Examples of correct and incorrect window titles 75
Figure 5-7 Position of new document window 76
Figure 5-8 “Visually centered” placement of new nondocument window 77
Figure 5-9 Appropriate placement of a new window on a system with multiple

monitors (the user moved the first window to span the
screens)) 79

Figure 5-10 Window controls in active and inactive states 81
Figure 5-11 An inactive window with controls that support click-through 83
Figure 5-12 The Save button on the inactive window does not support click-

through 84
Figure 5-13 The elements of a scroll bar 85
Figure 5-14 An open drawer next to its parent window 89
Figure 5-15 Examples of tool palettes (utility windows) 91
Figure 5-16 Utility window controls 92
Figure 5-17 Examples of About windows (all specifications apply to both

versions) 93

Chapter 6 Dialogs 95

Figure 6-1 The Save Changes alert: An example of using a sheet to display a
document-modal dialog 97

Figure 6-2 A standard alert 99
Figure 6-3 A customized alert showing the caution icon badged with an

application icon 100
Figure 6-4 An Open dialog 103
Figure 6-5 A customized Open dialog (column browser not shown) 105
Figure 6-6 The minimal (collapsed) Save dialog 106
Figure 6-7 The expanded Save dialog 107
Figure 6-8 A Save Changes alert for a document-based application 109
14
  Apple Computer, Inc. June 2002

F I G U R E S A N D T A B L E S

Figure 6-9 A Save Changes alert for an application that is not document-
based 110

Figure 6-10 The Save Before Quitting alert (sheet) that appears when the user
quits with only one unsaved document 111

Figure 6-11 The Review Changes alert (application modal) that appears when
the user quits with more than one unsaved document open 112

Figure 6-12 Alert for confirming replacing a file 113
Figure 6-13 A Choose dialog 114
Figure 6-14 A Print dialog (a sheet attached to a document window) 116
Figure 6-15 Options for choosing paper type and print quality 116
Figure 6-16 The expanded Color Options pane, showing advanced

options 117

Chapter 7 Controls 119

Figure 7-1 Example of standard push buttons 121
Figure 7-2 Stacked push buttons 121
Figure 7-3 Push button dimensions 122
Figure 7-4 Spacing of standard and small radio buttons 123
Figure 7-5 Spacing of standard and small checkboxes 123
Figure 7-6 Dashes in checkboxes representing a selection with more than one

state 124
Figure 7-7 An open pop-up menu 124
Figure 7-8 Pop-up menu spacing 126
Figure 7-9 A command pop-down menu 127
Figure 7-10 Command pop-down menu specifications 128
Figure 7-11 Combo box with scrolling list open 128
Figure 7-12 Combo box dimensions 129
Figure 7-13 A placard pop-up menu 130
Figure 7-14 Bevel button specifications 132
Figure 7-15 Bevel buttons as radio buttons and push buttons 133
Figure 7-16 The toolbar control 134
Figure 7-17 Pop-up icon button 135
Figure 7-18 Pop-up bevel button with square corners 136
Figure 7-19 Pop-up bevel button with rounded corners 136
Figure 7-20 Slider control dimensions 137
Figure 7-21 Small slider dimensions 137
15
  Apple Computer, Inc. June 2002

F I G U R E S A N D T A B L E S

Figure 7-22 Orientation of tab text on each side 138
Figure 7-23 Tab control dimensions 139
Figure 7-24 Small tab control dimensions 139
Figure 7-25 Tab panes edge to edge 140
Figure 7-26 Tab panes inset from edge of window 141
Figure 7-27 Progress bars 142
Figure 7-28 Spinning arrows used instead of indeterminate progress bar 143
Figure 7-29 Relevance control 143
Figure 7-30 Text input field specifications 145
Figure 7-31 Small text input field specifications 146
Figure 7-32 Scrolling list dimensions 146
Figure 7-33 Image wells 147
Figure 7-34 Disclosure triangles in the Finder list view 148

Chapter 8 Layout Guidelines 149

Figure 8-1 Position of buttons at the bottom of a dialog 150
Figure 8-2 Dialog redesigned without group boxes (first example) 152
Figure 8-3 Dialog redesigned without group boxes (second example) 153
Figure 8-4 Dialog redesigned without a group box (third example)] 154
Figure 8-5 A standard alert with dimensions 155
Figure 8-6 Sample application preferences dialog 156
Figure 8-7 Sample dialogs with panes 157
Figure 8-8 Sample dialog with scrolling list 159
Figure 8-9 Sample window using small scroll bars and resize control 160
Figure 8-10 Sample utility window using small controls 161

Chapter 9 User Input 163

Figure 9-1 Keyboard focus for a text field 182
Figure 9-2 Keyboard focus for a scrolling list 183
Figure 9-3 Primary and secondary highlight colors in columns 183
Figure 9-4 Selection techniques 186
Figure 9-5 Shift-clicking in the addition model and the fixed-point

model 188
Figure 9-6 Discontinuous selection within an array 189
16
  Apple Computer, Inc. June 2002

F I G U R E S A N D T A B L E S

Table 9-1 Moving the insertion point with the arrow keys 172
Table 9-2 Extending text selection with the Shift and arrow keys 173
Table 9-3 Keyboard equivalents reserved by the operating system 176
Table 9-4 Key combinations reserved for international systems 177
Table 9-5 Key combinations used with screen zooming 177
Table 9-6 Key combinations for moving focus in full keyboard access mode

(mnemonic alternatives are in parentheses) 178
Table 9-7 Recommended keyboard equivalents 179
Table 9-8 Some of the recommended keyboard equivalents using Shift to

complement other commands 181
Table 9-9 Example of using Option to modify a shortcut already using

Command 181

Chapter 10 Fonts 197

Figure 10-1 Mac OS X standard fonts 197
Table 10-1 Font constants and methods in Carbon and Cocoa 199

Chapter 11 Icons 201

Figure 11-1 Traditional application icon and Mac OS X icon 201
Figure 11-2 Application icons of different genres—user applications and

utilities—shown as they might appear in the Dock 202
Figure 11-3 Two icon genres: User application icons in top row, utility icons in

bottom row 203
Figure 11-4 An icon family: The iTunes application icon and its associated

icons 204
Figure 11-5 The TextEdit application icon makes it obvious what this application

is for 205
Figure 11-6 The Preview application icon: An example of a tool element 205
Figure 11-7 The Stickies application icon: Effective without the addition of a

tool 206
Figure 11-8 The icons for QuickTime Player, Calculator, and Chess 206
Figure 11-9 Discriminating use of color in the Process Viewer and Print Center

icons 207
Figure 11-10 Icons for the Preview application and a Preview document 208
17
  Apple Computer, Inc. June 2002

F I G U R E S A N D T A B L E S

Figure 11-11 Incorrect and correct badging of a document icon 208
Figure 11-12 Icons for a preferences application (System Preferences) and for a file

that stores preferences (for the iTunes application) 209
Figure 11-13 A plug-in icon 209
Figure 11-14 Icons for external (top row) and internal hardware devices 210
Figure 11-15 Icons for removable media 210
Figure 11-16 Finder toolbar icons 211
Figure 11-17 Toolbar icons and their dominant shapes 211
Figure 11-18 The circled icons appear elsewhere in the interface; they retain their

perspective when used in a toolbar 212
Figure 11-19 The Mail toolbar 212
Figure 11-20 Perspective for application icons: Sitting on a desk in front of

you 213
Figure 11-21 Perspective for flat utility icons: On a shelf in front of you, with a

shadow on the wall behind 214
Figure 11-22 Perspective for three-dimensional object: Sitting on a shelf in front of

you, with the shadow below the object 214
Figure 11-23 Perspective for toolbar icons: Straight-on, with subtle shadow on the

“floor” 215
Figure 11-24 Materials: Transparency used to convey meaning 215
Figure 11-25 Being emotive: The same message conveyed two ways 216

Chapter 12 Drag and Drop 219

Table 12-1 Common drag-and-drop operations and results 221

Chapter 13 Language 229

Figure 13-1 A poorly written alert message 233
Figure 13-2 An improved alert message 233
Figure 13-3 A well-written alert message 234
Table 13-1 Translating developer terms into user terms 230
Table 13-2 Proper capitalization of onscreen elements 231
18
  Apple Computer, Inc. June 2002

F I G U R E S A N D T A B L E S

Chapter 14 User Help and Assistants 235

Figure 14-1 A help tag and an expanded help tag 239
Figure 14-2 The icon for AirPort Setup Assistant 241
Figure 14-3 A typical setup assistant pane 242

Chapter 16 Speech Recognition and Synthesis 253

Figure 16-1 The speech feedback window 256
Figure 16-2 The Speech Commands window 256

Appendix C Document Revision History 285

Table C-1 Document revision history 285
19
  Apple Computer, Inc. June 2002

F I G U R E S A N D T A B L E S
20
  Apple Computer, Inc. June 2002

C H A P T E R 1

1 Introduction to the Aqua Human
Interface Guidelines
Mac OS X is the world’s most advanced operating system, combining a powerful
core foundation with a new and compelling user interface called Aqua. With
brilliant new features and an aesthetically refined use of color, transparency, and
animation, Aqua makes computing even easier for new users, while providing the
productivity that professional users have come to expect of the Macintosh. The user
interface features, behaviors, and appearances introduced in Aqua deliver a well
organized and cohesive user experience available to all applications developed for
Mac OS X.

This document, which covers features up to Mac OS X version 10.2, describes what
you need to do to design your application for Aqua. Primarily intended for Carbon
and Cocoa developers who want their applications to look right and behave
correctly in Mac OS X, these guidelines provide examples of how to use Aqua
interface elements. Java application developers will also find these guidelines
useful.

This document assumes that you are familiar with basic software design principles.
Specific principles of designing for the Mac OS are summarized in the next chapter,
“Human Interface Design Principles” (page 27).

Important
This document has been reviewed for technical accuracy, but
the information herein is subject to change.

To receive notification of updates to this document and
others, you can sign up for Apple Developer Connection’s
free Online Program and receive the weekly ADC News
email newsletter. For more details about the Online
Program, see http://developer.apple.com/membership/
index.html.
21
  Apple Computer, Inc. June 2002

http://developer.apple.com/membership/index.html
http://developer.apple.com/membership/index.html
http://developer.apple.com/membership/index.html
http://developer.apple.com/membership/index.html
http://developer.apple.com/membership/index.html

C H A P T E R 1

Introduction to the Aqua Human Interface Guidelines
The Benefits of Applying the Interface Guidelines

These guidelines are designed to assist you in developing products that provide
Mac OS X users with a consistent visual and behavioral experience across
applications and the operating system. Following the guidelines is to your
advantage because

� users will learn your application faster if the interface looks and behaves like
applications they’re already familiar with

� users will accomplish their tasks quickly, because well-designed applications
don’t get in the user’s way

� users with special needs will find your product more accessible

� your application will have the same modern, elegant appearance as other
Mac OS X applications

� your application will be easier to document, because an intuitive interface and
standard behaviors don’t require as much explanation

� customer support calls will be reduced (for the reasons cited above)

� your application will be easier to localize, because Apple has worked through
many localization issues in the Aqua design process

� media reviews of your product will be more positive; reviewers easily target
software that doesn’t look or behave the way “true” Macintosh applications do

The implementation of Apple’s human interface principles make the Macintosh
what it is: intuitive, friendly, elegant, and powerful.
22 The Benefits of Applying the Interface Guidelines
  Apple Computer, Inc. June 2002

C H A P T E R 1

Introduction to the Aqua Human Interface Guidelines
Deciding What to Do First

If business reasons such as resource constraints or schedule commitments require
you to adopt Aqua in stages, the following two lists can help you make decisions
about which features to focus on first. To make your application feel at home on
Mac OS X, it is most important for you to implement the following features (not in
order of importance):

� Install files in the proper locations (see “Installing Files” (page 245) and don’t
abuse the Documents folder (see “Where to Put Files” (page 247).)

� Adopt the Aqua appearance and follow the layout guidelines provided in this
document.

� Abide by the filenaming conventions (see “Naming Files and Showing Filename
Extensions” (page 249)).

� Provide user assistance (see “User Help and Assistants” (page 235)).

� Be aware of the Dock (see “The Dock” (page 41).)

� Respect the accessibility features built in to Mac OS X version 10.2.

To take full advantage of Mac OS X and to offer your customers the richest user
experience possible, your application should also do the following:

� Implement sheets and drawers (see “Document-Modal Dialogs (Sheets)”
(page 96) and “Drawers” (page 88)).

� Use the Dock to provide meaningful feedback to users (see “Dock Notification
Behavior” (page 42)).

� Use the AddressBook framework provided with Mac OS X version 10.2 to access
and create contact information entered by users. (See Inside Mac OS X: System
Overview, available on the Mac OS X developer documentation website.)

� Be speech-enabled (see “Speech Recognition and Synthesis” (page 253)).
Deciding What to Do First 23
  Apple Computer, Inc. June 2002

C H A P T E R 1

Introduction to the Aqua Human Interface Guidelines
Tools and Resources for Applying the Guidelines

APIs, frameworks, and other tools are available to help you implement the design
principles and interface specifications described in this document.

� Interface Builder provides a rich environment for creating application menus,
windows, dialogs, palettes, and other standard Aqua interface elements. It
provides full Cocoa support. Carbon developers can also make their
applications Aqua-compliant by using Interface Builder to create nib files.

Interface Builder is on the Mac OS X Developer Tools CD, or you can download
it from the Apple Developer Connection website (http://developer.apple.com/
membership/index.html).

� The JFC/Swing Toolkit provides the Aqua look and feel for applications written
using Java. For more information, go to http://java.sun.com/products/jfc/.

� The Appearance Manager. If your application is Carbon-based but uses custom
controls, use the Appearance Manager to unify these elements with the rest of
the Aqua interface. The Appearance Manager provides a variety of functions
you can use to handle most aspects of drawing and tracking so that controls in
your application look and behave correctly in both the Aqua and Graphite
themes.

For more information and code samples, see Programming With the Appearance
Manager and the source code for the Appearance Sample, available as part of the
Appearance Manager SDK available at http://developer.apple.com/sdk.

The Mac OS X developer documentation website has many other useful
documents. When appropriate, specific titles are given throughout this book. These
documents are available at http://developer.apple.com/techpubs/macosx.
24 Tools and Resources for Applying the Guidelines
  Apple Computer, Inc. June 2002

http://developer.apple.com/membership/index.html
http://developer.apple.com/membership/index.html
http://developer.apple.com/membership/index.html
http://developer.apple.com/membership/index.html
http://java.sun.com/SFC
http://java.sun.com/SFC
http://developer.apple.com/sdk
http://developer.apple.com/sdk
http://developer.apple.com/sdk
http://developer.apple.com/techpubs/macosx

C H A P T E R 1

Introduction to the Aqua Human Interface Guidelines
If You Have a Need Not Covered by the Guidelines

If your application requires an element or a behavior that doesn’t already exist, or
has a need that this document doesn’t address, you can extend the set of controls
using these guidelines, provided that the new element or behavior supports
Apple’s interface design principles.

Be very cautious about creating new interface elements because you may introduce
unnecessary complexity. Make sure that you can’t use existing elements or a
combination of them to achieve the desired result. Usability testing is essential for
determining whether a new element works.

If you must invent a new element or behavior, consider the following
recommendations:

� Build on the existing interface. Begin with the already-defined visual and
behavioral language that users are familiar with. Think about what the
appearance means to people (the look) and how they expect elements to behave
(the feel). Visual cues, such as the drop shadow and arrow on a pop-up menu,
help people recognize how to use an element.

� Don’t assign new behaviors to existing objects. When you need a new
behavior, design a new element for it, rather than changing the behavior of a
standard element. If the same element behaves differently in different situations,
the interface becomes unpredictable and harder to figure out.
If You Have a Need Not Covered by the Guidelines 25
  Apple Computer, Inc. June 2002

C H A P T E R 1

Introduction to the Aqua Human Interface Guidelines
26 If You Have a Need Not Covered by the Guidelines
  Apple Computer, Inc. June 2002

C H A P T E R 2
2 Human Interface Design
Products from Apple Computer are designed using a number of basic principles of
human-computer interaction. This chapter presents these principles, and also
points out what to consider for worldwide compatibility and universal access. Keep
these considerations in mind as you design your product.

Human Interface Design Principles

This section provides a theoretical base for the wealth of practical information on
implementing the Aqua interface elements presented in the rest of this book.

You’ll undoubtedly find that you can’t design in accordance with all of the
principles all the time. In those situations, you’ll have to make decisions based on
which principle or set of principles is most important in the context of the task
you’re solving. User testing is often an excellent way to decide between conflicting
principles in a particular context.

Metaphors
Take advantage of people’s knowledge of the world by using metaphors to convey
concepts and features of your application. Use metaphors that represent concrete,
familiar ideas and make the metaphors obvious, so users can apply a set of
expectations to the computer environment. For example, the Macintosh uses the
metaphor of file folders for storing documents; people can organize their hard disks
in a way that’s analogous to the way they organize file cabinets.
Human Interface Design Principles 27
  Apple Computer, Inc. June 2002

C H A P T E R 2

Human Interface Design
Metaphors in the computer interface suggest a use for something, but that use
doesn’t necessarily define or limit the implementation of the metaphor. The Trash,
for example, doesn’t have to limit its contents to the number of items an actual
wastebasket could contain. Try to strike a balance between the metaphor’s
suggested use and the computer’s ability to support and extend the metaphor.

See-and-Point
People interact with the interface by pointing at onscreen objects with a device,
typically a mouse. The Macintosh operating system works according to two
fundamental paradigms, both of which assume that users can see what they’re
doing onscreen at all times and can point at what they see. The paradigms are based
on a general form of user action: noun-then-verb.

In one paradigm, the user selects an object (the noun) and then chooses the action
to be performed on the object (the verb). All actions available for a selected object
are listed in the menus, so a user who is unsure of what to do next can scan through
them. Users can choose an available action without having to remember a specific
command.

In the second paradigm, the user directly manipulates an object (the noun) and
performs an action (the verb) with it. A common example is dragging a document
icon to a folder, for example. The user doesn’t choose a menu command, but it’s
clear what happens to an object when it’s placed on another one. For this paradigm
to work, the user must recognize what objects are for; the fact that the Trash looks
like its real-world counterpart makes the interface easier to use.

Direct Manipulation
Direct manipulation allows people to feel that they are controlling the objects
represented by the computer. According to this principle, an onscreen object should
remain visible while a user performs an action on it, and the impact of the action
should be immediately visible. For example, a user moves a file by dragging its icon
from one location to another. With drag and drop, the most common example of
direct manipulation, users can drag selected text directly into another document.

Support direct manipulation when users expect it. Avoid forcing users to use
controls to manipulate data. For example, you should be able to send a facsimile by
dragging a document’s icon to a fax machine icon in the Dock, instead of having to
open a utility program, choose a file, and click a Fax button.
28 Human Interface Design Principles
  Apple Computer, Inc. June 2002

C H A P T E R 2

Human Interface Design
User Control
Allow the user, not the computer, to initiate and control actions. Some applications
attempt to take care of the user by offering only alternatives judged good for the
user or that protect the user from having to make detailed decisions. This approach
mistakenly puts the computer, not the user, in control.

The key is to create a balance between providing users with the capabilities they
need to get their work done and helping them avoid dangerous irreversible actions.
For a situation in which a user may destroy data accidentally, for example, you
should always provide a warning and still allow the user to proceed if desired.

Feedback and Communication
Keep users informed about what’s happening with your product. Provide feedback
as they do tasks. When a user initiates an action, provide an indication that your
application has received the user’s input and is operating on it.

Users want to know that a command is being carried out or, if it can’t be carried out,
they want to know why not and what they can do instead. When used sparingly,
animation is one of the best ways to show a user that a requested action is being
carried out. When a user clicks an icon in the Dock, for example, the icon bounces
to let the user know that the application or document is in the process of opening.
In Mac OS X, the kernel environment detects when your application doesn’t
respond to events for 2 seconds and automatically displays a busy cursor.

For operations that don’t execute immediately, use a progress indicator to provide
useful information about how long the operation will take. See “Progress
Indicators” (page 141). Users don’t need to know precisely how many seconds an
operation will take, but it helps to give an estimate. For example, the Mac OS uses
statements such as “about a minute remains.” It can also be helpful to communicate
the total number of steps needed to complete a task—“Copying 30 of 850 files,” for
example.

Provide direct, simple feedback that people can understand. In error messages, for
example, spell out exactly what situation caused the error (“There’s not enough
space on that disk to save the document”) and possible actions the user can take to
rectify it (“Try saving the document in another location”). For more information, see
“Writing Good Alert Messages” (page 232).
Human Interface Design Principles 29
  Apple Computer, Inc. June 2002

C H A P T E R 2

Human Interface Design
Consistency
Consistency in the interface allows people to transfer their knowledge and skills
from one application to any other. Use the standard elements of the Aqua interface
to ensure consistency within your application and to benefit from consistency
across applications. Ask yourself the following questions when thinking about
consistency in your product.

Is your product consistent

� within itself?

� with earlier versions of your product?

� with Mac OS standards? For example, does your application use the reserved
and recommended keyboard equivalents? (See “Reserved and Recommended
Keyboard Equivalents” (page 176).)

� in its use of metaphors?

� with people’s expectations?

Matching everyone’s expectations is the most difficult kind of consistency to
achieve, since your product is likely used by an audience with a wide range of
expertise. You can address this problem by carefully weighing the consistency
issues in the context of your target audience and their needs.

WYSIWYG (What You See Is What You Get)
In applications in which users can format data for printing, make sure there are no
significant differences between what the user sees onscreen and what the user
receives after printing. When the user makes changes to a document, display the
results immediately; the user shouldn’t have to wait for a printout or make mental
calculations of how the document will look when printed. Use a print preview
function if necessary.

WYSIWYG is not about only printing; all data experienced by users—movies,
audio, and so on—should be faithfully represented in all media.

People should be able to find all the available features in your application. Don’t
hide features by using abstract commands. For example, menus present lists of
commands so people can see their choices instead of having to remember command
names.
30 Human Interface Design Principles
  Apple Computer, Inc. June 2002

C H A P T E R 2

Human Interface Design
Forgiveness
You can encourage people to explore your application by building in forgiveness—
that is, making most actions easily reversible. People need to feel that they can try
things without damaging the system; create safety nets, such as the Undo and the
Revert to Saved commands, so people feel comfortable learning and using your
product.

Always warn users before they initiate a task that will cause irreversible loss of data.
If alerts appear frequently, however, it may mean that the product has some design
flaws; when options are presented clearly and feedback is timely, using an
application should be relatively error-free.

Perceived Stability
The Macintosh interface is designed to provide an understandable, familiar, and
predictable environment.

To give users a visual sense of stability, the interface defines many consistent
graphics elements, such as the menu bar, window controls, and so on. Users
encounter a familiar environment in which they know how things behave and what
to do with them.

To give users a conceptual sense of stability, the interface provides a clear, finite set
of objects and a clear, finite set of actions to perform on those objects. For example,
when a menu command doesn’t apply to a selected object or to the object in its
current state, it is shown dimmed (grayed out) rather than being omitted.

To help preserve the perception of stability, when a user sets up his or her onscreen
environment in a certain layout, it should stay that way until the user changes it.
Preserve user-modified settings such as window dimensions and locations.

Aesthetic Integrity
Aesthetic integrity means that information is well organized and consistent with
principles of visual design. Your product should look pleasant on screen even when
viewed for a long time.
Human Interface Design Principles 31
  Apple Computer, Inc. June 2002

C H A P T E R 2

Human Interface Design
Keep graphics simple, and use them only when they truly enhance usability. Don’t
overload the user with icons or put dozens of buttons in windows or dialogs. Don’t
use arbitrary symbols to represent concepts; they may confuse or distract users.

Match a graphic element with users’ expectations of its behavior. Don’t change the
meaning or behavior of standard items. For example, always use checkboxes for
multiple choices; don’t use them sometimes for exclusive choices.

Modelessness
As much as possible, allow people to do whatever they want at all times. Avoid
using modes that lock the user into one operation and don’t allow the user to work
on anything else until that operation is completed.

Most acceptable uses of modes fall into one of the following categories:

� Short-term modes in which the user must constantly do something to maintain
the mode. Examples are holding down the mouse button to scroll text or holding
down the Shift key to extend a text selection.

� Alert modes, in which the user must rectify an unusual situation before
proceeding. Keep these modes to a minimum. See “Types of Dialogs and When
to Use Them” (page 95) for more information.

Other modes are acceptable if they do one of the following:

� They emulate a familiar real-life situation that is itself modal. For example,
choosing different tools in a graphics application resembles the real-life choice
of physical drawing tools.

� They change only the attributes of something, not its behavior. The boldface and
underline modes of text entry are examples.

� They block most other normal operation of the system to emphasize the
modality. An example is a dialog that makes all menu commands unavailable
except Cut, Copy, and Paste.

If an application uses modes, there must be a clear visual indicator of the current
mode, and it should be very easy for users to get in and out of the mode. For
example, in many graphics applications, the pointer can look like a pencil, a cross,
a paintbrush, or an eraser, depending on the function (the mode) the user selects.
32 Human Interface Design Principles
  Apple Computer, Inc. June 2002

C H A P T E R 2

Human Interface Design
Knowledge of Your Audience

Identifying and understanding your target audience are important first steps when
designing your product. The best way to make sure your product meets the needs
of your customers is by exposing your design to their scrutiny. You can do this
during every phase of the design process to help reveal what works about your
product as well as its flaws. The improvements you make as a result of prototype
testing can translate into competitive advantages, increased sales, and enhanced
customer satisfaction.

It’s useful to create scenarios that describe a typical day in the life of a person you
think uses the type of product you’re designing. Think about the different
environments, tools, and constraints that your users deal with. If possible, visit
actual workplaces and study how people do their jobs.

Analyze the steps necessary to complete each task you anticipate people wanting to
accomplish with your product. Look at how they perform similar tasks without a
computer. Then design your product to facilitate those tasks. Don’t replicate each
step on the computer; your application should make the whole process easier.

Throughout the design process, use people who fit your audience description to test
your prototypes. Listen to their feedback and try to address their concerns. Develop
your product with people and their capabilities—not computers and their
capabilities—in mind.

Worldwide Compatibility

Macintosh system software is designed to address the complex problems you’ll
encounter when you create an application designed to be compatible with regional,
linguistic, and writing system differences around the globe.
Knowledge of Your Audience 33
  Apple Computer, Inc. June 2002

C H A P T E R 2

Human Interface Design
It’s much easier to include worldwide compatibility from the beginning of your
development process rather than try to incorporate support for script systems after
your product is complete. Before you develop software for worldwide use, consider
the issues discussed in the following sections.

Cultural Values
Make sure that visible interface elements can be localized (translated into other
languages and adapted for use in other countries). Whenever you design a user
interface, consider that various regions of the world may differ in their use of color,
graphics, calendars, text, and the representation of time. Specific objects or symbols
(such as wall outlets and the $ sign) may also have a different appearance, or not be
understood, in other countries.

Graphics can enhance your application, but certain images can be offensive to
certain audiences. Cultures assign varying values and characteristics to living
creatures, plants, and inanimate objects. For example, in the United States the owl
is a symbol of wisdom and knowledge, whereas in Central America the owl
represents witchcraft and black magic. It’s a good idea to avoid the use of seasons,
holidays, or calendar events in software that you expect to distribute worldwide. If
you include images that represent holidays or seasons—such as Christmas trees,
pumpkins, or snow—be sure they can be localized.

Different calendars are used to mark time around the world. The United States and
most of Europe observe time according the Gregorian calendar. The traditional
Arabic calendar, the Jewish calendar, and the Chinese calendar are lunar rather than
solar. In many places, time is marked according to one calendar for business and
government purposes and another for religious events. Make your application
flexible in handling dates; you also may want to provide the user with a way to
change the representation of time. Use the text utilities to handle numbers, dates,
and sorting.

Language Differences
Translating text is a sophisticated, delicate task. Avoid using colloquial phrases or
nonstandard usage and syntax. Carefully choose words for menu commands,
dialogs, and help text. Translated text can grow up to 50 percent longer than U.S.
English text.
34 Worldwide Compatibility
  Apple Computer, Inc. June 2002

C H A P T E R 2

Human Interface Design
Potential grammar problems may arise with error messages. Use complete
sentences whenever possible. Don’t use phrases that you then concatenate to create
sentences; the word order may become completely different in another language,
rendering the message nonsensical when translated. For example, word order in
German usually places the verb at the end of a sentence. For more information on
handling text in other languages, see Inside Mac OS X: System Overview, and Inside
Macintosh: Text.

Text Display and Text Editing
Writing systems differ in the direction in which their characters and lines flow, the
size of the character set used, and whether certain characters are context dependent.
Mac OS 9 and earlier relied on WorldScript and the Script Manager, which used a
different character set for each script system. Mac OS X supports Unicode, a single
character set for most writing systems in the world. Unicode is a cross-platform,
international standard for character encoding.

Text handling for Cocoa is entirely based on Unicode. For Carbon developers, there
is a new set of functions for manipulating Unicode text. For more information about
localization tools, fonts, and international technologies, go to http://
developer.apple.com/intl.

No matter what level of worldwide text support you provide, it’s important to
avoid these common assumptions:

� Text isn’t always left-aligned and read from left to right.

� Text isn’t always read by a person; it might be spoken through a text-to-speech
converter.

� System and application fonts may change.
Worldwide Compatibility 35
  Apple Computer, Inc. June 2002

http://developer.apple.com/intl
http://developer.apple.com/intl

C H A P T E R 2

Human Interface Design
Default Alignment of Interface Elements
When dialogs are localized, the text may become longer or shorter, and the
alignment of controls may vary. For items to appear aligned in languages that read
right to left, make sure the items’ display rectangles are the same size, as shown in
Figure 2-1.

Figure 2-1 Make text display rectangles the same size to facilitate translation

Resources
It’s essential to store region-dependent information in separate resources so
user-visible text can be translated during localization without modification of your
application’s code. When you create resources, consider text size, location, and
direction. Text size varies in different languages. Also, depending on the script
system, the direction of text may change. Most Middle Eastern languages read from
right to left. Text location within a window should be easy to change. For more
information, see Inside Mac OS X: System Overview, available at the Apple developer
website, and the Apple International Technologies website at http://
developer.apple.com/intl.
36 Worldwide Compatibility
  Apple Computer, Inc. June 2002

http://developer.apple.com/intl
http://developer.apple.com/intl

C H A P T E R 2

Human Interface Design
Universal Accessibility

Millions of people have a disability or special need, and computers hold
tremendous promise for increasing these people’s productivity. Many countries,
including the United States, have laws mandating that certain equipment provide
access for users with a disability.

It’s a good idea to build in support for universal access from the beginning of your
design process rather than having to add it after your product is done.When you
think about designing for the wide range of abilities in your target audience, think
about increasing productivity for the entire audience; be careful not to
overcompensate for the disabilities of certain members. Don’t let accommodations
for a particular disability create a burden for people who do not have that disability.

Mac OS X has many built-in functions designed to accommodate people with
special needs. Users can access these functions in the Universal Access pane of
System Preferences (introduced in Mac OS X 10.1).

Important
Your application should not override any of the accessibility
features built into Mac OS X, such as the ability to access all
interface functions using the keyboard instead of the mouse,
or any preference that a user might select to assist with a
disability.

In general, if you follow the design principles in this chapter, and the guidelines in
the rest of this book, you will meet the needs of most of your users. Here are several
specific accessibility requirements you should be aware of:

� The frequency of a blinking item or display must not be in the range of 2 hertz
to 55 hertz, inclusive (to prevent medical complications such as seizures that can
be induced in some people with blinking lights).

� When a timed response is required—such as notification that a regularly
scheduled action is about to take place—at least one response method that does
not require users to respond within the timed interval should be provided.
Alternatively, at least one method that allows users to adjust the response time
to at least 5 times the default setting should be provided.

� Alerts and other feedback should be provided in both audio and visual formats.
Universal Accessibility 37
  Apple Computer, Inc. June 2002

C H A P T E R 2

Human Interface Design
The following sections describe the main categories of disabilities and give
suggestions for specific design solutions and adaptations you can make. Keep in
mind that there is a wide range of disabilities within each category, and many
people have multiple disabilities.

Visual Disabilities
People with a visual disability have the most trouble with the display (the screen).
Some users need high contrast. Software that can handle different text sizes can
make it easier to support people with a visual disability. Mac OS X (version 10.2 and
later) provides an onscreen zooming option in Universal Access preferences.
Following the layout guidelines can help users with low vision as well.

Color-vision deficiencies are problematic for some people. Don’t create interfaces
that use only color coding to convey important information. Color coding should
always be redundant to other types of cues, such as text, position, or highlighting.
If you allow users to select from a variety of colors to convey information, they can
choose colors appropriate for their needs.

Hearing Disabilities
People with a hearing disability cannot hear auditory output at normal volume
levels, or cannot hear it at all. Software should never rely solely on sound to provide
information; if cues are given with sound, they should be available visually as well.
When playing an alert or other sound intended to get the user’s attention, your
application should call the system alert to ensure that the audio cue also has a visual
cue.

To indicate activity, hardware should have visible lights in addition to the sound
generated by the mechanisms. Hardware that specifically produces sound should
facilitate external amplification. For example, including a jack for external speakers
or headphones allows people to amplify sound to an appropriate level.
38 Universal Accessibility
  Apple Computer, Inc. June 2002

C H A P T E R 2

Human Interface Design
Physical Disabilities
People who have a physical disability that requires additional access methods
include individuals who are without the use of a hand or an arm because of
congenital anomalies, spinal cord injuries, or progressive diseases. People in this
group mainly have difficulty with computer input devices, such as the mouse or
keyboard, and with handling removable storage media.

Some people have difficulty pressing more than one key at a time (required for
many keyboard shortcuts, for example). With Sticky Keys, which can be turned on
in the Keyboard pane of Universal Access preferences, users can press keys
sequentially instead of simultaneously.

Users who have difficulty with fine motor movements may be unable to use a
conventional mouse or may require modifications to keyboard behavior. In
Keyboard preferences, users can modify how long they must press a key before it
repeats; it also supports users who need a delay between a keypress and when it is
registered. Mac OS X also provides ways for users to complete actions using the
keyboard instead of the mouse. When full keyboard access is on, users can navigate
to and select interface items. Mouse Keys, which can be turned on in the Mouse
pane of Universal Access preferences, enables users to control the mouse with the
numeric keypad, so they can complete tasks such as dragging and resizing
windows.

Make sure that your application does not override any keyboard navigation setting.
For more information, see “Keyboard Focus and Navigation” (page 182).

If you create hardware, make sure not to impose physical barriers that would
impede someone with limited or no use of the hands or arms. For example, a disk
drive with a latch would be difficult to open for a user who interacts with the
computer with a pencil held in the mouth.
Universal Accessibility 39
  Apple Computer, Inc. June 2002

C H A P T E R 2

Human Interface Design
40 Universal Accessibility
  Apple Computer, Inc. June 2002

C H A P T E R 3
3 The Dock
Designed to help combat onscreen clutter and aid in organizing work, the
always-available Dock displays an icon for each open application and minimized
document. It also contains icons for several common user applications, such as Mail
and System Preferences, and for the Trash. The Dock provides an Aqua-compatible
replacement for the Mac O 9 application menu.

Each item in the Dock has its own rectangular area called a tile. Within each tile is
an icon that represents the application, document, folder, or other item in the Dock.
For most purposes, you can think of the tile and icon as synonymous, even though
the icon does not completely fill the tile.

When a user opens an application, its icon appears in the Dock; when a user opens
a document and clicks its minimize button, the document’s icon appears in the
Dock. Users can permanently add icons to the Dock and can customize where and
when the Dock appears.

For more information, Carbon developers should see Dock Manager Reference,
available on the Mac OS X developer documentation website.

 The Dock’s Onscreen Position

When opening new windows or resizing windows, position them so that they don’t
overlap with the user’s current position of the Dock. Restrict users from resizing a
window so that the resize control is behind the Dock.
The Dock’s Onscreen Position 41
  Apple Computer, Inc. June 2002

C H A P T E R 3

The Dock
If the user changes the Dock’s size or position, don’t move or resize application
windows that are already open. Users should be able to change specific aspects of
their environment without causing other unrequested changes.

Carbon developers can determine the Dock’s size and location using the
GetAvailableWindowPositioningBounds function, which returns a rectangle
representing the available Desktop area, not including the menu bar and the space
occupied by the Dock. Cocoa developers can use the frame and visibleFrame
methods of the NSScreen class.

Dock Notification Behavior

With Mac OS X 10.1 and later, an open application can use its Dock tile to convey
important information if needed.

When appropriate, your application’s Dock tile icon can include a small badge
superimposed on the icon. In Mail, for example, when a user has unread email, the
Dock icon displays a red circle indicating the number of new messages. This type of
badging provides important information without being obtrusive or distracting.

Figure 3-1 An example of a badged Dock icon: The Mail application icon indicates there
are unread messages

If an open and inactive application needs the user’s attention right away and calls
the Notification Manager, the application icon in the Dock bounces. This type of
notification should be reserved for errors or problems that the user needs to address
right away. If you implement this kind of notification, you should also provide a
way for the user to turn off the animation.
42 Dock Notification Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 3

The Dock
To animate an application or document Dock tile in a Carbon application, look for
functions in MacWindows.h that include DockTile. In Cocoa, use the
setApplicationIcon: method of the NSApplication class or the setMiniWindowImage:
method of the NSWindow class.

Dock Menus

When a user presses and holds the mouse button on your application’s tile in the
Dock, a menu appears. The menu lists the application’s open windows and contains
the Show In Finder and Quit commands. If the tile has not been permanently added
to the Dock, the command Keep In Dock also appears.

Figure 3-2 The iTunes Dock menu

Starting with Mac OS X 10.1, an open application can customize its Dock menu by
adding to the default items provided by the Dock. Potential additional items
include common commands to initiate actions in your application when it is not
frontmost and commands that are applicable when there is no open document
window. For example, a mail application could provide commands to initiate a new
Dock Menus 43
  Apple Computer, Inc. June 2002

C H A P T E R 3

The Dock
message or to check for new messages. Any command you add to the Dock menu
should also be available in your application’s pull-down menus.
Application-specific items appear above the standard Dock menu items.

For information on implementing Dock menus, see Inside Carbon: Customizing Your
Application Dock Tile, available at the Mac OS X developer documentation website.

Clicking in the Dock

Clicking an application icon in the Dock should always result in a window—a
document or another appropriate window—becoming active. In a document-based
application that is not open when the user clicks the Dock icon, the application
should open a new, untitled window.

While an application is open, the Dock icon has a symbol below it. When a user
clicks an open application’s icon in the Dock, the application becomes active and all
open unminimized windows are brought to the front; minimized document
windows remain in the Dock. If there are no unminimized windows when the user
clicks the Dock icon, the last minimized window should be expanded and made
active. If no documents are open, the application should open a new window. (If
your application is not document based, display the application’s main window.)

When the user quits the application, the icon no longer appears in the Dock (unless
the user has chosen to always display it in the Dock). Users can add an application
icon permanently to the Dock by choosing Keep In Dock from the Dock menu while
the application is open or by dragging the item from the Finder to the Dock.
44 Clicking in the Dock
  Apple Computer, Inc. June 2002

C H A P T E R 4
4 Menus
Menus present lists of items—commands, attributes, or states—from which the user
can choose. Menus are based on the interface principle of see-and-point: People
don’t have to remember command names because they can view all the available
options at any time. Each application, including the Finder, has its own set of
menus.

This chapter describes pull-down menus in the menu bar and contextual menus,
which display when the user presses or clicks an object while pressing the Control
key. For information about other kinds of menus, see “Pop-Up Menus” (page 124),
“Combination Boxes” (page 128), “Command Pop-Down Menus” (page 127), and
“Pop-Up Icon Buttons and Pop-Up Bevel Buttons” (page 134).

The Mac OS has only one menu bar at the top of the screen; this feature makes it
much easier for users to access menu content. Don’t put menu bars in windows.

Menu Elements

Menu elements include the menu title, menu items, keyboard equivalents, submenu
indicators, and separators.
Menu Elements 45
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
Figure 4-1 A pull-down menu and its parts

Menu Titles
Menu titles should be one word that appropriately represents the items in the
menu. For example, a Font menu could contain names of font families such as
Helvetica and Geneva, but shouldn’t include editing commands such as Cut and
Paste.

Menu Items
Menu item names should be one of the following:

� Actions (verbs or verb phrases) that declare the action that occurs when the user
chooses the item. For example, Save means save my file and Copy means copy the
selected data. Your action menu commands should fit into similar sentences.

� Attributes (adjectives or adjective phrases) that describe the change the
command implements. Adjectives in menus imply an action and should fit into
the sentence “Change the selected object to …” —Bold or Italic, for example.

Note: For information about reserved and suggested keyboard equivalents for
menu items, see “Reserved and Recommended Keyboard Equivalents”
(page 176).

Menu title

Ellipsis characterSeparator

Hierarchical menu (submenu) indicator

Keyboard equivalent

Menu item
46 Menu Elements
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
When a menu item is unavailable—because it doesn’t apply to the selected object or
to the selected object in its current state, or because nothing is selected, for
example—the item should appear dimmed (gray) in the menu and is not
highlighted when the user moves the pointer over it.

Capitalize the first letter of the first and last words, and the important words in
phrases. For more information on proper capitalization of menu items, see
“Capitalization of Interface Elements” (page 231).

Grouping Items in Menus
Logically grouping menu items is the most important aspect of arranging your
menus. Grouping items in a menu makes it easier to quickly locate commands for
related tasks.

In general, place the most frequently used items at the top of the menu, but create
groups of related items rather than arranging them strictly by frequency of use. For
example, although the Find Next or Find Again command may be used
infrequently, it should appear right below the Find command. In a menu that
contains both actions and attributes, don’t put actions and attributes in the same
group.

Group interdependent attributes. They can be in a mutually exclusive attribute
group (the user can select only one item, such as font size) or an accumulating
attribute group (the user can select multiple items, such as Bold and Italic).

If a menu repeats a term more than twice, consider dedicating a menu or
hierarchical menu to the term instead. For example, if you need commands like
Show Info, Show Colors, Show Layers, Show Toolbox, and so on, you could create
a Show menu or a submenu off of a Show item.

How many separators to use is partly an aesthetic decision and partly a usability
decision. Figure 4-2 shows a menu that depicts the right balance of grouping,
contrasted with two menus showing insufficient grouping and too much grouping.
Use this picture as a visual guide when trying to decide how many separators to use
in your menus.
Menu Elements 47
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
Figure 4-2 Grouping items in menus

In Mac OS X, a menu separator is a blank space (instead of a line). The
menu-drawing code in Carbon and Cocoa automatically inserts the right amount of
space between menu items to form a separator.

Hierarchical Menus (Submenus)
You can use hierarchical menus to offer additional menu item choices without
taking up more space in the menu bar. When the user points to a menu item with a
submenu indicator, a submenu appears. Submenus have all the features of menus,
including keyboard equivalents, status markers (such as checkmarks), and so on.

Not enough groups Too many groups Appropriate grouping
48 Menu Elements
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
Figure 4-3 A hierarchical menu

Because submenus add complexity to the interface and are physically more difficult
to use, you should use them only when you have more menus than fit in the menu
bar or for closely related commands. Use only one level of submenus. If a submenu
contains more than five items, consider giving it its own menu.

When you use submenus, include them in a menu with a logical relationship to the
choices they contain; the submenu title should clearly represent the choices it
contains. Hierarchical menus work best for providing submenus of attributes
(rather than actions).

Menu Behavior

To choose an item in a menu, the user positions the pointer on the menu title and
drags to the desired item. Each item is highlighted as it is selected. No action should
actually happen until the user releases the mouse button. (See “Using the Mouse”
(page 164).) By moving the pointer off a menu before releasing the mouse button,
people can open and scan menus to find out what features are available, without
having to actually perform an action. When a menu item has been activated, it
blinks briefly.

It may be appropriate in some cases to provide dynamic menu items—commands
that change when the user presses a modifier key. For example, if the user opens the
File menu in the Finder and then presses the Option key, the Close Window
command changes to Close All. The system appropriately sizes the menu to hold
the widest item, including Option-enabled commands.
Menu Behavior 49
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
Scrolling Menus
A scrolling menu contains more items than are visible onscreen. Your application
shouldn’t have any scrolling menus; they should exist only when a user adds many
items to a customizable menu.

If a menu becomes too long to fit onscreen, a downward-pointing indicator at the
bottom of the menu indicates that there are more items. When the user starts to
scroll, an upward-pointing indicator appears at the top of the menu to show that
some items are no longer visible in that direction. When the user drags past the last
visible item, the menu scrolls to show the additional items. When the last item is
shown, the downward-pointing indicator disappears. This behavior happens
automatically if you use the standard system menu definition procedure (MDEF).

If the user drags back up to the top, the menu scrolls back down in the same manner.
The next time the menu is opened, it appears in its original state (with the indicator
at the bottom), unless the menu stores a setting, in which case the menu displays the
last user-selected item.

Toggled Menu Items
A toggled menu item changes between two states each time a user chooses it. There
are three types of toggled menu items:

� A group of two menu items that are opposite states; for example, Grid On and
Grid Off. The state currently in effect has a checkmark next to it. If you have
room in your menu, it’s a good idea to display both items (rather than changing
the name depending on its state) so there’s less chance of confusion about each
item’s effect.

� One menu item whose name changes to reflect the current state; for example,
Show Ruler and Hide Ruler. Use this type if your menu doesn’t have room to
show both states.

Use two verbs that express opposite actions. Make sure the command name is
completely unambiguous. For example, Turn Grid On and Turn Grid Off is
unambiguous. Choosing the command Use Grid, however, could turn the grid
on (it describes what happens as a result of choosing the command) or off (it
describes the current state).
50 Menu Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
Figure 4-4 Avoid ambiguous toggled menu items

� A menu item that has a checkmark next to it when it is in effect; for example, a
style attribute such as Bold. Don’t use this kind of toggled item to indicate the
presence or absence of a feature like a grid or ruler. It’s unclear whether the
checkmark means that the feature is in effect or whether choosing the command
turns the feature on.

Also see “Using Special Characters and Text Styles in Menus” (page 65).

Sticky Menus
Standard Aqua system menus and submenus are sticky: When a user clicks the
menu title, the menu stays open without the user having to continue holding down
the mouse button. The user can then move the pointer to an item to select it. In
Mac OS X, once a menu is opened with a click, it remains open until another action
forces it to close. Such actions include

� moving the pointer to another menu title

� a click elsewhere

� a system-initiated alert

� a system-initiated application switch or quit
Menu Behavior 51
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
Standard Pull-Down Menus (The Menu Bar)

The menu bar extends across the top of the main screen and contains pull-down
menus. The menu bar

� is always visible and available, except in circumstances such as a slide show (see
discussion below)

� always has the Apple menu (provided by the operating system), the application
menu containing items that apply to the active application as a whole, and a
Window menu

� can also contain File, Edit, and Help menus, as well as application-specific
menus

Figure 4-5 The menu bar displayed when the Finder is active

If there is insufficient room to display all of an application’s menus, the menu bar
status items are omitted. If there is still insufficient room to display all menus, the
application’s menus may be omitted, starting with the rightmost menu.

If your application can display full-screen images (such as slide shows), you may
allow users to hide the menu bar. If you implement this feature, provide a clearly
visible way, such as a button, for the user to make the menu bar reappear. If there
is no button visible, pressing the Escape key or moving the mouse to the top of the
screen should display the menu bar.

If all of a menu’s commands are unavailable (dimmed) at the same time, dim the
menu title. (The Menu Manager in Carbon does this automatically if you set the
kMenuAttrAutoDisable attribute.) Users should still be able to open a dimmed menu
to see its contents.
52 Standard Pull-Down Menus (The Menu Bar)
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
For information about keyboard equivalents for pull-down menu commands, see
“Reserved and Recommended Keyboard Equivalents” (page 176).

The order in which menus and their contents appear is under developer control;
your application should reflect the guidelines discussed in the following sections,
which describe the standard pull-down menus in the menu bar.

The Apple Menu
The Apple menu provides items that are available to users at all times, regardless
of which application is active. The Apple menu’s contents are defined by the system
and cannot be modified by users or developers.

Figure 4-6 The Apple menu
Standard Pull-Down Menus (The Menu Bar) 53
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
The Application Menu
The application menu, new in Mac OS X, contains items that apply to the
application as a whole, rather than to a specific document or other window.

Figure 4-7 The Mail application menu

The Application Menu Title

To help users identify the active application, the application menu title is in
boldface.

In order to fit within the allotted menu bar space, the application menu title should
be one word, if possible, and a maximum of 16 characters (128 pixels wide in
14-point Lucida Grande Bold). If the application name is too long, provide a short
name (16 characters or fewer) as part of the application package. The Hide, Quit,
and About items should also use the short application name.

If you don’t provide a short name, the application name is truncated from the end
(and an ellipsis is added), if necessary. For more information about how to provide
a short application name, see Inside Mac OS X: System Overview, available at the
Mac OS X developer documentation website.
54 Standard Pull-Down Menus (The Menu Bar)
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
The Application Menu Contents

� About <Application Name>. Opens your application’s About window, which
contains copyright information and version number. (For more information, see
“The About Window” (page 92). If you’ve specified a short name (see “The
Application Menu Title” (page 54)), use it in the About menu item; use the full
application name in the About window.

� Preferences and other application-specific items. Preference settings are
user-defined parameters that your software remembers from session to session.
Preferences can be a way for your application to offer users long-term choices
about how the application works; examples include whether to automatically
save files periodically and whether to check spelling as the user types.

In the application menu, put all commands that provide access to your
application’s preference dialogs first, followed by application-specific items. Put
a menu separator between the About command and the Preferences command.
If your application provides document-specific preferences, make them
available in the File menu (see “The File Menu” (page 56)). Most
document-specific preferences should have a unique name, such as Page Setup,
rather than Preferences.

Use Command-, (comma) as the keyboard equivalent for your application’s
Preferences command.

� Services. The Services submenu provides a way for one application to offer its
capabilities to another application. For example, a user could select a name in a
document and choose a Services command that looks up the name using an
LDAP server, starts up an email application, and opens a new message window
with the found email address in the To field.

For more information, Cocoa developers should see the Programming Topic
“System Services” and Carbon developers should see Inside Carbon: Setting Up
Your Application to Use the Services Menu, both available on the Mac OS X
developer documentation website.

Note: Your application should present its own preferences dialogs. Applications
may add panes to System Preferences only if the application’s preferences apply
to the system or to the user’s environment as a whole. Such exceptions might
include an input device that doesn’t have its own interface or a server application
that always runs in the background. For more information, see Inside Mac OS X:
Preference Panes, available on the Mac OS X developer documentation website.
Standard Pull-Down Menus (The Menu Bar) 55
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
� Hide <Application Name>. This command should be preceded by a menu
separator and followed by Hide Others and Show All. If necessary (see “The
Application Menu Title” (page 54)), use the short application title.

� Quit <Application Name>. This last item in the application menu should be
preceded by a separator. When a user chooses Quit and there are unsaved
documents, present the necessary alerts (see “Saving, Closing, and Quitting
Behavior” (page 105)). If necessary (see “The Application Menu Title”
(page 54)), use the short application title.

The File Menu
In general, each command in the File menu should apply to a single file (most
commonly, a user-created document).

Note that the Preferences and Quit commands, which apply to a whole application,
are in the application menu. If your application provides document-specific
preferences, make them available in the File menu, preferably right above printing
commands. If an application is not document-based, you can rename the File menu
to something more appropriate or eliminate it.

Several items in the File menu—Save As, Print, and Page Setup, for example—
should open sheets. For more information, see “Document-Modal Dialogs (Sheets)”
(page 96).
56 Standard Pull-Down Menus (The Menu Bar)
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
Figure 4-8 The File menu

Standard File menu commands include these:

� New: Opens a new document named “untitled” (or “untitled 2,” and so on, as
appropriate). If your application requires documents to be named upon
creation, you can display a Save dialog (see “Saving, Closing, and Quitting
Behavior” (page 105)). For more information about naming new document
windows, see “Opening and Naming Windows” (page 74).

� Open: Displays a dialog for choosing an existing document to open. For more
information, see “The Open Dialog” (page 102).

� Open Recent: The Open command should be followed by Open Recent, so
people can open recently opened documents without using the Open dialog.
The Open Recent submenu displays documents in the order in which they were
opened, with the most recent item at the top. Cocoa provides built-in support for
populating the Open Recent submenu. (Carbon does not.)

� Close: Closes the active window. When the user chooses this command and the
active document has been changed since last saved, display the Save Changes
alert (see “Saving, Closing, and Quitting Behavior” (page 105)). When the user
presses the Option key, Close changes to Close All. The keyboard equivalents
Command-W and Option-Command-W should implement the Close and Close
All commands, respectively. The Close command and Command-W should not
close utility windows.
Standard Pull-Down Menus (The Menu Bar) 57
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
In a file-based application that supports multiple views of the same file, you can
include a Close File command below Close Window, to close a file and all its
associated windows. If possible, include the filename in the menu (for example,
Close File “Jerry’s Kids”). Shift-Command-W can be used as the keyboard
equivalent for Close File.

� Save: Saves the active document, leaves the document open, and provides
feedback indicating that the document is being (or has been) saved. If the
document has not previously been saved, display a Save dialog (see “Saving,
Closing, and Quitting Behavior” (page 105)). Use sheets for document-specific
dialogs (see “Document-Modal Dialogs (Sheets)” (page 96)).

� Save As: Displays the Save dialog, which allows the user to save a copy of the
active document with a new user-defined name, a new location, or both. The
newly saved document remains open and active. Shift-Command-S can be used
as the keyboard equivalent for Save As.

� Save All: Saves changes to all open documents.

� Revert to Saved: Discards all changes made to the active document since the last
time it was saved or opened. When the user chooses Revert to Saved, display an
alert that warns the user about the potential data loss the operation will cause.

� Page Setup: Opens a dialog for specifying printing parameters such as paper
size and printing orientation. These parameters are saved with the document.

� Print: Opens a dialog for specifying such options as page range and number of
copies and prints the active document. These parameters apply to only the
current printing operation and are not saved with the document. For more
information, see “The Printing Dialogs” (page 115).

Note: Avoid using Save a Copy or Save To commands. Many users might not
understand the distinction between them and Save As.

Note: If you need to extend the standard Print dialog with features specific to
your application or printer, you can add a pane, which users can choose from the
features pop-up menu. For more information, see “The Printing Dialogs”
(page 115).
58 Standard Pull-Down Menus (The Menu Bar)
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
The Edit Menu
The Edit menu provides commands that allow people to change (edit) the contents
of documents and other text containers, such as fields. It also provides the
commands that allow people to share data, within and between applications, via the
Clipboard.

The Clipboard stores whatever data is cut or copied from a document until the user
replaces the contents by cutting or copying new data. The Clipboard is available to
all applications and its contents don’t change when the user switches from one
application to another. The Clipboard provides excellent support for the exchange
of different data types between applications. Your application should maintain
formatting when it copies text to the Clipboard.

Figure 4-9 The Edit menu

Your application’s Edit menu should provide the following commands. Even if
your application doesn’t handle text editing within its documents, these commands
should be available for use in dialogs and wherever users can edit text:

� Undo: The Undo command reverses the effect of the user’s previous operation.
When the user chooses Undo, the command changes to Redo, which reverses
the effect of the last Undo command.

Support the Undo command for

� operations that change the contents of a document
Standard Pull-Down Menus (The Menu Bar) 59
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
� operations that require a lot of effort to re-create

� most menu items

� most keyboard input

Operations that may not be undoable include

� selecting

� scrolling

� splitting a window

� changing a window’s size or location

Add the name of the last operation to the Undo and Redo commands. When
possible, repeat the previously chosen command, as shown in Figure 4-9
(page 59). For example, if the user has just input some text, the command could
read Undo Typing; if the user moves a file in the Finder, the command says
Undo Move of “Filename.” If the last operation can’t be reversed, change the
command to Can’t Undo and display it dimmed to provide feedback about the
current state.

If a user attempts to perform an operation that could have a detrimental effect
on data and that can’t be undone, warn the user. See “Alerts” (page 98).

Command-Z should be reserved as a keyboard equivalent for the Undo/Redo
command.

� Cut: Removes the selected data and stores it on the Clipboard, replacing the
previous contents of the Clipboard.

Command-X should be reserved as a keyboard equivalent for the Cut command.

� Copy: Makes a duplicate of the selected data, which is stored on the Clipboard.

Command-C should be reserved as the keyboard equivalent for the Copy
command.

� Paste: Inserts the Clipboard contents at the insertion point. The Clipboard
content remains unchanged, permitting the user to choose Paste multiple times.

Command-V should be reserved as the keyboard equivalent for the Paste
command.

� Delete: Removes selected data without storing the selection on the Clipboard.
Choosing Delete is the equivalent of pressing the Delete key or the Clear key.
Use Delete as the menu command, rather than Clear.
60 Standard Pull-Down Menus (The Menu Bar)
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
� Select All: Highlights every object in the document or window, or all characters
in a text field.

Command-A should be reserved as the keyboard equivalent for the Select All
command.

� Find: Finds specified text. In some cases—if the application is finding a file on
the Internet, for example—it might make more sense to put this command in the
File menu. When appropriate, your application should also contain Find Again
and Find/Replace commands.

Command-F should be reserved as the keyboard equivalent for the Find
command; Command-G should be reserved for Find Again.

The View Menu
The View menu provides commands that affect what users see in a window. In the
Finder, for example, the View menu contains commands for displaying windows as
columns, icons, or lists.

Commands for showing, hiding, and customizing a toolbar belong in the View
menu. Create a View menu for these commands even if your application doesn’t
need to have other commands in the View menu. Show/Hide Toolbar should
appear right above Customize Toolbar. The Show/Hide Toolbar commands are
provided so that people using full keyboard access can implement these functions
with the keyboard.

Avoid using the View menu to display utility windows (such as tool palettes); use
the Window menu instead.

The Window Menu
The Window menu contains commands for managing an application’s windows.
The menu should list an application’s open document windows, including
minimized windows, in the order in which they were opened. If a document
contains unsaved changes, a bullet should appear next to its name.
Standard Pull-Down Menus (The Menu Bar) 61
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
Figure 4-10 A Window menu

Mac OS X does not automatically add utility windows to the list in the Window
menu. You can add a command to the Window menu to show or hide utility
windows in your application.

The Minimize and Zoom commands are provided in the Window menu so that
people using full keyboard access can implement these functions with the
keyboard. Even if your application consists of only one window, include a Window
menu for the Minimize command.

Window menu items should appear in this order: Minimize, Zoom, <separator>,
<application-specific window commands>, <separator>, Bring All to Front
(optional), <separator>, <list of open documents>. The Close command should
appear in the File menu, below the Open command.

Bring All to Front brings forward all of an application’s open windows, maintaining
their onscreen location, size, and layering order. You can make this command an
Option-enabled toggle with Arrange in Front, which brings forward all of the
application’s windows in their current layering order and changes their location
and size so they are neatly tiled. Users can also bring all of an application’s windows
to the front by clicking its icon in the Dock. See “Window Layering” (page 70).

Starting with Mac OS X version 10.2, users can cycle forward or backward through
active document windows using Command-~ (tilde) or Shift-Command-~. Cocoa
applications automatically inherit this behavior; Carbon developers must handle
appropriate menu commands.
62 Standard Pull-Down Menus (The Menu Bar)
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
The Help Menu
If your application provides onscreen help, the Help menu should be the rightmost
menu of your application’s menus. The first item is the name of the application and
the word “Help” (Mail Help, for example). If necessary, you can add more items to
the Help menu. For information about creating help content, see “User Help and
Assistants” (page 235).

Menu Bar Status Items
Reserved for use by Apple, the right side of the menu bar may contain items that
provide feedback on and access to certain hardware or network settings. The icon
for the battery strength indicator, for example, dynamically displays the current
state of the battery; clicking the icon displays a menu for changing common battery
settings. Users can display or hide a menu bar status item in the appropriate
preferences pane.

Important
Don’t create your own menu bar status items. Use the Dock
menu functions to open a menu from your application’s icon
in the Dock.

If there is not enough room in the menu bar to display all menus, menu bar status
items are removed first.

Other Menus
You can add your own application-specific menus as appropriate. If your
application provides functions for formatting text, you can include a Format menu.
The first item in the Format menu should be Show Fonts, which displays the
Mac OS X Fonts window. If your application provides support for colors, it should
use the system Colors window, accessible via a Show Colors menu command. (In
Carbon applications, use the GetColor function; in Cocoa, use NSColorPanel.) Avoid
creating your own windows for choosing fonts and colors.
Standard Pull-Down Menus (The Menu Bar) 63
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
Contextual Menus

A contextual menu provides convenient access to often-used commands associated
with an item. Contextual menus open when the user presses the Control key while
clicking an appropriate interface element or selection.

Figure 4-11 A contextual menu for a text selection in a document (left) and an icon in the
Finder

� Behavior: A contextual menu behaves like a standard pull-down menu, except
that moving the pointer off a contextual menu and onto a standard pull-down
menu doesn’t activate the second menu; the user must click once to close the
contextual menu and again to open the second menu.

Contextual menus that are too long to display fully use the scrolling indicator (a
downward-pointing triangle) and scroll like standard menus.

Don’t set a default item. If the user opens the menu and closes it without
selecting anything, no action should occur.

� Contents: You define the items in your application’s contextual menus. Include
a small subset of the most commonly used commands in the appropriate
context. For example, Edit menu commands should appear in the contextual
menu for highlighted text, but not a Save or a Print command.

Never provide a contextual menu command that is not also accessible through
the menu bar. Use submenus with caution and keep them to one level.
64 Contextual Menus
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
Using Special Characters and Text Styles in Menus

You can use several standard characters (described below) to indicate additional
information in menus. Don’t use other, arbitrary symbols in menus because they
add visual clutter and may confuse people.

Figure 4-12 Don’t use arbitrary symbols in menus

Using Symbols in Menus
In the Window menu, a checkmark should appear next to the active document’s
name. Checkmarks can also be used in other menus to indicate that the setting
applies to the entire selection. You can use checkmarks for mutually exclusive
attribute groups (the user can select only one item in the group, such as font size) or
accumulating attribute groups (more than one item can be selected at once, such as
Bold and Italic).
Using Special Characters and Text Styles in Menus 65
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
Use dashes to indicate that an attribute applies to only part of the selection. For
example, if selected text has two styles applied to it, put a dash next to each style
name. When it’s appropriate, you can combine checkmarks and dashes in the same
menu.

Use a bullet next to a document with unsaved changes, and a diamond for a
document the user has minimized into the Dock. A minimized document with
unsaved changes should have a diamond only. If the active window has unsaved
changes, the checkmark should override the bullet in the Window menu.

Figure 4-13 Symbols in menus

For Cocoa applications, these symbols are managed by the Cocoa framework. In
Carbon, if you use the standard Window menu, these symbols are managed
automatically. Otherwise, use the SetItemMark function with a char parameter of
kCheckCharCode for the active document, kBulletCharCode for a document with
unsaved changes, and kDiamondCharCode for a minimized document.

Note: Include a menu command, such as Plain, for removing all formatting from
mixed-state text.

A diamond
indicates the
window has
been minimized
into the Dock.

Dashes are used to
indicate that the
selection represents
a mixed state (both
bold and italic are
used).

A bullet
indicates
the document
has unsaved
changes.
A checkmark
indicates the
active window.
66 Using Special Characters and Text Styles in Menus
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
Using Text Styles and Fonts in Menus
In a Style or Font menu, you can display menu items in the actual style or font so
users can see what effect the text attribute will have.

Don’t use text styles in menus other than a Style or Font menu.

Figure 4-14 A Font menu displayed with different fonts

Using Ellipses in Menus and Buttons
An ellipsis character (…) after a menu item or button label indicates to the user that
additional information is required to complete a command. You should use an
ellipsis in the following cases:

� An action that requires further user input to complete or presents an alert
allowing the user to cancel the action. Examples include Find, Go To, Open, Page
Setup, and Print.

� An action that opens a settings window. The main function of settings windows
is to allow the user to change some aspect of the application, not the document
content. Examples include Set Title, Preferences, and Options.
Using Special Characters and Text Styles in Menus 67
  Apple Computer, Inc. June 2002

C H A P T E R 4

Menus
Don’t use an ellipsis in the following cases:

� An action that requires no further user input to complete and does not present
an alert. Often the item to be acted upon is already selected. Examples include
New, Cut, Bold, and Quit.

� An action that opens an informational, accessory, or tool window. These
windows can be implemented as either utility windows (as in the case of a color
palette) or modeless windows. These windows provide tools that help create or
manage the content in the main window and are frequently left open to assist in
accomplishing the task of the main window. Examples include Get Info and
Show Tools.
68 Using Special Characters and Text Styles in Menus
  Apple Computer, Inc. June 2002

C H A P T E R 5
5 Windows
Windows provide a way for people to view and interact with their data. There are
various kinds of windows, each with its own function and appearance.

Document windows contain file-based user data. They present a view into the
content that people create and store. If the document is larger than the window, the
window shows a portion of the document’s contents, and provides users with the
ability to scroll to other areas.

Other windows, commonly called utility windows, float above other windows and
provide tools or controls that users can work with while documents are open. In
Mac OS X, utility windows are either application-specific or systemwide.
Application-specific utility windows disappear when the application is
deactivated. These windows are available in Carbon with the kFloatingWindowClass
constant and in Cocoa with NSUtilityWindowMask.

Systemwide utility windows, such as the Colors window and the Fonts window,
float above all open windows. These windows are available in Carbon using
kUtilityWindowClass; in Cocoa, use NSNonactivatingPanelMask.

Some applications are not document-based. Such applications typically still have at
least one main window, which can use the standard Aqua document window
appearance and features. For Cocoa developers, Mac OS X version 10.2 provides a
definition for a new window appearance. For information, see “Textured
Windows” (page 72).

For implementation information, Carbon developers should see Handling Carbon
Windows and Controls, available on the Mac OS X developer documentation website.

Note: Dialogs and alerts are also types of windows; they are discussed in
“Dialogs” (page 95).
69
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
Window Layering

In Mac OS 9 and earlier, all windows belonging to a particular application are in the
same layer. In Mac OS X, each document exists in its own layer, so documents from
different applications can be interleaved. Clicking a window to bring it to the front
doesn’t disturb the layering order of any other window.

A window’s depth in the layers is determined by when the window was last
accessed. When a user clicks an inactive document or chooses it from the Window
menu, only that document, and all open utility windows, should be brought to the
front. Users can bring all windows of an application forward by clicking its icon in
the Dock or by choosing Bring All to Front in the application’s Window menu.
These actions should bring forward all of the application’s open windows,
maintaining their onscreen location, size, and layering order within the application.
For more information, see “The Window Menu” (page 61) and “Clicking in the
Dock” (page 44).

Window Appearance and Behavior

Every document and utility window should have, at a minimum, a title bar and a
close button. Even if the window does not have an actual title (a tools palette, for
example), it should have a title bar so that users can move the window.

A standard document window has

� a title bar

� a resize control

� scroll bars (if not all the window’s contents are visible)

� close, minimize, and zoom buttons, although only the close button must be
present at all times
70 Window Layering
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
Figure 5-1 Standard window parts

When a document has unsaved changes, the close button should display a dot.
Carbon developers should set this control with the SetWindowModified function. In
Cocoa, this behavior happens automatically if the application is
NSDocument-based; otherwise, use the setDocumentEdited: method of the
NSWindow class.

Figure 5-2 The close button in its unsaved changes state

Title bar

Close, minimize,
and zoom buttons

Proxy icon

Scroller

Resize control

Scroll bar

The dot indicates
that this document
has unsaved changes.
Window Appearance and Behavior 71
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
After a document is saved for the first time, a proxy icon appears in the title bar.
Users can manipulate this icon as if they were manipulating the corresponding
file-system object. For example, you can drag a document’s proxy icon to a folder in
the Finder. A proxy icon appears in its normal state as long as the state of the
document and the file system object are the same. When a document has unsaved
changes, its proxy icon appears dimmed. Command-clicking the title or the proxy
icon displays a pop-up menu illustrating the document path.

Figure 5-3 Document path pop-up menu, opened by Command-clicking the proxy icon

Textured Windows
Mac OS X version 10.2 provides developers with a new “textured” window
appearance (see Figure 5-4). This window style has been designed specifically for
use by—and is therefore best suited to—applications that provide an interface for a
digital peripheral, such as a camera, or an interface for managing data shared with
digital peripherals, such as the Address Book application.

This appearance may also be appropriate for applications that strive to re-create a
familiar physical device—the Calculator application, for example. Avoid using the
textured window appearance in applications or utilities that are unrelated to digital
peripherals or to the data associated with these devices.

Within an application, the textured window appearance should be limited to the
primary application window. Supporting windows, such as preferences and other
dialogs, should not use the textured window appearance. It is acceptable to have a
mix of standard Aqua windows and textured windows within an application.

If a textured window has a drawer or a toolbar, they automatically inherit the
textured appearance. Sheets, however, maintain the standard Aqua appearance.
72 Window Appearance and Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
Figure 5-4 The “textured” window appearance

The textured window has four rounded corners and a beveled edge surrounding
the entire window. The beveled edge requires that elements such as lists and other
view-type controls be inset at least 10 pixels. Users can move textured windows by
dragging anywhere on the textured surface (not just the title bar).

Avoid creating custom controls for use with textured windows; standard controls
look and behave appropriately when used with this appearance.

To create a window with this appearance, Cocoa developers can apply the
NSTexturedBackgroundWindowMask to a titled window. Avoid using a borderless
window, which won’t assume rounded corners. Carbon developers can use the new
window type defined in MacWindows.h.
Window Appearance and Behavior 73
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
Opening and Naming Windows
Your application should open a document window when a user does any of the
following:

� double-clicks a document icon in the Finder

� selects the document in the Finder and chooses open from the File menu (or
selects the document and presses Command-O in the Finder)

� chooses a file from within an Open dialog

� chooses the New command from the File menu

� clicks the application icon in the Dock when no documents are open

When your application displays a new document window, name it “untitled”;
leaving it lowercase makes it more obvious that the window doesn’t have a name
and encourages people to save the document. If the user chooses New again before
saving the first untitled window, name the second window “untitled 2,” and so on.
Add numbers to window titles only when there is more than one open untitled
window. Don’t put a “1” on the first untitled window, even after the user opens
other new windows.

Figure 5-5 Appropriate titles for a series of unnamed windows

If the user dismisses all untitled windows by saving or closing them, then the next
new document should start over as “untitled,” the next should be “untitled 2,” and
so on. If a user has chosen to display filename extensions in Finder Preferences, the
extension should appear on the title of a new untitled window (“untitled.rtf,” for
example).
74 Window Appearance and Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
Figure 5-6 Examples of correct and incorrect window titles

When the user opens an existing document, make sure its title is the display name,
which reflects the user’s preference for showing or hiding its filename extension.
For more information, see “Naming Files and Showing Filename Extensions”
(page 249). Don’t display pathnames in document titles (see “Displaying
Pathnames” (page 251)).
Window Appearance and Behavior 75
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
Positioning Windows
Whenever your application displays a window, you must decide where to put it
and how big to make it.

New document windows should open horizontally centered, as shown in Figure
5-7, and should display as much of the document content as possible. The top of the
document window should butt up against the menu bar (or the application’s
toolbar, if one is open and positioned below the menu bar). Subsequent windows
are moved to the right 20 pixels and down 20 pixels. Make sure that no part of a new
window is obscured by the Dock.

Figure 5-7 Position of new document window
76 Window Appearance and Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
For nondocument windows, the preference is to open new windows horizontally
centered as shown in Figure 5-8. Vertical position should be visually centered: the
distance from the bottom of the window to the top of the Dock should be
approximately twice the distance as that from the bottom of the menu bar to the top
of the window. Subsequent windows are moved to the right 20 pixels and down 20
pixels. Make sure that no part of a new window is obscured by the Dock. (See “The
Dock’s Onscreen Position” (page 41).)

Figure 5-8 “Visually centered” placement of new nondocument window

Horizontally
centered

2Y XX

Y
Window Appearance and Behavior 77
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
If a user changes a window’s initial size or location, maintain the user’s choices the
next time the window opens. If a user opens, moves, and closes a document
window without making any other changes, save the new window position but
don’t modify the file’s date stamp.

Before reopening a window, make sure that the size and state are reasonable for the
user’s current monitor setup, which may not be the same as the last time the
document was open. Try to maintain the window’s previous location (the top-left
corner of the window) and, if possible, its size. If you can’t replicate both, maintain
the location and reduce the window’s size. If that is not possible, try to keep the
window on the same monitor, open the window so that as much of the content as
necessary is visible, and follow the guidelines for opening a new window, as
described previously.

For example, if a user opens a document to full size on a wide aspect-ratio display,
then next opens the file on an iMac, open the document in a window sized for the
smaller monitor, rather than the saved size. For more information on appropriate
window size, see “Resizing and Zooming Windows” (page 80).

On a computer with more than one monitor, display the first new window visually
centered in the screen containing the menu bar. If the user doesn’t move that first
window, display each additional window below and to the right of its predecessor.
If the user moves the window, display each additional window on the screen that
contains the largest portion of the frontmost window, as shown in Figure 5-9. For
example, if the user creates a window, drags it completely to a second monitor, and
then creates a new window, display the new window on the second screen. If there
is sufficient room on the screen, display subsequent windows to the lower right of
the frontmost window. If there isn’t enough room on the screen, display subsequent
windows starting in the original visually centered position, and then continue to
display additional windows slightly offset to the lower right.

If the user moves a window so that it is entirely positioned on a second monitor,
then opens the window on a single-monitor system, respect the window’s previous
size, if possible.
78 Window Appearance and Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
Figure 5-9 Appropriate placement of a new window on a system with multiple monitors
(the user moved the first window to span the screens))

When you open several windows on multiple screens, continue to place the
windows on the screen where the user is working, each new one below and to the
right of its predecessor. Don’t open a window so that it spans monitors; the initial
position of a window should always be contained on a single screen.

Closing Windows
Users can close a window by

� choosing Close from the File menu

� pressing Command-W

� clicking the close button
Window Appearance and Behavior 79
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
When a user closes a document window, your application should

� decide what to do with unsaved data (see “Saving, Closing, and Quitting
Behavior” (page 105))

� store the window’s onscreen position and size (so they can be used when the
window is reopened)

Moving Windows
The user moves a window by dragging its title bar. As a user drags, the full window
and its contents move (unlike in Mac OS 9, which dragged the window’s outline).

Pressing the Command key while dragging an inactive window moves the window
but does not make it active.

Your application should never allow users to move a window to a position from
which they can’t reposition it.

Resizing and Zooming Windows
Your application determines the minimum and maximum window size. Base these
sizes on the resolution of the display and on the constraints of your interface. For
document windows, try to show as much of the content as possible, or a reasonable
unit, such as a page.

Your application also sets the values for the initial size and position of a window,
called the standard state. Don’t assume that the standard state should be as large as
possible; some monitors are much larger than the useful size for a window. Choose
a standard state that is best suited for working on the type of document your
application creates and that shows as much of the document’s contents as possible.

The user can’t change the standard size and location of a window, but your
application can change the standard state when appropriate. For example, a word
processor might define the standard size and location as wide enough to display a
document whose width is specified in the Page Setup dialog.
80 Window Appearance and Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
The user changes a window’s size by dragging the size control in the lower-right
corner. As a user drags, the visible content in the window changes. The upper-left
corner of the window remains in the same place and the appearance of the visible
contents stays the same. In Mac OS X, the actual window contents are displayed at
all times, rather than only the window outline displayed in Mac OS 9.

If the user changes a window’s size or location by at least 7 pixels, the new size and
location is the user state. The user can toggle between the standard state and the
user state by clicking the zoom button. When the user clicks the zoom button of a
window in the user state, first determine the appropriate size of the standard state.
Move the window as little as possible to make it the standard size, and keep the
entire window on the screen.

When a user with more than one monitor zooms a window, the standard state
should be on the monitor containing the largest portion of the window, not
necessarily the monitor with the menu bar. This means that if the user moves a
window between monitors, the window’s position in the standard state could be on
different monitors at different times. The standard state for any window must
always be fully contained on a single monitor.

When zooming a window, make sure it doesn’t overlap with the Dock. For more
information, see “The Dock’s Onscreen Position” (page 41).

Active and Inactive Windows
Users should be able to open as many windows as they want, but they interact with
only one at a time. The active window is frontmost and is visually distinct from the
other windows onscreen. The controls in active windows have color; controls in
inactive windows do not.

Figure 5-10 Window controls in active and inactive states
Window Appearance and Behavior 81
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
Starting with Mac OS X version 10.2, users can cycle forward or backward through
active document windows using Command-~ (tilde) and Shift-Command-~. Cocoa
applications automatically inherit this behavior; Carbon developers must handle
appropriate menu commands.

Click-Through
An item that provides click-through is one that a user can activate on an inactive
window with one click, rather than clicking first to make the window active and
then clicking the item. Click-through provides greater efficiency in performing such
tasks as closing or resizing inactive windows, and copying or moving files. In many
cases, however, click-through could confuse a user who clicks an item
unintentionally.

Click-through is not a property of a class of controls; any control could support
click-through in many contexts, but the same control could disable click-through
when its use could be destructive in a particular context.

In an inactive window, an item that provides click-through should have its text or
glyph (such as an arrow) in 100-percent black; if the item usually has color (such as
a radio button), it should be colorless in its click-through state. Items that do not
provide click-through should appear in their disabled state.
82 Window Appearance and Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
Figure 5-11 An inactive window with controls that support click-through

You can provide click-through for such items as

� pop-up menus

� text fields

� window controls in title bars (close, minimize, and zoom buttons)

� title bars, including proxy icons

� toolbar buttons (when the button’s action is not potentially harmful)

� scroll bars

Don’t provide click-through for items or actions that

� are potentially harmful (for example, the Delete button in Mail)

All the controls on
this window support
click-through.
Window Appearance and Behavior 83
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
� are difficult to recover from, such as

� actions that are difficult or impossible to cancel (the Send button in Mail)

� dismissing a dialog without knowing what action was taken (for example,
it’s not easy to “unsave” a document)

� removing the user from the current context (selecting a new item in a
column, for example, can change the target of the Finder window)

Clicking in one of these situations should result in the window being brought
forward but no action being taken.

Figure 5-12 The Save button on the inactive window does not support click-through

In general, you can implement click-through for an item that provides confirmation
feedback before taking place—in other words, the user can cancel the action—such
as deleting a user in Accounts preferences. If you want to implement click-through
on an item that doesn’t provide confirmation feedback, consider how difficult it will

This button does
not support
click-through.
84 Window Appearance and Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
be for the user to undo the action. For example, in Mail, it would be inadvisable to
implement click-through for the Delete button, which deletes a message without
providing feedback first, because its resulting action is harmful. You could,
however, provide click-through for the Add to Favorites button in the Save dialog
because its resulting action is not harmful and is fairly easy to undo.

Scroll Bars and Scrolling Windows
People use scroll bars to view areas of a document or a list that is larger than can fit
in the current window. Only the active window can be scrolled. A window can have
a horizontal scroll bar, a vertical scroll bar, both, or neither.

Figure 5-13 The elements of a scroll bar

The scroller size reflects how much of the document is visible; the smaller the
scroller, the less of the content the user can see at that time. The scroller represents
the relative location, in the whole document, of the portion that can be seen in the
window.

If the entire contents of a document is visible in a window, the scroll bars do not
contain scrollers. Scroll bars in inactive windows have an inactive appearance. See
Figure 5-10 (page 81).

Scroll arrow Scroll track

Scroll bar

Scroller
Window Appearance and Behavior 85
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
The user can use scroll bars by doing the following:

� Dragging the scroller: This method is usually the fastest way to move around a
document. In Mac OS X, the window’s contents changes in “real time” as the
user drags the scroller.

� Clicking a scroll arrow: This means, “Show me more of the document that’s
hidden in this direction.” The scroller moves in the direction of the arrow. Each
scroll arrow click moves the content one unit; your application determines what
one unit equals. For example, a word processor would move a line of text per
click, a spreadsheet could move one row or column. To ensure smooth scrolling
effects, specify units of the same size throughout a document.

� Clicking or pressing in the scroll track: Clicking advances the document by a
windowful (the default) or to the pointer’s hot spot, depending on the user’s
choice in General preferences. A “windowful” is the height or width of the
window, minus at least one unit of overlap to maintain the user’s context. This
unit of overlap should be the same as one scroll arrow unit (for example, a line
of text, a row of icons, or part of a picture). The Page Up and Page Down keys
also move the document view by a windowful.

Pressing in the scroll track displays consecutive windowfuls of the document,
until the location of the indicator catches up to the location of the pointer (or
until the user releases the mouse button).

It’s best not to add controls to the scroll-bar area of a window. If you add more than
one control to this area, it’s hard for people to distinguish among controls and click
the right one. Acceptable additions to the scroll area include a splitter bar and a
status bar that shows, for example, the current page. To ensure that window
controls are easy to use and understand, it’s best to place the majority of your
features in the menus as commands. If you really want to provide additional access
to features, consider creating a utility window such as a palette with buttons. Only
frequently accessed features that significantly benefit users’ productivity should be
elevated to the primary interface.

Utility windows that coexist with other windows and need to use the least amount
of screen space possible may use small scroll bars. If a window uses small scroll
bars, all other controls within the window content area should also be the smaller
version. For more information, see “Using Small Versions of Controls” (page 160).
86 Window Appearance and Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
Make sure you don’t use a scroll bar when you should really use a slider. Use sliders
to change settings; use scroll bars only for representing the relative position of the
visible portion of a document or list. For information about sliders, see “Slider
Controls” (page 137).

Automatic Scrolling

Most of the time, the user should be in control of scrolling. Your application must
perform automatic scrolling in these four cases:

� When your application performs an operation that results in making a new
selection or moving the insertion point (for example, when the user searches for
some text and your application locates it), scroll the document to show the new
selection.

� When the user enters information from the keyboard at a location not visible
within the window (for example, the insertion point is on one page and the user
has navigated to another page), scroll the document automatically to
incorporate and display the new information.

Your application determines the distance to scroll. In general, a word processor
scrolls vertically by a line of text, a database or spreadsheet scrolls by one field,
a graphics application scrolls to display an entire object, if possible.

� When the user moves the pointer past the edge of the window while holding
down the mouse button to make an extended selection, scroll the document
automatically in the direction the pointer moves.

� When the user selects something, scrolls to a new location, and then tries to
perform an operation on the selection, scroll so the selection is showing before
your application performs the operation.

Whenever your application scrolls a document automatically, move the document
only as much as necessary. That is, if part of a selection is showing after the user
performs an operation, don’t scroll at all. If your application can scroll in only one
direction to reveal the selection, don’t scroll in both.

When autoscrolling to a selection, try to show the selection in context. When the
selection is too large to show in its entirety, it might be a good idea to show some
context rather than having the selection fill the window.
Window Appearance and Behavior 87
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
Minimizing and Expanding Windows
When the user clicks the minimize button or double-clicks the title bar, the window
minimizes into the Dock. The window’s icon remains in the Dock until the user
clicks it again or, if it is the application’s only open window, until the user clicks the
application icon in the Dock. For more information, see “Clicking in the Dock”
(page 44).

Windows With Changeable Panes
The content of some windows changes depending on the user’s selection. For
example, when the user clicks one of the icons at the top of the Mail Preferences
window, the display at the bottom of the window changes. Some windows, such as
Displays in System Preferences, switch panes using a tab control (see “Tab
Controls” (page 138)).

Windows with changeable panes should reopen in their previous state as long as
the application is open, and return to their default views when the user quits. A
tabbed preferences window, for example, should open in its previous state until the
user quits the application; the next time the user opens the application, the leftmost
tab in the preferences window should be active.

Special Windows

This section describes special types of windows—including drawers, utility
windows, and About windows—and how each type differs from what’s described
elsewhere in this chapter.

Drawers
A drawer is a child window that slides out from a parent window and that the user
can open or close (show or hide) while the parent window is open. A drawer should
contain frequently accessed controls that don’t need to be visible at all times. A
drawer’s contents should be closely related to the contents of its parent window.
88 Special Windows
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
Built-in support for drawers is available to Cocoa developers via the NSDrawer
class. Carbon developers can create a drawer using the CreateNewWindow function
with the kDrawerWindowClass constant, and associate it with its parent window using
SetDrawerParent. The Carbon Window Manager also provides other drawer-related
functions. In both Carbon and Cocoa, a drawer automatically inherits the textured
appearance if its parent window is textured (see “Textured Windows” (page 72).

Figure 5-14 An open drawer next to its parent window

When to Use Drawers

Use drawers only for controls that need to be accessed fairly frequently but that
don’t need to be visible all the time. (Contrast this criterion with a utility window,
which should be visible and available whenever its main window is in the top
layer.) Some examples of uses of drawers include access to favorites lists, the
Mailbox drawer (in the Mail application), or browser bookmarks.

Although a drawer is somewhat similar to a sheet in that it attaches to a window
and slides out, the two elements are not interchangeable. Sheets are primarily
intended to replace modal dialogs, as described in “When to Use Sheets” (page 98),
whereas drawers provide additional functionality. When a sheet is open, it is the
focus of the window and it obscures the window contents; when a drawer is open,
the entire parent window is still visible and accessible.
Special Windows 89
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
Drawer Behavior

The user shows or hides a drawer, typically by pressing a button or choosing a
command. If a drawer contains a valid drop target, you may also wish to have the
drawer open when the user drags an appropriate object to where the drawer
appears.

When a drawer opens or closes, it appears to be sliding from behind its parent
window, to the left, right, or down. You should ensure that a parent window’s
default position allows its drawer to open fully without disappearing offscreen. If a
user moves a parent window to the edge of the screen and then opens a drawer, it
should open on the side of the window that has room. If the user makes a window
so big that there’s no room on either side, the drawer opens off the screen.

To support the illusion that a closed drawer is hidden behind its parent window, an
open drawer should be smaller than its parent window. When the parent window
is resized vertically, an open drawer resizes if necessary to ensure that it does not
exceed the height of the parent window. (A drawer can be shorter than its parent
window.) The illusion is further reinforced by the fact that the inner border of a
drawer is hidden by the parent window and that the parent window’s shadow is
seen on the drawer when appropriate.

The user can resize an open drawer by dragging its outside border. The degree to
which a drawer can be resized is determined by the content of the drawer. If the user
resizes a drawer to the point where content is significantly obscured, the drawer
should simply close. For example, if a drawer contains a scrolling list, the user
should be able to resize the drawer to cover up the edge of the list. But if the user
makes the drawer so small that the items in the list are difficult to identify, the
drawer should close. If the user sets a new size (if that is possible) for a drawer, the
new size should be used the next time the drawer is opened.

A drawer should maintain its state (open or closed) when its parent window
becomes inactive, or when the window is closed and then reopened. When a parent
window with an open drawer is minimized, the drawer should close; the drawer
should reopen when the window is made active again.

A drawer can contain any control that is appropriate to its intended use. Follow
normal layout guidelines, as stated in “Positioning Controls in Dialogs and
Windows” (page 149).
90 Special Windows
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
Consider a drawer part of the parent window; don’t dim a drawer’s controls when
the parent window has focus, and vice versa. When full keyboard access is on, a
drawer’s contents should be included in the window components that the user can
select by pressing Tab.

Utility Windows
You can create a modeless utility window, such as a tools palette, to present controls
or settings that affect the active document window. Utility windows are useful for
keeping extremely important controls or information accessible at all times in the
context of a user task. Because utility windows take up screen space, however, don’t
use them when you can solve the need with a modeless dialog (the user changes
settings and then closes the dialog) or by adding a few appropriate controls to a
window frame.

A user can open several utility windows at a time; they float on top of document
windows. When a user makes a document active, all of the application’s utility
windows should be brought to the front, regardless of which document was active
when the user opened the utility window. When your application is inactive, its
utility windows should be hidden. Utility windows should not be listed in the
Window menu as documents, but you may put commands to show or hide utility
windows in the Window menu.

Figure 5-15 Examples of tool palettes (utility windows)
Special Windows 91
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
A utility window may have a title. An untitled utility window should nonetheless
have an 11-pixel title-bar region for dragging the window.

Utility windows cannot be minimized (the minimize button is always unavailable
in utility windows). If you don’t want users to access the zoom button, you could
show only the close button. Don’t hide only the zoom or only the minimize button;
a utility window should have either all three title-bar controls or only the close
button, as shown in Figure 5-15. Carbon developers can specify which of these
controls is visible with the ChangeWindowAttributes function.

Figure 5-16 Utility window controls

For information about designing palette windows for Mac OS X, see “Using Small
Versions of Controls” (page 160).

The About Window
The About window, also called the About box, is a window that contains your
application’s version and copyright information. It should be modeless so the user
can leave it open and perform other tasks in the application.
92 Special Windows
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
At a minimum, your application’s About window should

� have a title bar and be movable

� include the close button as the only active window control (if you include the
minimize and zoom buttons, dim them)

� display a centered application icon and the full application title

It is recommended to also provide text that briefly describes what the application
does, as shown in Figure 5-17.

Figure 5-17 Examples of About windows (all specifications apply to both versions)

Recommended version

Smallest version

Application Icon
64 x 64 pixels
Centered

Application title
14-point Lucida
Grande Bold
Centered

Application description
Small system font
11-point Lucida Grande
Regular
Flush left

Application title
Text box is 19
pixels high,
centered

Label font
Text box is 12
pixels high (per line),
centered

Application version
Label font
10-point Lucida Grande Regular
Centered

Copyright information
Label font
10-point Lucida Grande Regular
Centered
Special Windows 93
  Apple Computer, Inc. June 2002

C H A P T E R 5

Windows
All text in an About window should be centered, except for the optional descriptive
text, which is flush left. If you want to include a scrolling list (for credits, for
example), put it between the descriptive text and the copyright information.

An About window (or splash screen) is the appropriate place for product branding
elements; avoid putting them in document windows and dialogs.

For Cocoa developers, About windows are automatically defined by the
Application Kit. Carbon developers need to create their own (using a .nib file, for
example).
94 Special Windows
  Apple Computer, Inc. June 2002

C H A P T E R 6
6 Dialogs
A dialog is a window designed to elicit a response from the user. Many dialogs—
the Print dialog, for example—permit the user to provide many responses at
one time.

Alerts are dialogs that appear when the system or an application needs to
communicate information to the user. They provide messages about error
conditions and warn users about potentially hazardous situations or actions.

For information about using the keyboard to interact with dialogs, see “Keyboard
Focus and Navigation” (page 182).

For specific design information on how to lay out dialogs, see “Layout Guidelines”
(page 149).

For implementation information, Carbon developers should see Handling Carbon
Windows and Controls, available on the Mac OS X developer documentation website.

Types of Dialogs and When to Use Them

Mac OS X applications can use these types of dialogs:

� Modeless: Enables users to change settings in a dialog while still interacting
with document windows; the “find and replace” feature in many word
processors is an example of a modeless dialog. Modeless dialogs have title bar
controls (close, minimize, and zoom buttons).
Types of Dialogs and When to Use Them 95
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
� Document modal: Prevents the user from doing anything else within a
particular document. The user can switch to other documents in the application,
and to other applications. Document-modal dialogs should be sheets, which are
discussed in “Document-Modal Dialogs (Sheets)” (page 96).

� Application modal: Prevents the user from doing anything else within the
owner application; the user can still switch applications. Most
application-modal dialogs do not have the standard title bar controls (close,
minimize, zoom); the user dismisses these dialogs by clicking a push button,
such as OK or Cancel. Application-modal dialogs that appear as the result of the
user choosing a command, such as the Open dialog in Figure 6-4 (page 103),
should display a title that matches the command.

An alert can be nonmodal, document modal, or application modal. If the error
condition or notification applies to a single document, the alert should be document
modal (a sheet). See the Save Changes alert in Figure 6-8 (page 109) for an example.
If the alert applies to the state of the application as a whole, or to more than one
document or window belonging to that application, the alert should be application
modal. Both the Review Changes alert for multiple unsaved documents (Figure 6-11
(page 112)) and the Save Changes alert for applications that are not
document-based (Figure 6-9 (page 110)) are application modal.

Document-Modal Dialogs (Sheets)
A sheet is a modal dialog attached to a particular document or window, ensuring
that the user never loses track of which window the dialog applies to. The ability to
keep a dialog attached to its pertinent window helps users take full advantage of the
Mac OS X window layering model (see “Window Layering” (page 70)). Sheets also
allow users to perform other tasks before dismissing the dialog, so there’s no longer
the sense of the system being “hijacked” by the application.

You lay out sheets like any other dialog in Mac OS X. Carbon developers are
responsible for creating, showing, handling the events for, and closing sheets. Other
sheet behavior, such as the animation when it appears, is handled automatically by
the Window Manager. Cocoa developers are responsible for loading, showing, and
closing sheets. While a sheet it displayed, events are handled by the Application Kit
just as for any other window. Other sheet behavior, such as the animation when it
appears and is dismissed, is handled automatically by the Application Kit.
96 Types of Dialogs and When to Use Them
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
Figure 6-1 The Save Changes alert: An example of using a sheet to display a
document-modal dialog

Sheet Behavior

Sheets are displayed as an animation that appears to emerge from the window’s
title bar. When a sheet opens on a window near the edge of the screen, and the sheet
is wider than the window it’s attached to, the sheet moves the window away from
the edge; when the sheet is dismissed, the window returns to its previous position.

Only one sheet may be open for a window at any one time. A sheet prevents any
other operation on that window until the sheet is dismissed. If, when the user
responds to a sheet, another sheet for that document must open, the first sheet
closes before the second one opens.

A sheet on an active document window should cover (appear on top of) any active
utility windows (if necessary). However, if the user leaves a sheet open and clicks
another document in the same application, the inactive window and its sheet
should go behind any open utility windows.

In an application that provides multiple windows for the same document (so that
the user can see different parts of a document simultaneously), a sheet would open
on the active window, and the user must dismiss the sheet before interacting with
other open views of the file.
Types of Dialogs and When to Use Them 97
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
When to Use Sheets

Use sheets for dialogs specific to a document when the user interacts with the dialog
and dismisses it before proceeding with work. Some examples of when to use
sheets:

� A modal dialog that is specific to a particular document, such as saving or
printing.

� A modal dialog that is specific to a single-window application that does not
create documents. A single-window utility program might use a sheet to request
acceptance of a licensing agreement from the user, for example.

� Other window-specific dialogs typically dismissed by the user before
proceeding. Use a sheet when a dialog benefits from being attached to the
window as a modal dialog, even if you might otherwise design the dialog as a
modeless dialog.

When Not to Use Sheets

� Don’t use sheets for dialogs that apply to several windows. Sheets are strictly
intended to be used in situations when a particular dialog is associated only with
the window to which it is attached.

� Sheets are not appropriate for modeless operations where the dialog should be
left open to allow the user to observe the effects of changes applied. Such tasks
(find and replace operations, for example) are better suited to modeless dialogs,
utility windows (palettes), or drawers.

� Don’t use a sheet on a window that doesn’t have a title bar. Sheets should
emerge from a definite visual edge.

Alerts
Alerts display messages to inform users of situations that are notable or potentially
dangerous.
98 Types of Dialogs and When to Use Them
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
Figure 6-2 A standard alert

An alert should contain only the following elements:

� Alert message text. This text, in emphasized (bold) system font, provides a short,
simple summary of the error or condition that summoned the alert. Often the
message is presented as a question.

� Informative text. This text appears in the small system font and provides a fuller
description of the situation, its consequences, and how to get out of it. For
example, a warning that an action cannot be undone is an appropriate use of
informative text.

� Buttons for addressing the alert. Button names should correspond to the action
the user performs when pressing the button—for example, Erase, Save, or
Delete. For more information, see “Push Buttons” (page 120).

� The application icon. Because of the Mac OS X window layering model (described
in “Window Layering” (page 70)), an icon is necessary to make it clear to the
user which application is displaying the alert.

In rare cases, you may want to display a caution icon in your alert, badged with
the application icon as shown in Figure 6-3. A badged alert is appropriate only
if the user is performing a task, such as installing software, and a possible side
effect of that task would be the inadvertent destruction of data. Don’t use a

Default buttonCancel buttonApplication icon

Message text Informative textNo title
Types of Dialogs and When to Use Them 99
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
caution icon for tasks whose only purpose is to overwrite or remove data, such
as Save or Empty Trash; too-frequent use of the caution icon dilutes its
significance.

Important
Mac OS X dialogs should not use the different icons for
“note,” “caution,” and “stop” alerts, as was done in
Mac OS 9. Most alerts should simply show the application
icon.

Figure 6-3 A customized alert showing the caution icon badged with an application icon

To display an alert with the application icon, Carbon developers should use a
standard alert, and Cocoa developers should use the alert and sheet functions in
NSPanel.h. To produce the caution icon, Carbon developers should use the
kAlertCautionAlert with the StandardAlert function; Cocoa developers should use
the NSBeginCriticalAlertSheet function.

Also see “Layout Guidelines” (page 149), especially Figure 8-5 (page 155), and
“Writing Good Alert Messages” (page 232).
100 Types of Dialogs and When to Use Them
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
Dialog Behavior

When appropriate, your application’s dialogs should display default values for
controls and text fields so the user can verify information rather than generating it
from scratch. Display a selection or an insertion point in the first location—a text
entry field or a list, for example—that accepts user input.

When it provides an obvious user benefit, static text in a dialog should be selectable.
Some error message text, for example, could be selectable. Facilitating the copying
of text (such as a serial number or a hostname) so it can be pasted accurately into
another context is another example.

In dialogs that display columns and are user resizable, such as the Open dialog, as
the dialog is made bigger, the columns grow and additional columns appear. All
other elements remain the same size and anchor to the right, center, or left side of
the dialog.

Accepting Changes
In general, all changes a user makes in a dialog should appear to take effect
immediately. There are three possible opportunities for data validation in a dialog:

1. When the user types data

2. When the user moves out of a data field (by pressing Tab, for example)

3. When the user clicks a button to apply changes

It is your responsibility to make the three states as clear as possible to the user. For
example, checkboxes and radio buttons update immediately and display the
appropriate results.
Dialog Behavior 101
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
You need to decide when your application does error checking of user input.
Possible approaches:

� Evaluate the input and check for errors as the user tabs from one field to the next.
The drawback is that it isn’t clear to the user that the changes are taking effect as
he or she tabs among items. The user doesn’t click a button, and so isn’t aware
of completing an action.

� Save user input in a queue and apply it when the user clicks a button, closes the
dialog, or switches to another application. If your application waits to check
user-input errors until the user tries to dismiss the dialog, you may have to
present an alert, thereby forcing the user to revisit the dialog. If you do error
checking as the user enters input, it takes more time up front, but you can warn
the user immediately when invalid data is entered.

In most cases, validating input after each keystroke is annoying and unnecessary.
It’s better to design your interface to automatically disallow invalid input. For
example, your application could automatically convert lowercase characters to
uppercase when appropriate.

In addition to error checking, you need to decide when to apply user input. In some
cases, changes can take effect immediately—for example, View Options for Finder
windows. In other cases, it may be appropriate to wait until the user performs an
action, such as clicking an Apply button.

In a dialog that has multiple panes (selected by tabs or a pop-up menu), avoid
validating data when a user switches from one pane to another.

Finally, you need to determine whether your application should automatically
perform an operation based on user input or whether the user should initiate the
operation, for example, by clicking a button. It’s acceptable to automatically
perform an operation that completes quickly and returns user control within a
couple of seconds. For an operation that takes a longer time to execute, it’s best to
warn the user of the estimated time required and let the user initiate it.

The Open Dialog
The Open dialog appears when the user chooses the Open command or presses
Command-O. The Open dialog is application modal (the user can switch to other
applications).
102 Dialog Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
If you implement an Open command, you should also include an Open Recent
command so users can access recently opened documents without going through
the dialog.

Figure 6-4 An Open dialog

Note: Navigation Services, introduced in Mac OS 8.5, has been enhanced to add
support for Mac OS X. Its predecessor, the Standard File Package, is not
supported in Mac OS X.
Dialog Behavior 103
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
The Open dialog contains these elements:

� A default title (“Open”); you should add your application’s name to the Open
dialog title—”TextEdit: Open,” for example.

� A From pop-up menu that contains Favorite Places (all containers in the user’s
Favorites folder) and Recent Places (the five most recent folders the user opened
or saved documents to). Your application specifies the default location, typically
one of the predefined folders in the user’s home folder. (For recommended
default locations, see “Files” (page 245).) If the user selects another folder, the
dialog should “remember” the user’s selection the next time the dialog appears.

� A column browser for navigating the file system.

� A “Go to” text field, in which expert users can type file-system paths to navigate
in the dialog. Pathnames must begin with “/” or “~”. (For guidelines about
pathnames, see “Displaying Pathnames” (page 251).)

� An Add to Favorites button, which adds an alias of the chosen folder to the
user’s Favorites folder and immediately updates the Favorite Places list in the
From pop-up menu. The Add to Favorites button is always active.

� A Cancel button and an Open (default) button.

� A resize control in the lower-right corner.

You can extend the Open dialog as appropriate for your application. For example,
you could include a pop-up menu allowing users to filter the type of files that
appear in the list (see Figure 6-5). Items that do not meet the filtering criteria would
appear dimmed. The system creates a list of native file types supported by the
application to populate the menu. You can supplement this list with custom types
and specify the default to show when the dialog opens. You should include an All
Applicable Files item, but it does not have to be the default.
104 Dialog Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
Figure 6-5 A customized Open dialog (column browser not shown)

Open dialogs should support document preview and can support multiple
selection if your application allows more than one document to be open at a time.

Saving, Closing, and Quitting Behavior
As described in “Naming Files and Showing Filename Extensions” (page 249), your
application should pass in a filename extension as part of every filename. Users can
control its visibility using the “Hide extension” checkbox in the expanded Save
dialog; for more information, see “The Expanded Save Dialog” (page 107). Existing
documents do not get extensions added to or removed from their filenames unless
the user chooses Save As and changes the setting in the Save dialog.

Save Dialogs

An application that saves the contents of individual windows—which would be
most text and graphics applications—should use document-specific sheets for its
Save dialogs. In Aqua, the Save dialog has two states: minimal and expanded.
Clicking the disclosure button toggles between these states. If the user changes the
state, the next Save dialog should open in the selected state.
Dialog Behavior 105
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
The Minimal Save Dialog

In the minimal Save dialog, users can save changes to a particular document, name
or rename the document, and choose a frequently accessed location to store it.

Figure 6-6 The minimal (collapsed) Save dialog

The minimal Save dialog contains these elements:

� “Save as” text field for the document name. (Expert users can enter pathnames
by typing “/” or “~” as the first character.)

If the document has not been saved previously, your application should put the
default name (such as “untitled”) in this field, and the filename should be
selected. If the user has chosen to make the filename extension visible, the
extension is not selected.

If the document has been saved previously and the user chooses Save As, the
Save dialog should open with the document name, highlighted, in the “Save as”
field. The filename extension (if it is visible) is not selected.

� Where pop-up menu, containing Favorite Places (all folders in the user’s
Favorites folder) and Recent Places (the five most recent folders the user opened
or saved documents to). Your application specifies the default location, typically

Disclosure
button
106 Dialog Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
the predefined Documents folder in the user’s home folder. (For recommended
default locations, see “Files” (page 245).) If the user selects another folder, the
dialog should “remember” the user’s selection the next time the dialog appears.

� Save button (default).

� Cancel button. Dismisses the dialog and returns to the application’s previous
state.

� A disclosure button. Clicking it displays the expanded Save dialog.

The Expanded Save Dialog

With the expanded Save dialog, users can save a document in a location not
accessible in the Where pop-up menu in the minimal Save dialog.

Figure 6-7 The expanded Save dialog
Dialog Behavior 107
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
Clicking the disclosure button in the minimal Save dialog displays the following:

� A column browser for navigating the file system.

� A New Folder button, which displays an application-modal dialog that asks the
user to name the new folder, and then creates it.

� An Add to Favorites button, which adds an alias of the chosen folder to the
user’s Favorites folder and immediately updates the Favorite Places list in the
Where pop-up menu. The Add to Favorites button is always active.

� A “Hide extension” checkbox, which allows the user to control whether or not
the filename’s extension (.jpg, for example) is visible. The “Hide extension”
checkbox should be selected as the default (that is, filename extensions should
not appear in user-visible filenames unless the user requests them).

If the user changes the state of the checkbox for a particular document, the next
new document should match the last user-selected state, even after the user
quits and reopens the application. The filename in the “Save as” field updates in
real time as the checkbox is selected or deselected.

Don’t provide your own options for handling filename extensions; use the
standard Open and Save dialogs. Carbon developers should set the
PreserveSaveFileExtension flag when calling the Save dialog, and use
NavCompleteSave to set the flag to hide the filename extension.

If you want to add a Format pop-up menu so that users can specify a document’s
file format, place it between the “Save as” text field and the Where pop-up menu.
The system creates a list of native file types supported by the application to
populate the menu. You can supplement this list with custom types and specify the
default format to show when the dialog opens. When a user changes a document’s
type with the Format menu, the filename extension (visible or hidden) should
change accordingly. Cocoa applications handle this updating automatically.

If you add other elements to customize the expanded Save dialog, they should
appear above the Cancel and Save buttons. All custom elements should be visible
in the dialog’s minimal (collapsed) state, below the Where pop-up menu. When the
dialog is expanded, custom elements should appear below the New Folder and Add
to Favorites buttons.

In default keyboard navigation mode, pressing Tab in the expanded Save dialog
shifts the keyboard focus from the “Save as” text field to the visible columns, and
then back to the text field.
108 Dialog Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
Closing a Document With Unsaved Changes

When the user attempts to close a document that has unsaved changes, present a
Save Changes alert. An application that saves the contents of individual windows—
like most text and graphics applications—should use document-specific sheets, like
the one shown in Figure 6-8, for its Save Changes alert. In an application that can
display multiple views of the same file, if the user chooses the Close File command
(instead of Close Window; see “The File Menu” (page 56)), open the sheet on the
frontmost window and change the alert message text from “document” to “file”;
after the user clicks Save or Don’t Save, close all open views of the file.

Figure 6-8 A Save Changes alert for a document-based application

When a Save Changes sheet is open, the document’s close button and the Close
command in the File menu are unavailable; the user can’t close the document until
the Save Changes sheet is addressed.

As described in “Sheet Behavior” (page 97), if an application provides multiple
views of the same document, the sheet should open on the active window and
prevent the user from interacting with other open views of the file.
Dialog Behavior 109
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
Saving Documents During a Quit Operation

In Mac OS X, users can interrupt a quit operation with documents still unsaved. For
example, if a user chooses Quit and a save alert (a sheet) opens for a document, the
user can work on other documents or switch to another application without
addressing the save alert. To minimize the impact of such interruptions, all save
alerts initiated by a Quit command should include a message that alerts users that
they are in the midst of a quit operation. See Figure 6-10 (page 111) for an example.

When a user quits an application in which all open documents have been saved, all
documents close immediately and the application quits.

Quitting an Application That is Not Document-Based

When a user attempts to quit an application that is not document-based (the
contents of many windows are saved simultaneously), present an
application-modal Save Changes alert, such as the one shown in Figure 6-9.

Figure 6-9 A Save Changes alert for an application that is not document-based
110 Dialog Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
Quitting an Application With One Unsaved Document Open

When a user attempts to quit a document-based application and there is only one
document with unsaved changes open, present a Save Before Quitting alert (such as
the one shown in Figure 6-10) as a sheet attached to the unsaved document, perform
the actions described in “The Minimal Save Dialog” (page 106), and then quit the
application as appropriate.

Note that the Don’t Save button, which can result in data loss, is positioned away
from the “safe” buttons (Cancel and Save). The keyboard combination Command-D
should be implemented for the Don’t Save button.

Figure 6-10 The Save Before Quitting alert (sheet) that appears when the user quits with
only one unsaved document
Dialog Behavior 111
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
Quitting an Application With Multiple Unsaved Documents Open

When a user attempts to quit a document-based application and there is more than
one document with unsaved changes open, present an application-modal Review
Changes alert, such as the one shown in Figure 6-11.

Figure 6-11 The Review Changes alert (application modal) that appears when the user
quits with more than one unsaved document open

The appropriate action for each button is as follows:

� Discard Changes. Closes all documents without saving changes and quits the
application.

� Cancel. Cancels the Quit command.

� Review Changes. All open documents (including those minimized in the Dock)
come forward, with the unsaved documents on top. The active document
presents the Save Before Quitting alert (see Figure 6-10 (page 111)). If the user
clicks Save, the Save dialog appears (if the document has not previously been
saved). If the user clicks Don’t Save, the next unsaved document comes forward
with its Save Before Quitting alert. If the user dismisses the last Save Before
Quitting alert with Save or Don’t Save, all documents close and the application
quits.
112 Dialog Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
During the review, if the user activates another unsaved document, it should
come forward with its Save Before Quitting sheet open. Already-opened Save
Before Quitting sheets on other documents remain open. During the review, if
the user activates a saved document, the review process continues when the next
unsaved document becomes active.

If, in the midst of a quit operation, the user clicks the application icon in the Dock
or chooses Bring All to Front from the Window menu, documents should appear
in this order: documents with open sheets on top, unsaved documents next, and
then saved documents.

At any time during the review process, the user can click Cancel to stop the quit
operation. If the user initiates a Quit command while in the review state, the
process begins again with the application-modal alert shown in Figure 6-11
(page 112).

Saving a Document With the Same Name as an Existing Document

If the user types the name of a document that already exists in the same location into
the “Save as” field of a Save dialog, and then clicks Save, present an
application-modal alert in which the user can confirm whether or not to replace the
previous document.

Figure 6-12 Alert for confirming replacing a file
Dialog Behavior 113
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
The Choose Dialog
A Choose dialog lets a user select an item as the target of a customized task. For
example, when a user attempts to open a broken alias, the Fix Alias dialog lets the
user choose another item for the alias to open. An application can have more than
one Choose dialog, but only one can be open at a time. In some situations, it may be
appropriate for a Choose dialog to be a sheet.

Figure 6-13 A Choose dialog

A Choose dialog

� can be opened by various commands

� can support multiple selection
114 Dialog Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
� supports document preview

� can be resized with the resize control in the lower-right corner

� can include a Show pop-up menu, which allows the user to filter the type of files
that appear in the list. Items that do not meet the filtering criteria appear
dimmed. The system creates a list of native file types supported by the
application to populate the menu. You can supplement this list with custom
types and specify the default to show when the dialog opens. You should
include an “All applicable files” item, but it does not have to be the default.

The dialog’s default title is “Choose,” but you should change it to include the name
of the task. For example, if the command that brings up the dialog is Choose Picture,
the dialog should be titled “Choose Picture.” Also include some instructional text at
the top, such as “Choose a picture to display in the background of the folder
‘Documents.’” If it’s helpful, also change the Choose button to something more
specific.

The default location is the user’s home folder. If the dialog is targeted to only
volumes, the default location is the Computer directory. Files and folders not
appropriate for the target selection should be dimmed.

Cocoa developers can use a variation of the Open dialog (NSOpenPanel class). The
Choose dialog is available to Carbon developers through Navigation Services. For
more information, see the documentation for Navigation Services, available on the
Mac OS X developer documentation website.

The Printing Dialogs
Printing dialogs include the Print dialog and the Page Setup dialog. In the Print
dialog, user options are provided via the features pop-up menu, which contains
panes drawn and controlled by printing dialog extensions (PDEs). PDEs are
provided by the operating system, printer modules, and applications.

Apple provides a number of printing panes. The standard Print dialog is shown in
Figure 6-14.

Note: Recent Places (in the Where pop-up menu of a Save dialog) does not record
folders selected in Choose dialogs.
Dialog Behavior 115
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
Figure 6-14 A Print dialog (a sheet attached to a document window)

Options for choosing paper type and print quality should look like the dialog in
Figure 6-15. You can customize the quality descriptions. If you want to provide
more options, make them visible only when the user clicks a disclosure triangle.

Figure 6-15 Options for choosing paper type and print quality

Features menu

Displays
advanced
options
116 Dialog Behavior
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
Figure 6-16 shows an example of a Print dialog with its advanced features visible.
Most users won’t need access to controls for specifying precise percentages of cyan,
yellow, and magenta; the dialog opens initially displaying only the top portion of
the dialog. The user must click a disclosure triangle to display the advanced
options.

Advanced options should always have a title. Use help tags when necessary to
explain options (see “Help Tags” (page 238)).

Figure 6-16 The expanded Color Options pane, showing advanced options
Dialog Behavior 117
  Apple Computer, Inc. June 2002

C H A P T E R 6

Dialogs
If you create custom printing dialogs, follow the interface guidelines provided
throughout this book and the layout guidelines described in “Positioning Controls
in Dialogs and Windows” (page 149). Here are some specific guidelines to keep in
mind if you implement custom printing features.

� Make sure the item name that appears in the features pop-up menu doesn’t
conflict with already existing menu items.

� Make sure the menu item (the pane name) helps users easily determine the
options the pane contains.

� Make sure the features you implement are appropriate for your application. For
example, an option to print in reverse order should be provided by the operating
system, not your application. (Implementing this feature requires the
application to know the hardware’s capabilities.)

� Make interdependencies among options clear to users. For example, if a user
selects double-sided printing, the option to print on transparencies should
become unavailable.

� Separate more advanced features from frequently used features. When the user
chooses to display the advanced features, there should be an “advanced
options” title above the advanced controls.

� Provide visual feedback (such as the preview in the Layout pane of the Print
dialog) when appropriate. A thumbnail showing the effect of changing a tone
control, for example, helps users determine desired settings.

� Save a user’s printing preferences for a document, at least while the document
is open. Provide a way for users to save custom settings.

If you are a Carbon application developer, you can write a PDE to customize panes
in the Page Setup or Print dialogs. For more information, see Inside Mac OS X:
Extending Printing Dialogs, available on the Mac OS X developer documentation
website. If you are a Cocoa application developer, you can implement an accessory
view by using NSPageLayout and NSPrintPanel, both Application Kit classes.
118 Dialog Behavior
  Apple Computer, Inc. June 2002

http://developer.apple.com/techpubs/macosx/Carbon/graphics/CarbonPrintingManager/carbonprintingmgr.html
http://developer.apple.com/techpubs/macosx/Carbon/graphics/CarbonPrintingManager/carbonprintingmgr.html

C H A P T E R 7
7 Controls
Controls are graphic objects that cause instant actions or visible results when the
user manipulates them with the mouse. Standard controls include push buttons,
scroll bars, radio buttons, checkboxes, sliders, and pop-up menus.

For Carbon developers, the Control Manager determines the overall appearance of
all controls. For Cocoa developers, the overall appearance of interface elements is
provided by the Application Kit. You are responsible for positioning the controls
within your windows, according to the guidelines given here.

For implementation information, Carbon developers should see Inside Mac OS X:
Handling Carbon Windows and Controls, available on the Mac OS X developer
documentation website.
119
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Control Behavior and Appearance

Push Buttons
A push button is a rounded rectangle with a text label on it. Clicking a push button
performs an instantaneous action, such as saving a document, completing
operations defined by a dialog, or acknowledging an error message. If a button
initiates an indeterminate process, the button should be dimmed until the process
is complete, or status feedback should be provided.

Button names should be verbs that describe the action performed—Save, Close,
Print, Delete, and so on. If a button acts on a single setting, label the button as
specifically as possible; “Choose Picture…,” for example, is more helpful than
“Choose…” Because most buttons initiate an immediate action, it shouldn’t be
necessary to use “now” (“Scan Now,” for example) in the label. Don’t use push
buttons to indicate a state such as On or Off.

In some circumstances, it’s appropriate to implement an Apply button—for
example, to permit a user to see the effect of multiple text attributes before
committing to them. In cases like these, clicking Cancel should undo any of the
applied changes. Be cautious about using an Apply button for operations that take
a long time to implement or undo; it might not be obvious to users that they can
interrupt or reverse the process.

All push buttons should be clear except the default button—the button selected by
pressing the Return key—which should use the default color (in addition to
pulsing). For example, in a dialog containing a default OK button and a Cancel
button, the Cancel button is clear and the OK button uses color and pulses. When

Note: The Control Manager (Carbon) and Application Kit (Cocoa) include
smaller versions of the most commonly used controls, for use in utility windows
when necessary. The specifications listed here are for the standard size controls.
If a small version of a control is available, it’s shown (with its dimensions) after
the standard-size version. For more information, see “Using Small Versions of
Controls” (page 160).
120 Control Behavior and Appearance
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
the user presses a nondefault button such as Cancel, the button acquires color and
the default button loses its color. If you use standard controls, this behavior is
automatic.

For information about proper capitalization of button labels, see “Capitalization of
Interface Elements” (page 231). For information about when it is appropriate to use
ellipses in buttons, see “Using Ellipses in Menus and Buttons” (page 67).

Push Button Specifications

Figure 7-1 Example of standard push buttons

Figure 7-2 Stacked push buttons

12

69 69

If stacking vertically, leave
a minimum of 12 pixels
in between.

If stacking vertically, leave
a minimum of 8 pixels
in between.

Standard push button Small push button

8
12
Control Behavior and Appearance 121
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Figure 7-3 Push button dimensions

� Height: 20 pixels (fixed), not including the shadow. For small push buttons,
height is 17 pixels.

� End caps: 14 pixels wide (fixed). For small push buttons, 10 pixels.

� Width: Depends on button text. If you don’t specify a wide enough button, the
end caps clip the text. The standard width for OK and Cancel buttons is 69
pixels, as shown in Figure 7-1 (page 121). Push buttons used in other contexts
may be sized differently if appropriate.

� Text: System font (13-point Lucida Grande Regular). If you need to use a font
larger than the system font, use a bevel button instead. For small push buttons,
use the small system font (11-point Lucida Grande Regular).

� Color: All push buttons are clear except the default button, which uses the
default color (in addition to pulsing).

� Spacing: Leave at least 12 pixels of space between buttons placed horizontally
or stacked. For small push buttons, leave at least 8 pixels.

Radio Buttons and Checkboxes
Use radio buttons for a set of mutually exclusive, but related, choices. A set of radio
buttons should contain at least two items and a maximum of about seven. (For more
than seven items, consider using a pop-up menu.) A set of radio buttons is never
dynamic (changing contents depending on the context). A radio button should
never initiate an action.

Use checkboxes to indicate one or more options that must be either on or off. Each
checkbox label should clearly imply two opposite states so it’s clear what happens
when the box is checked or unchecked. If you can’t find an unambiguous label,
consider using radio buttons so you can clarify the states with two different labels.

Push button: The button height is 20 pixels.

End caps are
not adjustable.

Text goes between
end caps.

Small push button: The button height is 17 pixels.

1717

10101010

20

1414

20

1414
122 Control Behavior and Appearance
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Radio Button and Checkbox Specifications

Figure 7-4 Spacing of standard and small radio buttons

Figure 7-5 Spacing of standard and small checkboxes

� Size: 18 x 18 pixels, including the shadow. Small radio buttons are 14 x 15 pixels.
Small checkboxes are 14 x 16 pixels.

� Label: 8 pixels from label (colon) to control

� Spacing: 8 pixels of space between controls when stacked.

� Text: System Font (13-point Lucida Grande Regular). Small: Small system font
(11-point Lucida Grande Regular).

� Positioning: Typically stacked vertically to clearly show relationships among
button states.

Align the baselines of the label
and the first button’s text.
The box indicates the hit region.

8

8 8

8

Align the baselines of the label
and the first checkbox’s text.
The hit region includes the
checkbox border.

8

8

8

8

Control Behavior and Appearance 123
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Selections Containing More Than One Checkbox State

When a user selection comprises more than one state, use a dash in the appropriate
checkboxes. (This symbol is consistent with the mixed-state indicator in menus, as
described in “Using Symbols in Menus” (page 65).)

Figure 7-6 Dashes in checkboxes representing a selection with more than one state

Pop-Up Menus
Use pop-up menus to present a list of mutually exclusive choices in a dialog or
window. Pop-up menus are used as a means of selecting one choice from a list
of many. If you have a dialog with five or more radio buttons in one section,
consider using a pop-up menu instead.

Figure 7-7 An open pop-up menu

A pop-up menu

� has a label to the left (in left-to-right scripts)

� has a drop shadow and a double-triangle indicator

� contains nouns (things) or adjectives (states or attributes), but not verbs
(commands); use pull-down menus for commands

� has a checkmark beside the current value when open

Active Inactive Disabled

Label The arrows indicate that
this is a pop-up menu.
124 Control Behavior and Appearance
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
A pop-up menu behaves like other menus: Users drag to choose an item—which
then flashes briefly and appears as the current choice—or move outside the menu
to leave the current value active. An exploratory press in the menu to see what’s
available doesn’t select a new value.

In special cases, you may want to include a command that affects the contents of
the pop-up menu itself. For example, in the Print dialog, the Printer pop-up menu
contains Edit Printer List, so users can add a printer to the menu; the new printer
becomes the menu’s default selection. Put such commands at the bottom
of a pop-up menu, below a separator.

Use pop-up menus to present up to 12 mutually exclusive choices that the user
doesn’t need to see all the time.

Don’t use pop-up menus

� for more than 12 items; use a scrolling list

� for 4 or fewer items; use radio buttons

� when more than one selection is appropriate, such as text styles (in which you
can select bold and italic, for example); use checkboxes or a pull-down menu in
which checkmarks appear

Be very cautious about creating a pop-up menu with submenus. Doing so hides
choices too deeply and is physically difficult to use.

Bevel buttons and icon buttons can also be pop-up menus. See “Pop-Up Icon
Buttons and Pop-Up Bevel Buttons” (page 134).
Control Behavior and Appearance 125
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Pop-Up Menu Specifications

Figure 7-8 Pop-up menu spacing

� Height: 20 pixels. Small: 17 pixels.

� Width: Wide enough to accommodate the longest menu item.

� Spacing: Leave at least 12 pixels of space between stacked controls. Small: Leave
at least 8 pixels of space.

� Menu item text: System font (13-point Lucida Grande Regular), 9 pixels from
left edge and at least 9 pixels from the double-triangle section. Small: Small
system font (11-point Lucida Grande Regular), 7 pixels from left edge and at
least 7 pixels of space on the right.

� Menu label text: Emphasized system font (13-point Lucida Grande Bold), 8
pixels from text (colon) to left edge of menu. Small: Emphasized small system
font (11-point Lucida Grande Bold), 6 pixels from text (colon) to left edge of
menu.

Standard pop-up menu Small pop-up menu

If stacking vertically, leave at
least 12 pixels in between.

If stacking vertically, leave at
least 8 pixels in between.

9

8

9 7 7

20

6

17

812
126 Control Behavior and Appearance
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Command Pop-Down Menus
A command pop-down menu is similar to a pull-down menu, but it appears in a
window rather than in the menu bar. Use of this control is limited to cases where
the window is shared among multiple applications and the menu contains
commands that affect the window’s contents. For example, the Colors utility
window, which can be used in any application, contains a List menu with
commands that can be used to change the contents of the Colors window itself. Each
application that uses the Colors window doesn’t have to populate a menu with
these commands.

Cocoa developers can create a command pop-down menu with the NSPopUpButton
class. Carbon developers can mimic the appearance and behavior with a bevel
button.

Figure 7-9 A command pop-down menu

Command pop-down menus should contain between 3 and 12 commands. A closed
command menu always displays the same text, which acts as the menu title.

Command Pop-Down Menu Specifications

The specifications for command pop-down menus are the same as those for pop-up
menus (see “Pop-Up Menu Specifications” (page 126)).
Control Behavior and Appearance 127
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Figure 7-10 Command pop-down menu specifications

Combination Boxes
A combination box (or combo box) is a text entry field combined with a drop-down
scrolling list. Combo boxes are useful for displaying a list of likely choices while still
allowing the user to type in an item not in the list.

Figure 7-11 Combo box with scrolling list open

The default state of the combo box is closed, with the text field empty or displaying
a default selection. The default selection (not necessarily the first item in the list)
should provide a meaningful clue to the hidden choices. The combo box should also
have a useful label.

To create a combo box, Carbon developers can use the HIComboBoxCreate function
and DrawThemeButton with the appropriate constant. Cocoa developers can use the
NSComboBox class.

20

99

8

17

77

6

128 Control Behavior and Appearance
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Combo Box Specifications

Figure 7-12 Combo box dimensions

� Height: 20 pixels. Small: 17 pixels.

� Width: Wide enough to accommodate the longest menu item.

� Spacing: Leave at least 12 pixels of space between stacked controls. Small: Leave
at least 8 pixels of space.

� Menu item text: System font (13-point Lucida Grande Regular), 9 pixels from
left edge and at least 9 pixels from the double-triangle section. Small: Small
system font (11-point Lucida Grande Regular), 7 pixels from left edge and at
least 7 pixels of space on the right.

� Menu label text: Emphasized system font (13-point Lucida Grande Bold), 8
pixels from text (colon) to left edge of menu. Small: Emphasized small system
font (11-point Lucida Grande Bold), 6 pixels from text (colon) to left edge of
menu.

The Text Entry Field

The user can type any appropriate characters into the text field. If the user types in
an item already in the menu or list, or types in a few characters that match the first
characters of an item in the list, the item is highlighted when the user opens the list.
A user-typed item does not get added to the permanent list.

Small combo box

17

Standard combo box

20

13158 6
Control Behavior and Appearance 129
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
The Scrolling List

The user opens the list by pressing or clicking the arrows to the right of the text field.
The list is a window that descends from the text field; the window is the same width
as the text field and has a drop shadow. Don’t extend the right edge of the list
beyond the right edge of the arrow box; if an item is too long, it gets truncated.

When the user selects an item in the list, the item replaces whatever is in the text
entry field and the list closes. If the user presses the Up Arrow or Down Arrow key
to move through the items, the selected item is highlighted and appears in the text
entry field. The user can accept an item by pressing the Space bar, Enter, or Return.

If the list is open and the user clicks outside it, including within the text entry field,
the list closes.

Placards
A placard is a control you can use to display information, such as the current page
number. You can also use a placard to create the striped background behind other
controls.

Typically placards are used in document windows as a way to quickly modify the
view of the contents—for example, to change the current page or the magnification.
The most familiar use of the placard is as a pop-up menu placed at the bottom of a
window to the left of the horizontal scroll bar. You can extend the functionality of a
placard by, for example, having it provide a pop-up menu so that users can choose
from pre-defined options.

Figure 7-13 A placard pop-up menu
130 Control Behavior and Appearance
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Placards are 15 pixels high and use either 10-point or 11-point Lucida Grande
Regular.

Carbon developers can use the Carbon Control Manager CreatePlacardControl call
or DrawThemePlacard in the Carbon Appearance Manager to create a placard.

Bevel Buttons
A bevel button has a beveled edge that gives the button a three-dimensional
appearance.

� Bevel buttons can display text, an icon, or a picture

� They mimic the behavior of other button types; for example, a bevel button can
behave like a standard push button. Bevel buttons can be grouped and used like
radio buttons or checkboxes.

� Bevel buttons can have a menu attached, so the button behaves like a pop-up
menu. See “Pop-Up Icon Buttons and Pop-Up Bevel Buttons” (page 134)

� They can have rounded or square corners. The square buttons work well for
tiling together in groups, to be used as radio buttons, for example.
Control Behavior and Appearance 131
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Bevel Button Specifications

Figure 7-14 Bevel button specifications

� Size of button: 20 x 20 pixels minimum

� Size of icon: 32 x 32 pixels recommended, with at least 5 pixels between icon and
button edge

Rounded corners

Leave at least 5 pixels between edge of
icon and edge of button.

Rounded corners with label below icon

Square corners

32 x 32

58 x 57

32 x 32

32 x 32

Label
132 Control Behavior and Appearance
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
� Spacing: For buttons with rounded corners that contain a 24 x 24 (or larger) icon,
leave at least 8 pixels between buttons, stacked vertically or aligned
horizontally. Otherwise, buttons should butt up against each other.

� Text: Label font (10-point Lucida Grande Regular)

If a bevel button has an icon and a label, you can put the text anywhere in relation
to the icon. Carbon and Cocoa developers can specify the location in Interface
Builder or programmatically. Cocoa developers can create square bevel buttons
with the NSButton class. Carbon developers can use the CreateBevelButtonControl
function or, in Appearance Manager, the DrawThemeButton function with the
kThemeBevelButton constant.

In some situations—providing text-alignment options in a toolbar, for example—it
is appropriate to use bevel buttons to graphically represent several mutually
exclusive choices. You can also use bevel buttons for nonstandard-size push
buttons.

Figure 7-15 Bevel buttons as radio buttons and push buttons

Toolbars
Toolbars are useful for giving users immediate access to the most frequently used
commands. Any item in a toolbar should also be available as a menu command. An
application-wide toolbar in its own window is also called a tool palette; for more
information, see “Utility Windows” (page 91). This section focuses on toolbars that
are part of a window with other content. Carbon developers can create a toolbar
with the HIToolBarCreate function; Cocoa developers can use the NSToolbar class.

24

20
Control Behavior and Appearance 133
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
The set of toolbar items you provide should fit in the default window size; users
should be able to customize which items appear in the toolbar, and in what order.
As the default, a toolbar should display icons with text labels; users should be able
to change the display to icons only or text only. You can provide these options with
a Customize Toolbar command in the View menu.

If your application uses toolbars as part of a window with other content, include a
control in the window’s title bar for showing and hiding the toolbar, as shown in
Figure 7-16. You should also put commands for showing and hiding the toolbar in
the View menu (see “The View Menu” (page 61)).

Figure 7-16 The toolbar control

For information about designing icons for toolbars, see “Toolbar Icons” (page 211).

Pop-Up Icon Buttons and Pop-Up Bevel Buttons
An icon button does not have a rectangular edge around it; the clickable area is the
graphic itself (for example, the toolbar buttons in Finder windows). An icon button
or a bevel button containing a pop-up menu has a single downward-pointing
arrow, as shown in Figure 7-17. The button can behave like a standard pop-up
menu, in which the image on the button is the current selection, or the button can
represent the menu title and always display the same image.

Toolbar button
134 Control Behavior and Appearance
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
The menu and the button (or the bounding rectangle around the icon) are
left-aligned, with no space between the top of the menu window and the bottom of
the button. The arrow is 7 pixels wide at the top. The tip of the arrow is positioned
1 pixel below the icon’s bottom edge. There should be 3 pixels from the tip of the
arrow to the top of the menu window.

Figure 7-17 Pop-up icon button

1

Arrow is 7 pixels wide at the top.

Menu and icon left-aligned
Control Behavior and Appearance 135
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Figure 7-18 Pop-up bevel button with square corners

Figure 7-19 Pop-up bevel button with rounded corners

7

8

7

Arrow is 7 pixels wide at the top
and positioned 2 pixels to the right
of the icon edge.

Menu and button are left-aligned,
with no space between the bottom
of the button and the top of the menu.

7

8

7

136 Control Behavior and Appearance
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Slider Controls
A slider control lets users choose from a continuous range of allowable values.
Slider controls can be horizontal or vertical and can display labeled tick marks to
represent increments you specify. The slider itself (the thumb) can be directional or
round. In deciding whether a slider should be horizontal or vertical, try to meet
users’ expectations of similar real-world controls.

Slider controls support live feedback (live dragging), so users can see the effect of
moving the slider as it is dragged. Dock preferences, for example, shows the effect
of moving the Dock Size slider.

Slider Control Specifications

Figure 7-20 Slider control dimensions

Figure 7-21 Small slider dimensions

Sliders: The control region is 15 x 18 pixels on directional sliders and 15 x 15
 on nondirectional sliders.

25

25 15 18

15

18

Small sliders: The control region for all slider types is 11 x 12 pixels.

18

12

12

18 11 12
Control Behavior and Appearance 137
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Tab Controls
The tab control provides a convenient way to present information in a multipage
format. Tabs can display centered horizontally across the top or bottom edge, or
centered vertically along the left or right side. Figure 7-22 shows the proper
orientation of text on tabs on each of the four sides.

Figure 7-22 Orientation of tab text on each side

The content area below a tab is called a pane. You can use other controls, such as
push buttons and text entry fields, in tabbed windows too. The controls can be
global—affecting the settings of all panes—or specific to an individual pane; make
it clear through labeling and placement (within or outside of a tab pane’s boundary)
whether a control affects one pane or all panes.
138 Control Behavior and Appearance
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Tab Control Specifications

Figure 7-23 Tab control dimensions

Figure 7-24 Small tab control dimensions

� Text: System font (13-point Lucida Grande), centered in tab with 12 pixels on
each side. Small tabs: Small system font (11-point Lucida Grande), centered in
tab with 10 pixels on each side.

� Tab height: 23 pixels. Small: 20 pixels

� Accent bar height: 6 pixels. Small: 5 pixels.

Tabs use the system font.

7

12 12

6

30 23

Small tabs use the small system font.

1010

26 20

5

Control Behavior and Appearance 139
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Tab panes can extend from one edge of a window to the other, or they can be inset
within a window. Figure 7-25 shows an example of tab panes that extend from one
edge of a window to the other.

Figure 7-25 Tab panes edge to edge

For inset tab panes, the recommended inset is 20 pixels on each side within a
window, although 16 is also allowed. You can define a window so space remains
below the tab pane for global controls such as push buttons. Figure 7-26 shows an
example of tab panes inset within a window, with buttons below the panes.

Spaces should
be equal.
140 Control Behavior and Appearance
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Figure 7-26 Tab panes inset from edge of window

Progress Indicators
Progress indicators inform users about the status of lengthy operations. (For
guidelines on when to provide such information, see “Feedback and
Communication” (page 29)). There are two types of progress indicators:

� Determinate: Use when the full length of an operation can be determined and
the user can see how much of the process has been completed. You could use a
determinate progress indicator to show the progress of a file conversion, for
example.

� Indeterminate: Use when the duration of a process can’t be determined. You
might use an indeterminate progress indicator to let the user know that the
application is attempting a dialup communication connection, for example,
when there’s no way to accurately determine how long it will take to complete.
If an indeterminate process reaches a point where its duration can be
determined, switch to a determinate progress indicator.

20

20

12

20

12

Spaces should
be equal.
Control Behavior and Appearance 141
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Typical progress indicators look like the bars shown in Figure 7-27. In a determinate
progress bar, the “fill” moves from left to right, and should fill in completely before
it is dismissed. An indeterminate progress bar displays a spinning striped cylinder
to indicate an ongoing process.

Figure 7-27 Progress bars

Determinate progress bars should associate progress with time. A progress bar that
becomes 90-percent complete in 5 seconds but takes 5 minutes for the remaining
10 percent, for example, would be annoying and lead users to think that something
is wrong.

Progress indicators typically appear within a progress dialog. When the process
being performed can be interrupted, the progress dialog should contain a Cancel
button (and support the Escape key). If interrupting the process will result in
possible side effects, the button should say Stop instead of Cancel.

Determinate progress bar

Determinate progress bar

Small progress bar

Large progress bar

Active fill

Active fill

Inactive fill

Inactive fill Inactive fill

Active fill

Inactive fill

Active fill

Indeterminate progress bar

Indeterminate progress bar

16

10
142 Control Behavior and Appearance
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
An alternative to the indeterminate progress bar, spinning arrows (see Figure 7-28)
can be used when space is very constrained. They are best used for asynchronous
events that take place in the background, such as retrieving messages from a server.
Don’t use spinning arrows in operations that start out indeterminate but could
become determinate.

In Cocoa, spinning arrows are included as an alternate style of the
NSProgressIndicator function. In Carbon, the function to create these arrows is
CreateChasingArrowsControl.

Figure 7-28 Spinning arrows used instead of indeterminate progress bar

Don’t use a progress bar to display relevance. Instead, use the relevance control
(available in Carbon via the CreateRelevanceBarControl in the Control Manager or
DrawThemeTrack in Appearance Manager) shown in Figure 7-29.

Figure 7-29 Relevance control
Control Behavior and Appearance 143
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Text Fields and Scrolling Lists
There are various kinds of controls that incorporate text:

� A text input field, also called an editable text field, is a rectangular area in which
the user enters text or modifies existing text. The text input field can be active or
disabled. It supports keyboard focus and password entry.

Your application’s text input fields should perform appropriate edit checks. For
example, if the only legitimate value for a field is a string of digits, the
application issues an alert if the user types nondigits. In most cases, the
appropriate time to check the data in the field is when the user clicks outside the
field or presses the Return, Enter, or Tab key.

Combination boxes are text input fields that also contain a menu or a list of
choices. See “Combination Boxes” (page 128).

� Use a static text field for informational text in a dialog (text not intended to be
modified by users). Static text fields have two states: active and dimmed.

When it provides an obvious user benefit, static text should be selectable. Error
message text, for example, should be selectable. Text that is likely to be copied
so that it can be pasted accurately into another context (such as a serial number
or a host name) is another example.

� A scrolling list can contain as many items as necessary. Users can scroll through
the list without selecting anything, or can click an item to select it, use Shift-click
to select more than one continuous item, or use Command-click for a
discontinuous selection. Users can press the arrow keys to navigate through the
list and can quickly select an item by typing the first few characters.

If an item is too long to fit in the list box, insert ellipses in the middle and
preserve the beginning and end of the item. Users often add version numbers to
the end of document names, so both the beginning and end should be visible.

Don’t use scrolling lists to provide choices in a limited range. Because the full
range may not be visible all at once, it can be difficult for users to understand the
scope of their choices. Use sliders, discussed in “Slider Controls” (page 137),
instead.

Tools for Creating Lists

Functions, data types, and constants for creating and managing the new data
browser control have been added to the Control Manager. The data browser
144 Control Behavior and Appearance
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
(available to Carbon applications) provides a convenient way to create easily
customized lists and consistent sortable, movable, and resizable columns. If your
application uses the data browser functions to display lists, they will always look
right in Mac OS 9 and Mac OS X.

The data browser control has two versions: list view and column view. Finder
windows have examples of both, selectable with the View control (in the upper-left
area of the toolbar). The middle button is the list-view button; the button on the
right is the column-view button.

Similar functionality is available to Cocoa developers through three classes of
interface objects:

� NSOutlineView. You can see an example in the Mailboxes drawer of the Mail
application, which can show a list hierarchy with disclosure triangles.

� NSTableView. You can see an example in the list of contents of a mailbox in the
Mail application. It is multicolumn and row-based.

� NSBrowser. You can see an example in the Open dialog of a Cocoa-based
application. This class provides the same sort of hierarchical data as
NSOutlineView in column format.

For more information, see the data browser control technical note, available at
http://developer.apple.com/technotes/tn/tn2009.html.

Text Input Field Specifications

Figure 7-30 Text input field specifications

Normal state with text
and insertion point

With focus

With selection

22

3-pixel shadow inside box
Control Behavior and Appearance 145
  Apple Computer, Inc. June 2002

http://developer.apple.com/technotes/tn/tn2009.html
http://developer.apple.com/technotes/tn/tn2009.html
http://developer.apple.com/technotes/tn/tn2009.html

C H A P T E R 7

Controls
Figure 7-31 Small text input field specifications

� Height: 22 pixels (to accommodate the system font, which is 16 pixels high
without line spacing). If you specify the small system font, the text input field
dimensions are reduced proportionally. To accommodate the small system font,
the text field height is 19 pixels.

� Selection rectangle: 16 pixels high. Small: 13 pixels.

� Spacing: Leave a minimum of 10 pixels between stacked text input fields (8
pixels between stacked small text input fields).

� Text: System font (13-point Lucida Grande Regular). Small: Small system font
(11-point Lucida Grande Regular).

For more information about highlighting selections in text fields, see “Keyboard
Focus and Navigation” (page 182) and “Selections in Text” (page 189).

Scrolling List Specifications

Figure 7-32 Scrolling list dimensions

Normal state with text
and insertion point

With focus

With selection

19

2-pixel shadow inside box

12-point
font

19 points
baseline
to baseline

3

3

146 Control Behavior and Appearance
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
When you define dimensions, make sure that the list displays only full lines of text
(don’t cut text off vertically), and make sure that the scrolling increment is one list
element.

� Text: 12 points

� Frame: 3 pixels wide

Image Wells
Use an image well to display an icon or picture that serves as a drag-and-drop
target. You could use a set of image wells to manage thumbnails in a clip-art catalog,
for example. Don’t use image wells in place of push buttons or bevel buttons.

Figure 7-33 Image wells

Some image wells (the user picture in the Edit User pane of Accounts preferences,
for example) must always contain an image. If the user can clear an image well
(leaving it empty) in your application, provide standard Edit menu commands and
Clipboard support.

Normal Selected Selected plus
dropped

Drop target
Control Behavior and Appearance 147
  Apple Computer, Inc. June 2002

C H A P T E R 7

Controls
Disclosure Triangles
A disclosure triangle allows the display, or disclosure, of information that
elaborates on the primary information in a window. Disclosure triangles are used
in the Finder’s list view, where clicking a triangle displays a folder’s contents.

Figure 7-34 Disclosure triangles in the Finder list view

Disclosure triangles are available to Carbon developers through the Control
Manager (CreateDisclosureTriangleControl) or the Appearance Manager
(DrawThemeButton). Cocoa provides this control only as part of the NSOutlineView
class.

Disclosure triangle
in closed state

Disclosure triangle
in open state
148 Control Behavior and Appearance
  Apple Computer, Inc. June 2002

C H A P T E R 8
8 Layout Guidelines
This chapter provides basic suggestions for arranging controls in dialogs and
windows. These guidelines use many of the default control sizes defined in
Interface Builder; any exceptions are noted. To simplify the process of resizing and
repositioning existing dialogs and windows, most values are based on a multiple of
2 pixels. All user-visible text should use the standard fonts described in “Fonts”
(page 197).

The Control Manager (Carbon) and Application Kit (Cocoa) include smaller
versions of the most commonly used controls, for use in utility windows when
necessary. For utility window layout information, see “Using Small Versions of
Controls” (page 160).

Positioning Controls in Dialogs and Windows

Keep these guidelines in mind when designing dialogs and windows:

� In general, try for a more centered approach to dialog layout, as opposed to the
strongly left-biased approach of the traditional Mac OS 9 dialog. Most of the
sample layouts in this document illustrate the center-biased approach.

� All spacing between dialog elements involves a multiple of 2 pixels—2, 4, 6, 8,
and so on.
Positioning Controls in Dialogs and Windows 149
  Apple Computer, Inc. June 2002

C H A P T E R 8

Layout Guidelines
� Maintain a 20-pixel space between the left and right edge of the window and any
controls. Keep 20 pixels of space between the bottom edge and any controls; this
can include the shadow of any push buttons in that area. Top spacing is
determined by which controls are placed closest to the top of the dialog. For
example, Figure 8-6 (page 156) uses a radio button as the topmost control, so the
spacing is set to 14 pixels. In contrast, Figure 8-7 (page 157) uses a tab control as
the topmost element, so the spacing is set to 12 pixels.

� For dialogs that contain a mix of controls, set 16 pixels of vertical space between
groups of controls. Vertical spacing between controls is determined by the tallest
control in the row.

� Groups of controls should be separated by 20 pixels of vertical spacing and
subgroups of controls within groups should be separated by 16 pixels.

� The default button for dismissing a dialog should go in the lower-right corner.
If there’s a Cancel button, it should be to the left of the default button.

If there’s a third button for dismissing the dialog, it should go to the left of the
Cancel button. If the third button could result in data loss—Don’t Save, for
example—position it at least 12 pixels away from the “safe” buttons (Cancel and
Save, for example).

A button that affects the contents of the dialog itself, such as Reset, should have
its left edge aligned with the main dialog text or 12 pixels to the right of the help
button (if there is one).

Figure 8-1 Position of buttons at the bottom of a dialog

12

A button that could result
in lost data should be at
least 12 pixels (preferably
more) away from
safe buttons.
150 Positioning Controls in Dialogs and Windows
  Apple Computer, Inc. June 2002

C H A P T E R 8

Layout Guidelines
� The minimum screen resolution a dialog needs to accommodate is 800 by 600.
(Support for 640 by 480 is provided for games.)

� For most document windows that contain a single view (scrolling text or tables,
for example), do not specify any space between the window edge and scroll
bars (when using the Control Manager) or the frame of the view (in Interface
Builder).

Group Boxes

A group box is used to associate a set of related items—such as radio buttons or
pop-up menus—in a dialog.

As much as possible, use additional space between controls to create groups of controls,
rather than group boxes. Excessive use of group boxes creates visual clutter; too many
lines and edges can distract users. Also use space or separator lines, rather than
secondary group boxes, for subgroupings. The following figures show examples of
how to successfully re-create dialogs using space rather than group boxes. When
space alone isn’t enough to clearly divide areas, use a label and a separator, as
shown in the following “after” examples.

Within a group box, no control or label should be positioned within 16 pixels of the
box’s top, bottom, left, or right borders.

Group boxes can be untitled or titled. Titles can be static text, a checkbox label, or
text in a pop-up menu.
Group Boxes 151
  Apple Computer, Inc. June 2002

C H A P T E R 8

Layout Guidelines
Figure 8-2 Dialog redesigned without group boxes (first example)

In the second “after” example, the group boxes have been replaced by horizontal
lines that serve as separators; the lines are 2 pixels to the right of the label and
base-aligned with the label text. Although the overall look of the dialog is centered,
the two labels, as well as the lines, are right-aligned; flush-left controls would imply
an inappropriate hierarchy. The distance from the left edge of the pane to the label
text and from the end of the line to the right edge of the pane should be equal.

Before (with group boxes)

After (example 1, with separator)

After (example 2)
152 Group Boxes
  Apple Computer, Inc. June 2002

C H A P T E R 8

Layout Guidelines
Figure 8-3 Dialog redesigned without group boxes (second example)

In the “after” example, the labels are left-aligned, since they are next to checkboxes,
which are most commonly stacked vertically.

Before

After
Group Boxes 153
  Apple Computer, Inc. June 2002

C H A P T E R 8

Layout Guidelines
Figure 8-4 Dialog redesigned without a group box (third example)]

Sample Dialog Layouts

This section contains sample layouts illustrating how to position various types of
controls. Unless specified otherwise, all measurements are in pixels.

Before

After
154 Sample Dialog Layouts
  Apple Computer, Inc. June 2002

C H A P T E R 8

Layout Guidelines
Figure 8-5 A standard alert with dimensions

15

1624

8

24

20

Application icon
Icon size
is 64 x 64.

12

Message text
System font (emphasized)
is 13 points, with 16 points
(base to base) between lines.

Informative text
Small system font is 11
points, with 13 points
(base to base) between lines.

10
Sample Dialog Layouts 155
  Apple Computer, Inc. June 2002

C H A P T E R 8

Layout Guidelines
Figure 8-6 Sample application preferences dialog
156 Sample Dialog Layouts
  Apple Computer, Inc. June 2002

C H A P T E R 8

Layout Guidelines
Figure 8-7 Sample dialogs with panes

20 2 20

20

18

16

20
18

28

12

12

2

22

2828
Sample Dialog Layouts 157
  Apple Computer, Inc. June 2002

C H A P T E R 8

Layout Guidelines
20

20 20

20

8

158 Sample Dialog Layouts
  Apple Computer, Inc. June 2002

C H A P T E R 8

Layout Guidelines
Figure 8-8 Sample dialog with scrolling list

20 20

20

14

20

8

8

2

14

12
Sample Dialog Layouts 159
  Apple Computer, Inc. June 2002

C H A P T E R 8

Layout Guidelines
Using Small Versions of Controls

Small versions of controls are available in Carbon and Cocoa. Use the smaller
versions only when absolutely necessary, and use them sparingly. When converting
existing dialogs for use with Aqua, redesign layouts as necessary, rather than
relying on the smaller versions of controls. Your first choice in designing for Aqua
should always be to use the full-size controls.

You can use small versions of controls when space is at an extreme premium, such
as in tool palettes or other utility windows. Avoid mixing full-size and small
versions of controls in the same window. In a tabbed window, it is acceptable to use
small controls within the pane and standard controls outside the pane. However, all
panes of a tabbed window should use the same-size controls.

Figure 8-9 shows the specifications for small scroll bars and the resize control.
Figure 8-10 shows a sample utility window using small controls.

Figure 8-9 Sample window using small scroll bars and resize control

11

11
160 Using Small Versions of Controls
  Apple Computer, Inc. June 2002

C H A P T E R 8

Layout Guidelines
Figure 8-10 Sample utility window using small controls

14

16

10

10

16

14

8

8

6

6

20

20

20

20

14

20
Using Small Versions of Controls 161
  Apple Computer, Inc. June 2002

C H A P T E R 8

Layout Guidelines
162 Using Small Versions of Controls
  Apple Computer, Inc. June 2002

C H A P T E R 9
9 User Input
Like other graphical user interfaces, Mac OS X is optimized for use with a pointing
device, such as a mouse. Many users, however, prefer or need to interact with the
computer using the keyboard instead of the mouse. In Mac OS X (version 10.1 and
later), users have the option of enabling keyboard access for all functions available
using a point-and-click device.

The Mouse and Other Pointing Devices

In the Macintosh interface the standard pointing device is the mouse. Users can
substitute other devices—such as trackballs and stylus pens—that maintain the
behavior of direct manipulation of objects on screen.

Moving the mouse without pressing the mouse button moves the pointer. The
onscreen pointer can assume different shapes according to the context of the
application and the pointer’s position. For example, in a word processor, the pointer
takes the I-beam shape while it’s over the text and changes to an arrow when it’s
over a tools palette. Change the pointer’s shape only to provide information to the
user about changes in the pointer’s function.

Each pointer has a hot spot—the portion of the pointer that must be positioned over
a screen object before mouse clicks have an effect on the object. The hot spot should
be intuitive, such as the tip of an arrow pointer or the center point of a crosshair.
Screen objects have a hot zone—the area that the pointer’s hot spot must be within
in order for mouse clicks to have an effect.
The Mouse and Other Pointing Devices 163
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Using the Mouse
Just moving the mouse changes only the pointer’s location, and possibly its shape.
Pressing the mouse button indicates the intention to do something, and releasing the
mouse button completes the action. Pressing by itself should have no more effect
than clicking does, except in well-defined areas, such as scroll arrows, where it has
the same effect as repeated clicking. For example, pressing a Finder icon should
select the icon but not open it.

The mouse devices provided with Macintosh computers have only one button, and
these guidelines apply to single-button mice. Other input devices may include
additional buttons that can be programmed to replicate functionality provided in
Mac OS X through keystrokes.

Clicking

Clicking has two components: pushing down on the mouse button and releasing it
without moving the mouse. (If the mouse moves between button down and button
up, it’s dragging, not clicking.)

The effect of a click should be immediate and obvious. If the function of the click is
to cause an action (such as clicking a button), the selection is made when the button
is pressed, and the action takes place when the button is released. For example, if a
user presses down the mouse button while the pointer is over an onscreen button,
thereby putting the button in a selected state, and then moves the pointer off the
button before releasing the mouse button, the onscreen button is not clicked. If the
user presses an onscreen button and rolls over another button before releasing the
mouse, neither button is clicked.

Double-Clicking

Double-clicking involves a second click that follows immediately after the first click.
If the two clicks are close enough to each other in terms of time (as set by the user in
Mouse preferences) and location (usually within a couple of pixels), they constitute
a double click.

Double-clicking is most commonly used as a shortcut for other actions, such as
pressing Command-O to open a document or dragging to select a word. Because not
everyone is physically able to perform a double click, it should never be the only
way to perform an action.
164 The Mouse and Other Pointing Devices
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Some applications support triple-clicking. For example, in a word processor, the
first click sets the insertion point, the second click selects the whole word, and the
third click selects the whole sentence or paragraph. Supporting more than three
clicks is inadvisable.

Pressing

Pressing means holding down the mouse button while the mouse remains
stationary. Pressing certain objects, such as scroll arrows, has the same effect as
repeatedly clicking the object.

Dragging

Dragging means pressing the mouse button, moving the mouse to a new position,
and releasing the mouse button. The uses of dragging include selecting blocks of
text, choosing a menu item, selecting a range of objects, moving an icon from one
place to another, and shrinking or expanding an object.

Dragging a graphic object should move the entire object (or a transparent
representation of it), not just the object’s outline.

Your application can restrict an object from being moved past certain boundaries,
such as the edge of a window. If the user drags an object and releases the mouse
button outside the boundary, the object stays in the original location. If the user
drags the item out of the boundary and then back in before releasing the mouse
button, the object moves to the new location. Your application can also
automatically scroll a document if the user moves an object beyond the boundary
of a window (see “Automatic Scrolling” (page 87)).

Also see “Drag and Drop” (page 219) for some more information about dragging
and automatic scrolling.
The Mouse and Other Pointing Devices 165
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
The Keyboard

The keyboard’s primary use is to enter text. The keyboard may also be used for
navigation, but it should always be an alternative to using the mouse. For more
information about using the keyboard instead of the mouse, see “Keyboard Focus
and Navigation” (page 182).

Important
Avoid assigning any key combinations listed in the tables in
this section to commands other than those specified in the
tables. Even if your application doesn’t support all the
keyboard equivalents shown, don’t assign unused
combinations to commands that conflict with those specified
in this section.

The Functions of Specific Keys
There are four kinds of keys: character keys, modifier keys, arrow keys, and
function keys. A character key sends a character to the computer. When the user
holds down a modifier key, it alters the meaning of the character key being pressed
or the meaning of a mouse action.

Character Keys

Character keys include letters, numbers, punctuation, the Space bar, and
nonprinting characters—Tab, Enter, Return, Delete (or Backspace), Clear, and
Escape (Esc). It is essential that your application use these keys consistently.

Note: Not all the keys described here exist on all Macintosh keyboards. Don’t
depend on a key as the only way for users to accomplish a task.
166 The Keyboard
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Space Bar

In text, pressing the Space bar enters a space between characters.

When full keyboard access is turned on, pressing the Space bar selects the item that
currently has the keyboard navigation focus (the equivalent of clicking the mouse
button).

Tab

In text-oriented applications, the Tab key moves the insertion point to the next tab
stop. In other contexts, Tab is a signal to proceed; it means “move to the next item
in a sequence.” The next item can be a table cell or a dialog text field. Shift-Tab
navigates in the reverse direction. Pressing Tab can cause data to be entered before
focus moves to the next item. For more details about navigating with the Tab key,
see “Keyboard Focus and Navigation” (page 182).

Enter

Most applications add information to a document as soon as the user enters it. In
some cases, however, the application may need to wait until a whole collection of
information is available before processing it. The Enter key tells the application that
the user is through entering information in a particular area of the document, such
as a text field. While the user is entering text into a text document, pressing Enter
has no effect.

If a dialog has a default button, pressing Enter (or Return) is the same as clicking it.

Return

In text, the Return key inserts a carriage return (a line break) and moves the
insertion point to the beginning of the next line. In arrays, the Return key signals
movement to the leftmost field one step lower (like a carriage return on a
typewriter). Like Tab, pressing Return can cause data to be entered before focus
moves to the next item.

If a dialog has a default button, pressing Return (or Enter) is the same as clicking it.
The Keyboard 167
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Delete (or Backspace)

Generally, if an item is selected, pressing Delete (or Backspace) removes the
selection without putting it on the Clipboard. If nothing is selected, pressing Delete
removes the character preceding the insertion point, without putting it on the
Clipboard. The Delete key has the same effect as the Delete command in the Edit
menu.

The Option key can be used to extend a deletion to the next semantic unit (such as
a word). The Command key can extend a deletion to the next semantic unit beyond
that supported by Option. Recommended key combinations for text applications
are Command-Delete to delete the previous word and Command–Forward Delete
to delete the next word. Option-Delete could delete either the word containing the
insertion point or the part of the word to the left of the insertion point, depending
on what makes the most sense in your application; Option–Forward Delete could
delete the part of the word right of the insertion point.

Clear

The Clear key has the same effect as the Delete command in the Edit menu: It
removes the selection without putting it on the Clipboard. Not all keyboards have
a Clear key, so don’t require its use in your application.

Escape

The Escape (Esc) key basically means “let me out of here.” It has specific meanings
in certain contexts. The user can press Escape in the following situations:

� in a dialog, instead of clicking Cancel

� to stop an operation in progress (such as printing), instead of pressing
Command-period

� to cancel renaming a file or an item in a list

� to cancel a drag in progress

Note: The Delete key is different from the Forward Delete key (labeled Del),
which removes characters following the insertion point. See “Forward Delete
(Del)” (page 175).
168 The Keyboard
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Pressing Escape should never cause the user to back out of an operation that would
require extensive time or work to reenter. When the user presses Escape during a
lengthy operation, display a confirmation dialog to be sure that the key wasn’t
pressed accidentally.

Modifier Keys

Modifier keys alter the way other keystrokes or mouse clicks are interpreted. You
should use these keys—Shift, Caps Lock, Option, Command, and Control—
consistently as described here.

Shift

When pressed at the same time as a character key, the Shift key produces the
uppercase alphabetic letter or the upper symbol on the key.

The Shift key is also used with the mouse for extending a selection or for
constraining movements in graphics applications. For example, in some
applications pressing Shift while using a rectangle tool draws squares.

Caps Lock

When activated, the Caps Lock key has the same effect on alphabetic keys as the
Shift key, but it has no effect on nonalphabetic keys. When the Caps Lock key is
down, the user must press Shift to type the upper character on a nonalphabetic key.

Option

When used with other keys, the Option key produces special symbols. The Key
Caps application shows which keys generate each symbol.

The Option key can also be used with the mouse to modify the effect of a click or
drag. For example, in some applications pressing Option while dragging an object
makes a copy of the object.
The Keyboard 169
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Command

On most keyboards, the Command key is labeled with a cloverleaf symbol () and
an Apple logo (). Pressing the Command key at the same time as a character key
tells the application to interpret the key as a command rather than a character. These
key combinations are described in “Reserved and Recommended Keyboard
Equivalents” (page 176).

In some applications, the Command key is used with other keys to provide special
functions or shortcuts. It can also be used with the mouse to modify the effect of a
click or drag.

Control

The Control key is used to modify the functions of other keys, with
terminal-emulation programs for Control-key sequences, and, with a mouse click,
to display contextual menus (see “Contextual Menus” (page 64)).

In Mac OS X 10.1 and later, Control-F7 temporarily overrides a user’s preference for
simple navigation or full keyboard navigation in windows and dialogs. For more
information, see “Keyboard Focus and Navigation” (page 182).

Cocoa developers should also consider additional behaviors, as described in the
Programming Topic “Text System Defaults and Key Bindings,” available on the
Mac OS X developer documentation website.

Arrow Keys

Apple keyboards have four arrow keys: Up Arrow, Down Arrow, Left Arrow, and
Right Arrow. They can be used alone or in combination with other keys. Keyboard
combinations using the arrow keys should be used only for shortcuts for mouse
actions. It is never appropriate to implement only a keyboard combination and not
provide a mouse-based way to perform the same action.

Appropriate Uses for the Arrow Keys

You can use arrow keys in these ways:

� In text, the arrow keys move the insertion point. When used with the Shift key,
they extend or shrink the selection. If the user makes a selection and then presses
the Right Arrow or Left Arrow, shrink the selection to zero length and place the
insertion point at the right or left edge of the selection.
170 The Keyboard
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
� In lists, the arrow keys change the selection.

� In a graphics application, the arrow keys can be used to move a selected object
the smallest possible increment (one pixel or one grid unit).

� In full keyboard access mode, the arrow keys move between values within a
control. This behavior is described in “Keyboard Focus and Navigation”
(page 182).

Don’t use the arrow keys to

� move the mouse pointer onscreen

� duplicate the function of the scroll bars

If it’s important for your application to make use of the numeric keypad, don’t use
the Shift–arrow key combinations to extend text selections; the keypad’s codes for
the four Shift–arrow key combinations are the same as those for the keypad’s
+, *, /, and = keys.

Moving the Insertion Point

When the insertion point moves vertically in a text document, its horizontal
position is maintained in terms of screen pixels, not characters (in other words, the
insertion point could move from the twenty-fifth character in a line down to the
fiftieth character, depending on the font and size). As the insertion point moves
from line to line, keep it as close as possible to its original horizontal position,
moving it slightly left or right to the nearest new character boundary.

The Option and Command keys are used as semantic modifiers with the arrow
keys. As a general rule, the Option key increases the size of the semantic unit by one
compared to the arrow keys alone, and Command key enlarges the semantic unit
again. The application determines what the semantic units are. In a word processor,
typically the units are characters, words, lines, paragraphs, and documents. In a
spreadsheet, a basic semantic unit could be a cell.
The Keyboard 171
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Table 9-1 describes the appropriate behavior of the arrow keys in text documents
and fields. In some cases, the behavior describes what happens when the indicated
keys are pressed more than once in succession.

Table 9-1 Moving the insertion point with the arrow keys

Key Moves insertion point

Right Arrow One character to the right

Left Arrow One character to the left

Up Arrow To the line above, to the nearest character boundary
at the same horizontal location

Down Arrow To the line below, to the nearest character boundary
at the same horizontal location

Option–Right Arrow To end of current word, then to the end of the next
word

Option–Left Arrow To the beginning of the current word, then to the
beginning of the previous word

Option–Up Arrow To the beginning of the current paragraph, then to
the beginning of the previous paragraph

Option–Down Arrow To the end of the current paragraph, then to the end
of the next paragraph (not to the blank line after the
paragraph, if there is one)

Command–Right Arrow To the next semantic unit, typically the end of the
current line, then the end of the next line

Command–Left Arrow To the previous semantic unit, typically the
beginning of the current line, then the previous unit

Command–Up Arrow Upward in the next semantic unit, typically the
beginning of the document

Command–Down Arrow Downward in the next semantic unit, typically the
end of the document

Note: For non-Roman script systems, Command–Left Arrow and
Command–Right Arrow are reserved for changing the direction of keyboard input.
172 The Keyboard
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Extending Text Selection With the Shift and Arrow Keys

Table 9-2 describes how to extend text selection by pressing the Shift key with the
arrow keys.

If no text is selected, the extension begins at the insertion point. If text is selected by
dragging, then the extension begins at the selection boundary. For example, in the
phrase stop time, if the user places the insertion point between the “s” and “t” and
then presses Shift–Option–Right Arrow, top is selected. However, if the user
double-clicks so the whole word is selected, and then extends the selection left or
up, it’s as if the insertion point were before the “s.” If the user extends the selection
right or down, it’s as if the insertion point were between the “p” and the space after
the word.

Reversing the direction of the selection deselects the appropriate unit. In the
previous example, if the word stop is selected and the user presses
Shift–Option–Right Arrow, so stop time is selected, and then presses
Shift–Option–Left Arrow, time is deselected and stop remains selected.

Table 9-2 Extending text selection with the Shift and arrow keys

Keys Extends selection

Shift–Right Arrow One character to the right

Shift–Left Arrow One character to the left

Shift–Up Arrow To the line above, to the nearest character
boundary at the same horizontal location

Shift–Down Arrow To the line below, to the nearest character
boundary at the same horizontal location

Shift–Option–Right Arrow To the end of the current word, then to the end
of the next word

Shift–Option–Left Arrow To the beginning of the current word, then to
the beginning of the previous word

Shift–Option–Up Arrow To the beginning of the current paragraph, then
to the beginning of the next paragraph
The Keyboard 173
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Moving the Insertion Point in “Empty” Documents

Various text-editing programs treat empty documents in different ways. Some
assume that an empty document contains no characters, in which case clicking at
the bottom of a blank screen causes the insertion point to appear at the top. In this
situation, Down Arrow cannot move the insertion point into the blank space
because there are no characters there.

Other applications treat an empty document as a page of space characters, in which
case clicking at the bottom of a blank screen puts the insertion point where the user
has clicked and lets the user type characters there, overwriting the spaces.
Whichever of these methods you choose for your application, it’s essential that you
be consistent throughout.

Function Keys

There are fifteen nondedicated function keys on desktop Macintosh keyboards (F1
through F15). Default function key combinations are listed in Table 9-6 (page 178).
Desktop Macintosh keyboards provide the following six dedicated function keys
with standard behaviors. Because not all Macintosh computers have all function
keys, don’t rely on these keys for critical keyboard shortcuts.

Shift–Option–Down Arrow To the end of the current paragraph, then to the
end of the next paragraph (include the blank
line between paragraphs in cut, copy, and paste
operations)

Shift–Command–Right Arrow To the next semantic unit, typically the end of
the current line

Shift–Command–Left Arrow To the previous semantic unit, typically the
beginning of the current line

Shift–Command–Up Arrow Upward in the next semantic unit, typically the
beginning of the document

Shift–Command–Down Arrow Downward in the next semantic unit, typically
the end of the document

Table 9-2 Extending text selection with the Shift and arrow keys (continued)

Keys Extends selection
174 The Keyboard
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Help

Pressing the Help key (or Command-? or Command-/) invokes the application’s
help, if it’s available. If a help system isn’t available, the Help key should at least
display some sort of helpful screen.

Forward Delete (Del)

Pressing this key deletes the character after the insertion point, shifting everything
following the removed character one position back. The effect is that the insertion
point remains stationary while it “vacuums” the character or selection ahead of it.

If something is selected when Del is pressed, it has the same effect as pressing Delete
(Backspace) or choosing Delete from the Edit menu.

You can support Option-Del to delete the next larger semantic unit, as described in
“Moving the Insertion Point” (page 171), but deleting more than one word at a time
is inadvisable. Users prefer to select large amounts of text with the mouse so they
have more control over what they’re deleting.

Home, End

Pressing the Home key is equivalent to moving the scrollers all the way to the top
and to the left. In a text document, for example, pressing Home scrolls to the
beginning of the document; in a spreadsheet, it may scroll to the beginning of the
spreadsheet or to the beginning of a row. These keys should also work in scrolling
lists to display the top or bottom of the list.

End is the opposite of Home: It scrolls to the end of a document.

If the beginning or end of the document is already reached, pressing Home or End
produces a system alert sound. Pressing the Home or End key has no effect on the
location of the insertion point or selected data.

Page Up, Page Down

Pressing Page Up or Page Down scrolls the document up or down one page (the
equivalent of clicking in the gray area of the scroll bar). If an entire page can’t be
displayed in the window, these keys first scroll incrementally up or down, until the
top or bottom of the page is visible, before scrolling to the next page. These keys
should also work in scrolling lists.
The Keyboard 175
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
If the beginning or end of the document is reached, pressing Page Up or Page Down
produces a system alert sound. Pressing the Page Up or Page Down key has no
effect on the location of the insertion point or selected data.

Reserved and Recommended
Keyboard Equivalents
Mac OS X reserves certain keys and keyboard combinations for use by the system.
These combinations, listed in Table 9-3 through Table 9-6, affect all applications and
should not be used for any other function. To maintain a consistent and familiar
user experience across applications, the keyboard equivalents listed in all other
tables in this document are strongly recommended.

Key Combinations Reserved by the System

Don’t use these keys and combinations for actions other than those specified below.

Table 9-3 Keyboard equivalents reserved by the operating system

Keys Action

Esc Cancel the current action

Command-Tab Activate the next open application (according to tile
order in Dock)

Shift-Command-Tab Activate the previous open Dock application

Command-Option-D Show or hide the Dock

Command-H Hide the active application

Command-Option-H Hide other applications (all but the active one)

Shift-Command-Q Log out

Shift-Command-Option-Q Log out without confirmation

Control-Shift-Command-Option-Q Force log out without confirmation

Command-Option-Escape Open Force Quit dialog

Control-F1 Turn full keyboard navigation on or off
176 The Keyboard
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Table 9-4 shows several key combinations that are reserved for use with localized
versions of system software, localized keyboards, keyboard layouts, and input
methods. These key combinations don’t correspond directly to menu commands.

Mac OS X (version 10.2 and later) provides a way for users to enlarge onscreen
objects. Users can turn on the screen-zooming feature in the Seeing pane of
Universal Access preferences. If your application uses any of the keyboard
combinations in Table 9-5, they are overridden when zooming is turned on.

Table 9-4 Key combinations reserved for international systems

Keys Action

Command–Space bar Rotate through enabled script systems

Command–Option–Space bar Rotate through keyboard layouts and input
methods within a script

Command–modifier key–Space bar Apple reserved

Command–Right Arrow Changes keyboard layout to current layout
of Roman script

Command–Left Arrow Changes keyboard layout to current layout
of system script

Table 9-5 Key combinations used with screen zooming

Key combination Action

Option–Command–* Turn screen zooming on or off

Option–Command–+ Zoom in

Option–Command-- (hyphen) Zoom out

Control-Option-Command-* Invert the screen colors

Option-Command-/ Turn smoothing on or off
The Keyboard 177
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Mac OS X 10.1 and later provides the option of full keyboard access mode, in which
users can navigate through windows and dialogs. (See “Full Keyboard Access
Mode” (page 184).)

Important
Your application should not override the implementation of
keyboard focus and navigation in Mac OS X. These features
provide functionality for users with special needs.

Table 9-6 Key combinations for moving focus in full keyboard access mode
(mnemonic alternatives are in parentheses)

Key combinations Action

Control-F1 Turn full keyboard access on or off

Control-F7 Temporarily override the current keyboard access mode in
windows and dialogs

Control-F2 (Control-m)* Move focus to the menu bar

Control-F3 (Control-d)* Move focus to the Dock

Control-F4 (Control-w) Move focus to the active (or next) window

Control-F5 (Control-t)* Move focus to the toolbar

Control-F6 (Control-u)* Move focus to the first (or next) utility window (palette)

Shift-Control-F6
(Shift-Control-w)

Move focus to the previous utility window

Control-Tab Move focus to the next grouping of controls in a dialog or the
next table (when Tab moves to next cell)

Shift-Control-Tab Move focus to the previous grouping of controls

Command-Tab Movs focus to the first (or next) open application’s Dock icon

Shift-Command-Tab Move focus to the previous open application’s Dock icon

Arrow key Move focus to the next or previous value in a text field or certain
controls, such as menus; also opens Dock menus

* Users can change these default combinations in the Full Keyboard Access pane of Keyboard preferences. When
full keyboard access is on, user-defined combinations override any combinations used in applications.
178 The Keyboard
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Recommended Keyboard Equivalents

Avoid using these keyboard equivalents for functions other than those listed here.

Control–arrow key Move focus to another value or cell within a control such as a
table

Command-~ Activate the next open window in the frontmost application

Shift-Command-~ Activate the previous open window in the frontmost application

Space bar Select the highlighted control (equivalent to clicking the mouse
button)

Return (Enter) Select the default button

Escape Cancel a dialog or a selection in a pop-up menu or list; in a Dock
menu, Escape closes the menu and moves the focus to the
frontmost window

Table 9-7 Recommended keyboard equivalents

Menu Keys Command

Application Command-Q Quit

Window Command-M Minimize

File Command-N New

File Command-O Open

File Command-W Close

File Command-S Save

Command-D Don’t Save (in a confirmation dialog)

Table 9-6 Key combinations for moving focus in full keyboard access mode
(mnemonic alternatives are in parentheses) (continued)

Key combinations Action

* Users can change these default combinations in the Full Keyboard Access pane of Keyboard preferences. When
full keyboard access is on, user-defined combinations override any combinations used in applications.
The Keyboard 179
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Creating Your Own Keyboard Equivalents
Apple reserves the right to reserve other keyboard equivalents in the future, so be
careful about adding your own, and add them only for frequently used commands.

File Command-P Print

Edit Command-Z Undo

Edit Command-X Cut

Edit Command-C Copy

Edit Command-V Paste

Edit Command-A Select All

Edit Command-F Find

Edit Command-G Find Again

Format Command-T Open Fonts window

Format Command-B Bold

Format Command-I Italic

Format Command-U Underline

Command-~ Activate the next open window in the
frontmost application

Shift-Command-~ Activate the previous open window in the
frontmost application

Application Command-, Preferences

Table 9-7 Recommended keyboard equivalents

Menu Keys Command
180 The Keyboard
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Use the Command key as the main modifier key for keyboard equivalents. For a
command that complements another more common command, you can add Shift.
The table below shows some recommended keyboard equivalents using Shift.

If there’s a third, less common command that’s related to a pair of commands that
use Command and Shift-Command, you can use Option-Command for the third
command’s keyboard equivalent. In the example in Table 9-9, Save All could be a
dynamic menu item (see “Menu Behavior” (page 49)) that appears in place of Save
when the user presses the Option key (rather than a separate menu item). Use
combinations like these very rarely.

Table 9-8 Some of the recommended keyboard equivalents using Shift to
complement other commands

Keys Command Complemented command

Shift-Command-A Deselect All Command-A (Select All)

Shift-Command-G Find Previous Command-G (Find Again)

Shift-Command-P Page Setup Command-P (Print)

Shift-Command-S Save As Command-S (Save)

Shift-Command-V Paste as (Quotation, for
example)

Command-V (Paste)

Shift-Command-Z* Redo Command-Z (Undo)

* This combination would be used only if Undo and Redo are separate commands (rather than
toggled using Command-Z).

Table 9-9 Example of using Option to modify a shortcut already using Command

Keys Command

Command-S Save

Shift-Command-S Save As

Option-Command-S Save All
The Keyboard 181
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Also use Option for a keyboard equivalent that is a convenience or power user
feature. For example, the Finder uses Option-Command-W for Close All Windows
and Option-Command-M for Minimize All Windows.

Remember that other languages may require modifier keys to generate certain
characters. For example, on a French keyboard, you generate the “{“ character by
pressing Option-5. You can safely modify any character with the Command key,
but avoid using Command and an additional modifier with characters not available
on all keyboards. If you must use a modifier key in addition to the Command key,
use them only with the alphabetic characters (a through z).

Keyboard Focus and Navigation
When using the mouse is undesirable, difficult, or impossible, users can move the
onscreen focus (highlight) with the keyboard to access controls, menus, the Dock,
toolbars, and so on. In Roman systems, focus always begins at the first field that
accepts keyboard input and follows a reading path from upper left to bottom right.

Focus is indicated with a ring in the appearance color (Aqua or Graphite).

Figure 9-1 Keyboard focus for a text field

Focus ring
182 The Keyboard
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Figure 9-2 Keyboard focus for a scrolling list

In list and column views, a selected item should be highlighted across the full row.
In column view, the selected item has a dark highlight and the folders containing
the item have a lighter highlight. When a window becomes inactive, all selections
inside it should become the lighter highlight color.

Figure 9-3 Primary and secondary highlight colors in columns

Focus ring is appearance
color (Aqua or Graphite).

Focus ring

Primary
highlight color

Secondary
highlight color
The Keyboard 183
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Navigation between most controls in achieved by pressing the Tab key and the
arrow keys. Shift-Tab navigates in reverse direction.

Full Keyboard Access Mode

In default keyboard access mode, focus moves only between fields that receive
keyboard input, such as text entry fields, list boxes that support type-ahead, and
scrolling lists. Mac OS X 10.1 and later provides the option of full keyboard access
mode, in which users can navigate through windows and dialogs. Cocoa and
Carbon applications that use system controls get this functionality automatically in
Mac OS X version 10.2. For a complete list of the key combinations reserved in full
keyboard access mode, see Table 9-6 (page 178).

Users can turn on full keyboard access in the Full Keyboard Access pane of
Keyboard preferences. Control-F1 is a reserved keyboard equivalent for turning full
keyboard access on or off; don’t use this combination for any other purpose.
Control-F7 temporarily overrides the current mode in windows and dialogs.

In full keyboard access mode, the arrow keys move between values within a control.
For example, if the user selects a slider with the Tab key, the arrow keys move the
slider control along the slider track. For vertically oriented choices, such as menu
items, the Up Arrow and Down Arrow keys move the selection. For horizontally
oriented choices, such as a row of tabs, the Right Arrow and Left Arrow keys move
the selection. In some cases, it makes sense to support both orientations. For
example, a vertical slider could use both the Up Arrow and the Right Arrow to
increase the value.

In some cases, such as radio buttons, moving the focus to an item selects it as well.
In other cases, such as push buttons, the user chooses a selected item by pressing the
Space bar. In full keyboard access mode, pressing the Space bar is equivalent to
clicking the mouse button.

The Escape key is used to cancel a dialog and to cancel a selection in a pop-up menu
or list. In a Dock pop-up menu, Escape dismisses the menu and moves focus to the
frontmost window.

The user can also quickly place focus in the menu bar, the Dock, toolbars, and utility
windows using the key combinations described in Table 9-6.
184 The Keyboard
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Type-Ahead and Auto-Repeat
If the user types faster than the computer can handle or when the computer is
unable to process the keystrokes, the keystrokes are queued for later processing.
This queuing is called type-ahead. There is a limit (varying with the computer) to
the number of keystrokes that can be queued, but it’s usually not reached unless the
user types while the application is performing a lengthy operation.

When a character key is held down for a certain amount of time, it starts repeating
automatically. The user can make adjustments to this feature, called auto-repeat, in
Keyboard preferences.

An application can tell whether keystrokes are generated by auto-repeat or by the
same key being pressed numerous times. Your application can disregard
auto-repeat keystrokes; it should ignore them in keyboard equivalents.

Auto-repeat works only when the application is ready to accept keyboard input; it
does not function during type-ahead.

Selecting

Before performing an operation on an object, the user must select it to distinguish it
from other objects. There is always immediate visual feedback to show that
something is selected.

Selecting an object never alters the object itself, and a selection is always undoable
by clicking outside the selection.

How something is selected depends on what it is. It’s useful to distinguish among
three types of objects that are each dealt with in a different way when selected:

� Text. An application considers all text appearing together in a particular context
as a block of text—a one-dimensional string of characters. A block of text can
range from a single field, as in a dialog, to an entire document, as in a word
processor. Regardless of where it appears, text is edited in the same way.

� Arrays are tabular arrangements of fields. A one-dimensional array is a list and
a two-dimensional array is a table. Each field contains information such as text
or graphics.
Selecting 185
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
� Graphics. For the purposes of this discussion, a graphic, or picture, is a discrete
object that can be selected individually.

The following sections discuss the general methods of selecting and the specific
methods that apply to text, arrays, and graphics.

Selection Methods
This section describes various selection techniques.

Figure 9-4 Selection techniques

Selection by Clicking

The most straightforward method of selecting an object is by clicking it once. Icons,
for example, are selected in this way.

A B C D E

A B C D E

A B C D E

Clicking B selects B.

Range selection of A
through C selects A,
B, and C.

Discontinuous selection.
(Range selection of A, B,
and C is extended to
include E.)
186 Selecting
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Selection by Dragging

The user can select a range of some objects by following this procedure:

1. The user positions the pointer at one corner of the range and presses the mouse
button. This position is called the anchor point of the range.

2. Without releasing the mouse button, the user moves the pointer in any direction.

As the pointer moves, visual feedback indicates the objects that would be
selected if the mouse button were released. For text and arrays, the selected area
is continuously highlighted. For graphics, a dotted rectangle expands or
contracts to show the selected area. If appropriate, the view should scroll to
allow extending the selection beyond a window.

3. When the desired range is selected, the user releases the mouse button. The
point at which the button is released is called the active end of the range.

Changing a Selection With Shift-Click

A user can extend a selection by holding down the Shift key and clicking the mouse
button. This action is called Shift-clicking.

A Shift-click should result in a continuous selection—the selection is extended to
include everything between the old anchor point and the new active end. Graphics
applications typically support discontinuous selection, in which the user can
extend a selection by adding nonadjacent objects to already selected objects, and the
objects between the current selection and the new object are not included in the
selection. A Command-click should result in a discontinuous selection.

In text, if the user Shift-clicks within an already selected range, the new range is
smaller than the old range.

In an array, a Shift-click can extend the selected range or it can move the selection
from the current cell to wherever the user Shift-clicks.
Selecting 187
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
There are two models for extending a continuous selection using Shift-click. In the
addition model, new text is added to a current selection. In the fixed-point model,
the user can extend the selection on either side of the insertion point. Figure 9-5
illustrates the results of three consecutive steps in both models.

Figure 9-5 Shift-clicking in the addition model and the fixed-point model

When considering which model to use in your application, keep in mind that the
addition model provides more flexibility by allowing users to extend a selection in
both directions.

Changing a Selection With Command-Click

In arrays and text in which Shift-click extends a continuous selection, the user can
make discontinuous selections by holding down the Command key and clicking.
Each Command-click adds the new object to the existing selection. If one of the
objects selected with Command-click is already within an existing part of the
selection, then it is removed from the selection instead of being added.

Setting insertion point

Extending selection
to the right.

Addition
model

Fixed-point
model

This is some
sample text

This is some
sample text

This is some
sample text

This is some
sample text

Extending selection
to the left.

This is some
sample text

This is some
sample text
188 Selecting
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Figure 9-6 Discontinuous selection within an array

Not all applications support discontinuous selections, and those that do might
restrict the operations a user can perform on them. For example, a word processor
might allow the user to choose a font after making a discontinuous selection, but not
allow the user to type replacement characters, because it wouldn’t be obvious which
part of the selection the characters would replace.

Selections in Text
A block of text is a string of characters. A text selection is a substring of this string,
which has any length from zero characters to the whole block.

The insertion point (a zero-length text selection) shows where text will be inserted
when the user starts typing, or where the contents of the Clipboard will be pasted.
The user establishes the location of the insertion point by clicking somewhere in the
text; the insertion point appears at the nearest character boundary. If the user clicks

1. Cells B2, B3, C2 and
 C3 are selected.

2. The user holds down
 the Command key and
 clicks in D5.

3. The user holds down
 the Command key and
 clicks in C3.

A B C D

A B C D

A B C D

1
2

3
4

5

1
2

3
4

5

1
2

3
4

5

Selecting 189
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
anywhere to the right of the last character on a line, the insertion point appears
immediately after the last character. If the user clicks to the left of the first character
on a line, the insertion point appears immediately before the first character.

Selected text in an active window displays the highlight color chosen by the user in
General preferences. When the window becomes inactive, the text should remain
highlighted, but in the secondary color, which is a percentage of the original
highlight color. When the window becomes active again, the text selection displays
in the primary highlight color. Both Carbon and Cocoa contain functions that return
the current highlight color, as well as other important colors in the user interface.
Your application should use these defined colors in any custom controls you create,
rather than hard-coding in specific color values.

Selecting With the Mouse

The user can select a range of text by dragging. A range can consist of characters,
words, lines, or paragraphs, as defined by the application.

In text fields, clicking should perform the following actions:

� Single-clicking places the insertion point at the pointer’s location in the text.

� Double-clicking within a word selects the word. The selection should provide
“smart” behavior; if the user deletes the selected word, for example, the space
after the word should also be deleted.

� Double-clicking in a space selects the space.

� Triple-clicking selects the next logical unit, as defined by the application. In a
word-processing document, triple-clicking in a word selects the paragraph
containing the word. In a table, triple-clicking selects the cell.

What Constitutes a Word

The following definition of a word applies in the United States, Canada, and some
other countries. In many countries, the definition differs to reflect local formats for
numbers, dates, and currency. Double-clicking a character not in the list below
results in the selection of only that character.
190 Selecting
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
A word is defined as any continuous string that contains any of the following
characters:

� a letter

� a digit

� a nonbreaking space (Option-space or Command-space)

� a currency symbol ($, ¢, £, ¥)

� a percent sign

� a comma between digits

� a period before a digit

� an apostrophe between letters or digits

� a hyphen, but not Option-hyphen (–) or Option-Shift-hyphen (—)

These are examples of words:

� $123,456.78

� shouldn’t

� 3 1/2 (with a nonbreaking space)

� .5%

These are examples of strings treated as more than one word:

� 7/10/6

� blue cheese (with a regular space)

� “Wow!” (The quotation marks and exclamation point are not part of the word.)

In some contexts—in a programming language, for example—it may be appropriate
to allow users to select both the left and right parentheses (or braces or brackets) in
a pair, as well as all the characters between them, by double-clicking either one of
them. That would mean that a user could select the entire expression

[x+y–(4*3)^(n–1)]

by double-clicking [or].

For more information about defining strings as words, see Inside Macintosh: Text.
Selecting 191
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Selecting Text With the Arrow Keys

See “Extending Text Selection With the Shift and Arrow Keys” (page 173).

Selections in Graphics
There are several conventions for selecting graphic objects. This section describes
two ways to show selection feedback; other situations may require other solutions.

An object-based graphics document is a collection of individual graphic objects. To
select an object, the user clicks it once. The object is then bracketed with handles,
which the user can use to move or resize the item.

In object-based graphics applications, there are two ways to select more than one
object at a time. A user can drag a dotted rectangle and select every object that falls
completely within the rectangle’s outline, or the user can use the Shift key to select
particular objects.

In a bitmap-based graphics document—where images are a series of pixels rather
than discrete objects—a user selects the range of pixels enclosed within a selection
tool.

Selections in Arrays and Tables
To select a single field (cell), the user clicks in it. The user can also select a field by
moving to it with the Tab or Return key.

To select part of the contents of a field, the user must first select the field, then click
again to select the desired part.

A user should be able to select a row or column in a table by clicking a header, for
example. Tables can also support Command-click for selecting discontinuous fields.

Pressing the Tab key cycles through the fields in an order determined by your
application, and Shift-Tab navigates in the opposite direction. Typically, the
sequence is from left to right, then from top to bottom. Pressing Tab from the last
field selects the first field.

The Return key selects the first field in the next row; Shift-Return selects the
previous row. If the concept of rows doesn’t make sense in a particular context, the
Return key should have the same effect as the Tab key.
192 Selecting
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Editing Text

In addition to the methods for selecting text, there are a number of ways to edit text.

Inserting Text
To insert text, the user positions the insertion point by clicking where the text is to
go, then starts typing. The application moves the insertion point to the right (or left,
depending on the language) as each new character is added.

Applications with multiple-line text blocks should support word wrap, the
automatic continuation of text from the end of one line to the beginning of the next
without breaking in the middle of a word.

Deleting Text
When the user presses the Delete (or Backspace) key, one of two things happens:

� If text is selected, the entire selection is deleted.

� If there is no current selection, the character preceding the insertion point is
deleted.

In either case, the insertion point replaces the deleted character or characters in the
document. The deleted characters don’t go on to the Clipboard, but the user can
undo the deletion by immediately choosing Undo from the Edit menu.

You can also implement the keyboard combination Option-Delete (or
Option-Backspace) to delete the word that currently contains the insertion point or
to delete the part of the word to the left of the insertion point. Be sure to document
this behavior if you implement it.

If a keyboard has a Forward Delete (Del) key, the character following the insertion
point is deleted each time the user presses the key.
Editing Text 193
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Replacing a Selection
If the user starts typing when one or more characters are selected, the typed
characters replace the selection. The deleted characters don’t go on to the Clipboard,
but the user can undo the replacement by immediately choosing Undo from the Edit
menu.

Intelligent Cut and Paste
Intelligent cut and paste is a set of editing features that takes into account the need
for spaces between words. To understand why this feature is helpful, consider the
following sequence of events in a text application without intelligent cut and paste:

1. A sentence in the user’s document reads

Returns are only accepted if the merchandise is damaged.

The user wants to change this to

Returns are accepted only if the merchandise is damaged.

2. The user selects the word only by double-clicking. The letters are highlighted,
but neither adjacent space is selected.

3. The user chooses Cut from the Edit menu, clicks just before the word if, and
chooses Paste.

4. The sentence now reads

Returns are accepted onlyif the merchandise is damaged.

To correct the sentence, the user has to remove the extra space between are and
accepted, and add a space between only and if.

If your application supports intelligent cut and paste, follow these guidelines:

� If the user selects a word or a range of words, the selection itself is highlighted,
but spaces adjacent to the selection are not highlighted.

� When the user chooses Cut, if the character preceding the selection is a space, cut
that space along with the selection. If the character preceding the selection is not
a space, but the character following the selection is a space, cut that space along
with the selection.
194 Editing Text
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
� When the user chooses Paste, if the character to the left or right of the current
selection is part of a word (but not inside a word), insert a space before pasting.

Use intelligent cut and paste only if the application supports the definition of a
word as described in “What Constitutes a Word” (page 190). These rules apply to
any selection consisting of one or more whole words, no matter how the user made
the selection.

Editing Text Fields
If your application isn’t primarily a text application, but it has text entry fields in
dialogs, for example, you may not need to provide the full text-editing features
described in this section. The application should, however, be forward-compatible
with the full text-editing capabilities. The application should support the following
capabilities:

� The user can select the whole field and type in a new value, delete text, select a
substring of the field and replace it, and select a word by double-clicking.

� The user can choose Undo, Cut, Copy, Paste, and Delete, as described in “The
Edit Menu” (page 59).

Your application can also support intelligent cut and paste.

Even applications with only minimal text editing should perform appropriate edit
checks. For example, if the only legitimate value for a field is a string of digits, the
application should alert the user if any nondigits are typed. For a more complete
discussion of when to check for errors and apply changes in text fields, see
“Accepting Changes” (page 101).

Note: Intelligent cut and paste doesn’t apply to all languages. Thai, Chinese, and
Japanese, for example, don’t contain spaces.
Editing Text 195
  Apple Computer, Inc. June 2002

C H A P T E R 9

User Input
Entering Passwords
When a user types a password into a text field, each typed character should appear
as a bullet, matching the number of characters typed by the user. If the user deletes
a character with the Delete key, one bullet is deleted from the text field and the
insertion point moves back one bullet, as if the bullet represented an actual
character. Double-clicking bulleted text in a password field selects all the bullets in
the text field.

When the user leaves the text field (by pressing Tab, for example), the number of
bullets in the text field should be modified so that the field does not reflect the actual
number of characters in the password.
196 Editing Text
  Apple Computer, Inc. June 2002

C H A P T E R 1 0
10 Fonts
Mac OS X supports seven standard fonts for interface elements (in Roman systems).
Whenever your application specifies a font, use the system-defined constants
shown in Table 10-1 (page 199); avoid naming a specific font and point size. Using
the system constants ensures that your application always displays the appropriate
fonts, regardless of changes to the OS.

Figure 10-1 Mac OS X standard fonts

The system font is used for text in menus, modeless dialogs, and titles of document
windows. For an example of this font, open a Finder menu.

Note: For text in lists and tables, you can use 12-point Lucida Grande Regular
instead of the system font.

Use

System font

System font (emphasized)

Small system font

Small system font (emphasized)

Application font

Label font

Mini system font

Font and size
197
  Apple Computer, Inc. June 2002

C H A P T E R 1 0

Fonts
The small system font is used for informative text in alerts (see Figure 6-2
(page 99)). It is also the default font for headings in lists, for help tags, and for text
in the small versions of many controls. You can also use it to provide additional
information about settings in various windows, such as the QuickTime pane in
System Preferences.

If your application creates text documents, use the application font as the default
for user-created content.

The label font is used for labels with controls such as sliders and icon bevel buttons.
You should rarely need to use this font in dialogs, but may find it useful in utility
windows when space is at a premium. For an example of this font used to label a
slider control, click the Text-to-Speech tab in Speech preferences.

If necessary, the mini system font can be used for utility window labels and text.
(Use it wherever you used 9-point Geneva in Mac OS 9.)

Use emphasized system fonts sparingly. Emphasized (bold) system font is used in
only two places in the interface: the application name in an About window (see
“The About Window” (page 92)) and the message text in an alert (see Figure 6-2
(page 99)). You might use emphasized small system font to title a group of settings
that appear without a group box, or for brief informative text below a text field. For
an example of the emphasized small system font, click the Date or Numbers tab in
International preferences.

To have the Aqua look and feel, all user-visible text in your application should be
anti-aliased. this can be achieved by using one of the system fonts listed. Carbon
developers creating nonstandard interface elements with text or displaying any
user-visible text are responsible for drawing their own anti-aliased text via the
Appearance Manager DrawThemeTextBox functions or the Control Manager static text
control. In Cocoa, all text is anti-aliased by default.
198
  Apple Computer, Inc. June 2002

C H A P T E R 1 0

Fonts
For user-created text, Carbon developers should use the Multilingual Text Engine
(MLTE) functions and Apple Type Services for Unicode Imaging (ATSUI) to
provide text-editing support. Carbon developers can use the NSTextField or
NSTextView classes. Table 10-1 shows the constants to use in Carbon functions and
the NSFont methods to use in Cocoa.

Table 10-1 Font constants and methods in Carbon and Cocoa

Font Appearance Manager constants Application Kit methods

System font kThemeSystemFont [NSFont systemFontOfSize:[NSFont
systemFontSize]]

Emphasized system
font

kThemeEmphasizedSystemFont [NSFont
boldsystemFontOfSize:[NSFont
systemFontSize]]

Small system font kThemeSmallSystemFont [NSFont systemFontOfSize:[NSFont
smallSystemFontSize]]

Emphasized small
system font

kThemeSmallEmphazisedSystemFont [NSFont
boldSystemFontOfSize:[NSFont
smallSystemFontSize]]

Label font kThemeLabelFont [NSFont labelFontOfSize:[NSFont
labelFontSize]]

Mini system font kThemeUtilityWindowTitleFont [NSFont paletteFontOfSize:0]
199
  Apple Computer, Inc. June 2002

C H A P T E R 1 0

Fonts
200
  Apple Computer, Inc. June 2002

C H A P T E R 1 1
11 Icons
This chapter describes the overall philosophy behind Aqua icons and how to design
application, document, toolbar, and other types of icons for Mac OS X.

Icon design in Mac OS X is significantly different from previous versions of the
Mac OS. In Mac OS 9 and earlier, graphic limitations constrained designers to use
a highly symbolic style. Icons consisted of “jaggy” illustrations that emphasized
straight lines rotated in increments of 45 degrees.

Figure 11-1 Traditional application icon and Mac OS X icon

Aqua offers a new photo-illustrative icon style—it approaches the realism of
photography, but uses the features of illustrations to convey a lot in a small space.
Icons can be represented in 128 x 128 pixels to allow ample room for detail.
Anti-aliasing makes curves and nonrectilinear lines possible. Alpha channels and
translucency allow for complex shading and dimensionality. All of these qualities
pave the way for lush imagery that enables you to create vibrant icons that
communicate in ways never before possible.

Mac OS 9 and earlier Mac OS X
201
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
To represent your application in Mac OS X, it’s essential to create high-quality
Aqua-style application icons that scale well in the various places the icon appears—
the Dock, Finder previews, alert dialogs, and so on.

Icon Genres and Families

A new concept in Mac OS X is the notion of icon genres, which help communicate
what you can do with an application before you open it. Applications are classified
by role—user applications, software utilities, and so on—and each category has its
own icon style. This differentiation is very important for helping users easily
distinguish between types of icons in the Dock.

Figure 11-2 Application icons of different genres—user applications and utilities—shown
as they might appear in the Dock

For example, the icons for user applications are colorful and inviting, while utilities
have a more serious appearance. Figure 11-3 shows user application icons in the top
row and utility icons in the bottom row. These genres are further described in “User
Application Icons” (page 204) and “Utility Icons” (page 207).
202 Icon Genres and Families
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
Figure 11-3 Two icon genres: User application icons in top row, utility icons in bottom row

The graphic flexibility of Aqua icons can also help users identify files associated
with an application. In iTunes, for example, a visual cue provided in the application
icon is carried over into icons for other files associated with iTunes, forming an icon
family, as shown in Figure 11-4.
Icon Genres and Families 203
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
Figure 11-4 An icon family: The iTunes application icon and its associated icons

Application Icons

User Application Icons

Mac OS X user application icons should be vibrant and inviting, and should
immediately convey the application’s purpose. The TextEdit icon, for example,
indicates clearly that you would use this application to create text documents.

Document icon Preferences icon Playlist icon Plug-in icon

iTunes application icon
204 Icon Genres and Families
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
Figure 11-5 The TextEdit application icon makes it obvious what this application is for

If the primary function of your application is creating or handling media, its icon
should display the media the application creates or views. If appropriate, the icon
should also contain a tool that communicates the type of task the application allows
the user to accomplish. The Preview icon, for example, uses a magnification tool to
help convey that the application can be used to view pictures. If you include a
supportive tool element, it should closely relate to the base object that it rests upon.

Figure 11-6 The Preview application icon: An example of a tool element

In the Stickies application icon, however, the yellow rectangles are easily
identifiable as sticky notes; the icon doesn’t include a tool because it isn’t necessary
to tell the icon’s story.
Icon Genres and Families 205
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
Figure 11-7 The Stickies application icon: Effective without the addition of a tool

Notice that the text in the Stickies icon is actual text, not simply wavy lines
representing text. If you want to “greek” text in an Aqua icon, use actual text and
make it unreadable by shrinking it or doubling the layers.

Generally, Mac OS X user application icons are designed to appear as if they’re
sitting on a desk in front of you. They have a slightly diminishing perspective (they
are wider at the bottom). For more information, see “Icon Perspectives and
Materials” (page 213).

Viewer, Player, and Accessory Icons

Some applications that represent objects, such as QuickTime Player and Calculator,
are most easily recognized by the objects themselves. When creating icons for such
applications, it’s more aesthetically pleasing to create a simplified, idealized
representation of the object, rather than using an actual screen shot of the software.
Re-creating the object is particularly important when users could confuse the icon
with the actual interface.

Figure 11-8 The icons for QuickTime Player, Calculator, and Chess
206 Icon Genres and Families
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
These icons, many of which are a precursor of what you’ll see when you open the
application, use a straight-on perspective (rather than the “on a desktop” user
application style). You never see the Calculator on screen in three dimensions, for
example, so its icon doesn’t depict it that way.

Utility Icons

Icons for utility applications—which are used less often and not simply for fun or
creative activities— convey a more serious tone than those for user applications.
Color in these icons is desaturated, predominantly gray, and added only when
necessary to clearly communicate what the applications do.

Figure 11-9 Discriminating use of color in the Process Viewer and Print Center icons

Because utility applications are normally focused on a narrow set of tasks, it’s best
to keep the number of elements in the icon to a minimum. The focus should be a
single object that represents what the utility does. The perspective of utility icons is
straight-on, as if they are on a shelf in front of you. For more information, see “Icon
Perspectives and Materials” (page 213).

Non-Application Icons

Document Icons

Traditionally, a document icon looks like a piece of paper with its top-right corner
folded down. As previously suggested, Aqua document icons should make it
obvious which application they are associated with. Preview documents, for
Icon Genres and Families 207
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
example, include a graphic of the media (the pictures) used in the application icon.
For simplicity and to avoid confusing the document with the application itself, the
viewing tool is not repeated in the document icon.

Figure 11-10 Icons for the Preview application and a Preview document

Document icons are presented as if they are hovering on the desktop, with the
shadow behind the document. For more information, see “Icon Perspectives and
Materials” (page 213).

In cases where you want to put an identifying badge over a document icon, treat the
badge as an integrated element within the document, instead of putting it over the
top of the base image and breaking out of the overall document shape.

Figure 11-11 Incorrect and correct badging of a document icon

Don t do this. Do this.
208 Icon Genres and Families
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
Icons for Preferences and Plug-ins

The files that store user preferences are identified by a light switch on the left side.

Figure 11-12 Icons for a preferences application (System Preferences) and for a file that
stores preferences (for the iTunes application)

Plug-in icons look like stackable components, with the associated application
identifier on the left side and a plug-in–specific image on the right.

Figure 11-13 A plug-in icon

Icons for Hardware and Removable Media

Hardware icons represent devices as you most often see them: on your desk.
Because these devices are also frequently handled and carried, people are familiar
with them as three-dimensional objects with weight. The Aqua treatment of
hardware icons reinforces their association with real objects.
Icon Genres and Families 209
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
Figure 11-14 Icons for external (top row) and internal hardware devices

To help users distinguish between external devices, their icons provide a region for
an identifying symbol (FireWire, SCSI, and so on).

Removable media such as CDs, floppy disks, and PC cards are depicted the way
they look when you hold them in front of you—that is, the perspective is straight on.

Figure 11-15 Icons for removable media
210 Icon Genres and Families
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
Toolbar Icons
The concept behind toolbars is that they provide access to items as if they were
sitting on a shelf in front of you. Toolbars should conserve screen real estate while
still being inviting and easily clickable; 32 pixels by 32 pixels is the recommended
size for toolbar icons.

Figure 11-16 Finder toolbar icons

Each toolbar icon should be easily and quickly distinguishable from the other items
in the toolbar. Toolbar icons emphasize their outline form. As shown in Figure
11-17, each Finder toolbar icon’s shape is unique.

Figure 11-17 Toolbar icons and their dominant shapes

Note that although each Finder toolbar icon has a unique shape, the icons
harmonize together in their perspective, use of color, size, and visual weight.

Although icons designed specifically for use in a toolbar appear as if they are sitting
on a shelf in front of you, if you place a very recognizable object from elsewhere in
the interface in a toolbar, the object should retain its perspective. That is, don’t
redesign a toolbar version of a well-known interface element.
Icon Genres and Families 211
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
Figure 11-18 The circled icons appear elsewhere in the interface; they retain their
perspective when used in a toolbar

For toolbars in applications, you can start with a consistent “look” when it makes
sense, and introduce differences when necessary. In the Mail application toolbar,
for example, the Reply, Reply All, Forward, and Bounce buttons—all for actions the
user can apply to a selected received message—use a stamp as the dominant
symbol. Because the Bounce button is potentially destructive (the user can no longer
read the bounced message), its icon is red. The pencil is depicted in recognizable
and realistic yellow.

Figure 11-19 The Mail toolbar

Creating a family of toolbar icons helps make an application recognizable and
unique. Mail, for example, uses blue and white as dominant colors in its toolbar
icons.

Also see “Toolbars” (page 133).
212 Icon Genres and Families
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
Icon Perspectives and Materials

The angles and shadows used for depicting various kinds of icons are intended to
reflect how the objects would appear in reality. All Aqua interface elements have a
common light source from directly above, not from the upper-left corner as in
Mac OS 9 and earlier. The various perspectives are achieved by changing the
position of the camera capturing the icon.

Application icons look like they are sitting on a desk in front of you.

Figure 11-20 Perspective for application icons: Sitting on a desk in front of you

Utility icons are depicted as if they are on a shelf in front of you. Flat objects appear
as if there is a wall behind them with an appropriate shadow behind the object.
Icon Perspectives and Materials 213
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
Figure 11-21 Perspective for flat utility icons: On a shelf in front of you, with a shadow on
the wall behind

An actual three-dimensional object such as a rocket, however, would more
realistically be viewed sitting on the ground; its icon shows the rocket sitting on a
shelf, with its shadow below it.

Figure 11-22 Perspective for three-dimensional object: Sitting on a shelf in front of you,
with the shadow below the object

For toolbar icons, the perspective is also straight-on, as if the object is on a shelf in
front of you.
214 Icon Perspectives and Materials
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
Figure 11-23 Perspective for toolbar icons: Straight-on, with subtle shadow on the “floor”

Icons that represent actual objects should look as though they are made of real
materials. Examine various objects to study the characteristics of plastic, glass,
paper, and metal. Your icon will look more realistic if you successfully convey the
item’s weight and feel, as well as its appearance.

Use transparency only when it is convincing and when it helps complete the story
the icon is telling. You would never see a transparent sneaker, for example, so don’t
use one in your icon.

Figure 11-24 Materials: Transparency used to convey meaning
Icon Perspectives and Materials 215
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
Conveying an Emotional Quality in Icons

Figure 11-25 illustrates the difference between communicating a message in a
straightforward way compared with presenting the same message with an emotive
quality. In an appropriate context, we would recognize the figure on the left as the
symbol for men’s bathroom. The figure on the right, however, tells a story even
when it is viewed outside of its context.

Figure 11-25 Being emotive: The same message conveyed two ways

Suggested Process for Creating Aqua Icons

You need to provide at least the following files:

� a 128 by 128 image (for Finder icons)

� a mask that defines the image’s edges, so the operating system can determine
which regions are clickable
216 Conveying an Emotional Quality in Icons
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
Icons that display in the Finder are viewed at different sizes: they can be magnified
in the Dock, they can be previewed at full size, and users can specify a preferred
size. For the best-looking icons at all sizes, you should also provide customized
image files (“hints”) at three other sizes: 64 x 64, 32 x 32, and 16 x 16. Although the
Dock doesn’t use hints (it uses a sophisticated algorithm on the 128 x 128 version),
hints are important for preserving crucial details in Finder icons.

If you are creating an icon that will never change size—on a bevel button, for
example—you can supply the image only at actual size.

Here are the suggested steps for creating an icon:

1. Sketch the icon.

Work out the concept and details of your design on paper, not with software.
You should be ready to execute the idea by the time you open an application.

2. Create a software illustration of the icon.

Although you may want the final icon to look like a photograph, in most cases
it’s inadvisable to start with an actual photograph. An illustration provides
much more flexibility for conveying a concept in a very small space. An
illustration also gives you necessary control over details, perspective, light and
shadow, texture, and so on.

3. Add detail and color.

For each enhancement you make to a larger-version icon, consider whether it is
truly adding something to the icon’s usability, or whether it is just adding
complexity or clutter.

4. Add shadows.

Shadows give objects dimensionality and realism. They also help tie the
elements of an icon together so it doesn’t look like a collage. The light source
should be above and slightly in front of the object. The resulting shadow should
create the sense that the icon is resting on a surface.

5. In an image-editing program, manipulate the image to get precise effects and
create the icon mask.

6. Convert the icon to a .icns file.

You can complete this step with Icon Composer, included on the Mac OS X
Developer Tools CD. There are also several third-party tools available for
completing this step.
Suggested Process for Creating Aqua Icons 217
  Apple Computer, Inc. June 2002

C H A P T E R 1 1

Icons
Tips for Designing Aqua Icons

Many of the suggestions listed here also apply to graphics you develop for your
application, for example, to augment a label or list item.

� For great-looking Aqua icons, have a professional graphic designer create them.

� Perspective and shadows are the most important components of making good
Aqua icons. Use a single light source with the light coming from above the icon.

� Use universal imagery that people will easily recognize. Avoid focusing on a
secondary aspect of an element. For example, for a mail icon, a rural mailbox
would be less recognizable than a postage stamp.

� Strive for simplicity. Try to use a single object that captures the icon’s action or
represents the control. Start with a basic shape.

� Use color judiciously to help the icon tell its story; don’t add color just to make
the icon more colorful. Smooth gradients typically work better than sharp
delineations of color.

� Avoid using Aqua interface elements in your icons; they could be confused with
the actual interface.

� Don’t use replicas of Apple hardware products in your icons. These symbols are
copyrighted and hardware designs change frequently.

� Design toolbar icons at their actual size (32 by 32). For other icons, concentrate
on perfecting your icon’s look at 128 by 128 and work down from there. It
usually works best if you scale down elements independently and then combine
them, rather than scaling the entire icon at once.
218 Tips for Designing Aqua Icons
  Apple Computer, Inc. June 2002

C H A P T E R 1 2
12 Drag and Drop
The technique of dragging an item and dropping it on a suitable destination is called
drag and drop.

In this chapter, an item is anything that the user can select, such as text, graphics,
and icons. For convenience, this chapter assumes that the user is dragging with the
mouse, but these guidelines also apply to other input devices such as pens and
trackballs.

In Aqua, the Finder provides a new focus to indicate the target for a drop.

Drag and Drop Design Overview

Ideally, users should be able to drag any content from any window to any other
window that accepts the content’s type. If the source and destination are not visible
at the same time, the user can create a clipping by dragging data to a Finder
window; the clipping can then be dragged into another application window at
another time.

Drag and drop should be considered an ease-of-use technique. Except in cases
where drag and drop is so intrinsic to an application that no suitable alternative
methods exist—dragging icons in the Finder, for example—there should always be
another method for accomplishing a drag-and-drop task.

The basic steps of the drag-and-drop interaction model parallel a copy-and-paste
sequence in which you select an item, choose Copy from the Edit menu, specify a
destination, and then choose Paste. However, drag and drop is a distinct technique
Drag and Drop Design Overview 219
  Apple Computer, Inc. June 2002

C H A P T E R 1 2

Drag and Drop
in itself, and the Drag Manager does not use the Clipboard. Users can take
advantage of both the Clipboard and drag and drop without side effects from
each other.

A drag-and-drop operation should provide immediate feedback at the significant
points: when the data is selected, during the drag, when an appropriate destination
is reached, and when the data is dropped. The data that is pasted should be
target-specific. For example, if a user drags an Address Book entry to the “To” text
field in Mail, only the email address is pasted, not all of the person’s address
information.

You should implement Undo for any drag-and-drop operation you enable in your
application. If you implement a drag-and-drop operation that is not undoable,
display a confirmation dialog before implementing the drop. A confirmation dialog
appears, for example, when the user attempts to drop an icon into a write-only drop
box on a shared volume, because the user does not have privileges to open the drop
box and undo the action.

Drag and Drop Semantics

Move Versus Copy
Your application must determine whether to move or copy a dragged item after it
is dropped on a destination. The appropriate behavior depends on the context of the
drag-and-drop operation, as described here.

If the source and destination are in the same container (for example, a window or a
volume), a drag-and-drop operation is interpreted as a move (that is, cut and paste).
Dragging an item from one container to another initiates a copy (copy and paste).
The user can perform a copy operation within the same container by pressing the
Option key while dragging.

You can’t assume that a window is always a container; you must consider the
underlying data structure of the contents in the window. For example, if your
application allows two windows to display the same document (multiple views of
the same data), a drag-and-drop operation between these two windows should
result in a move.
220 Drag and Drop Semantics
  Apple Computer, Inc. June 2002

C H A P T E R 1 2

Drag and Drop
The principle driving these drag-and-drop guidelines is to prevent the user from
accidental data loss. Moving data across applications may result in potential data
loss because an Undo command in the destination application does not trigger an
Undo in the source application. Moving data within the same window (or same
volume, as in the case of the Finder) does not lead to data loss.

When to Check the Option Key State
Your application should check whether the Option key is pressed at drop time. This
behavior gives the user the flexibility of making the move-or-copy decision at a later
point in the drag-and-drop sequence. Pressing the Option key during the
drag-and-drop sequence should not “latch” for the remainder of the sequence.

Table 12-1 Common drag-and-drop operations and results

Dragged item Destination Result

Data in a document The same document Move

Data in a document Another document Copy

Data in a document The Finder Copy (creates a clipping)

Finder icon An open document window Copy

Finder icon The same volume Move

Finder icon Another volume Copy

Note: The Option key does not act as a toggle switch; Option-dragging between
containers always initiates a copy operation. This guideline allows users to learn
that Option means copy.
Drag and Drop Semantics 221
  Apple Computer, Inc. June 2002

C H A P T E R 1 2

Drag and Drop
Selection Feedback

This section covers issues that deserve special mention in the context of drag and
drop. Selection feedback is discussed in more detail in “Selecting” (page 185).

Single-Gesture Selection and Dragging
Because dragging is defined as moving the mouse while the mouse button is held
down, a mouse-down event must occur before dragging can take place. A selection
may be made as a result of this mouse-down event, just before the user starts
dragging. For example, the user can select and drag a folder icon in a single gesture;
the user does not have to click the folder icon first, release the mouse button, and
then press again to begin dragging the icon. Your application should ensure that
implicit selection occurs, when appropriate, when the user starts dragging.

Single-gesture selection and dragging is possible only when the process of selecting
an item does not require dragging. Range-selection operations—such as selecting
text or dragging a marquee around graphic objects—don’t lend themselves to
single-gesture selection and dragging because the range-selection operation itself
requires dragging.

Background Selections
When a window containing a highlighted selection becomes inactive, your
application should maintain the selection so that users can drag previously selected
data from inactive windows to the active window.

Background selections are not required if the dragged item is discrete, such as an
icon or graphical object, because implicit selection can occur when an item is
dragged. However, items selected only by range-selection operations such as text or
a group of icons must have a background selection to allow the user to drag these
items out of inactive windows. Whenever an inactive window is made active, the
background selection, if any, becomes highlighted as a normal selection.
222 Selection Feedback
  Apple Computer, Inc. June 2002

C H A P T E R 1 2

Drag and Drop
Drag Feedback

Your application should provide drag feedback as soon as the user drags an item at
least three pixels. If a user holds the mouse button down on an object or selected
text, it should become draggable immediately and stay draggable as long as the
mouse remains down. Typically, applications have to provide an image to drag and
have to handle the receiver frame. In Aqua, dragged items are transparent.

Destination Feedback

If the user drags an item to a destination in your application, your application
provides feedback that indicates whether it will accept that item. Destination
feedback should not occur simply because your application is “drag-aware”; rather,
it should depend on the destination’s ability to accept the type of data contained in
the dragged item. For example, a text entry field that accepts only text should not
be highlighted when the dragged item is a graphic.

The actual appearance of destination feedback depends on the type of destination.
The Drag Manager provides some utilities for simple highlighting; if your
application needs more complex highlighting, you must provide your own
highlighting utilities.

Windows
The valid destination region of a document window is usually the window’s
content area minus the title bar and areas used for controls (such as scroll bars,
resize controls, tool palettes, rulers, and placards). When there are multiple
destination regions within a window, only one destination region is highlighted
at a time.
Drag Feedback 223
  Apple Computer, Inc. June 2002

C H A P T E R 1 2

Drag and Drop
When the user drags an acceptable item from one destination region to another,
your application highlights the destination region as soon as the pointer enters it,
and removes the highlighting when the pointer leaves the region. You can use the
Drag Manager to specify your destination regions.

If a drag-and-drop operation takes place entirely within one destination region
(moving a document icon to a different location in the same folder window, for
example), don’t highlight the destination region, to avoid distracting the user.
However, if the user drags an item completely out of a destination region and then
drags the same item back to the same destination region, the destination region
should be highlighted.

You can provide more specific destination feedback within a larger destination
region. For example, when the user drags text from one document window to
another, the inactive window should display an insertion point where the dragged
text would go if the user releases the mouse button.

In many situations, highlighting a more narrowly defined area of a window is more
appropriate than highlighting the entire content region; examples are spreadsheets,
text boxes, fill-in forms, and panes. In these cases, the destination region must be
tailored to more precisely indicate the specific destination.

Text
While the user is dragging an item to a text area, an insertion indicator (a vertical
bar) should appear in the text where the dragged item would be inserted if the user
releases the mouse button.

Multiple Dragged Items
If the user drags multiple items, the destination feedback should occur only if it can
accept all of the dragged items. If the destination cannot accept all of the dragged
items, the user’s attempt results in feedback as described in “Feedback for an
Invalid Drop” (page 227).

When the destination can accept all of the dragged items, the destination should
accept them in the order specified by the source. The source application should
organize the dragged items in the order in which they were selected, except in two
cases. If the dragged items come from ordered views (such as View by Date or an
224 Destination Feedback
  Apple Computer, Inc. June 2002

C H A P T E R 1 2

Drag and Drop
alphabetized list), that view’s ordering takes precedence over the selection order.
If both the source and destination provide a spatial ordering (such as in graphic
applications), the spatial ordering takes precedence over the selection order.

Automatic Scrolling
When an item is being dragged, your application must determine whether to scroll
the contents or allow the item to “escape” the window. If your application allows
items to be dragged outside of windows, you should define an autoscrolling region.
Automatically scroll a destination window only if it is also the source window and
is frontmost. Don’t autoscroll inactive windows.

Using the Trash as a Destination
The Drag Manager makes the Trash available to applications.

Dragging items to the Trash results in moving the item from the source to the Trash.
For example, dragging a text selection from a word-processing application and
dropping it on the Trash icon (or in the Trash window) results in the text being
deleted from the application and a clipping containing that text being created inside
the Trash. Note that the item is moved, although it is dragged between two
containers. This exception to the rules described earlier is appropriate because the
user can undo the operation by dragging the clipping out of the Trash back to its
original source; it is consistent with the principle of preventing accidental data loss.

It is important to preserve the Trash’s container property; do not simply delete the
source without creating a clipping or other item in the Trash.

Drop Feedback

When the user releases the mouse button after dragging an item to a destination,
feedback should inform the user that the drag-and-drop operation was successful.
While this feedback can be visual, it is primarily behavioral in nature. The behavior
comes from the semantic operation indicated by the drag-and-drop sequence.
Examples of this behavior are given below.
Drop Feedback 225
  Apple Computer, Inc. June 2002

C H A P T E R 1 2

Drag and Drop
Finder Icons
When the user moves an item by dropping its icon on a folder icon, the dropped
icon disappears and the highlighting is removed from the destination folder icon.

If an icon represents a task, such as printing, you may want to provide progress
feedback to indicate that the task is being carried out.

Graphics
When dropping graphics, the drop feedback is usually the movement of the actual
item to the location of the mouse-up event.

Text
After text is dropped, it is shown highlighted at its destination.

When text is dropped in a destination that supports styled text, the dropped text
should maintain its font, typeface, and size attributes. If the destination does not
support styled text, the dropped text should assume the font, typeface, and size
attributes specified by the destination insertion point.

Drag-and-drop operations involving text should support intelligent cut-and-paste
rules, as explained in “Intelligent Cut and Paste” (page 194).

Transferring a Selection
After a successful drag-and-drop sequence involving a single window, the selection
feedback is maintained at the new location. This behavior provides an important
user cue and allows the user to reposition the selection without having to make the
selection again.

If the user drags an item from an active window to an inactive window, the dragged
item becomes a background selection at the destination; the selection in the active
window remains selected. This guideline also applies in the reverse situation,
where an item is dragged from an inactive window to an active window.
226 Drop Feedback
  Apple Computer, Inc. June 2002

C H A P T E R 1 2

Drag and Drop
When content is dropped into a window in which something is selected, your
application should deselect everything in the destination before the drop, rather
than replacing the selection with the dragged item.

Feedback for an Invalid Drop
If a user attempts to drop an item on a destination that does not accept it, the item
zooms from its mouse-up location back to its source location (a “zoomback”). The
zoomback behavior should also occur when a drop inside a valid destination does
not result in a successful operation. The Drag Manager provides this feedback when
it determines that no receiver requested the sender’s information.

If the user attempts to drag multiple items to a destination that does not accept all
of the items, none of the items should be accepted. In such cases you could display
a dialog informing the user of the type of data the destination accepts and which
items in the dragged set cannot be accepted.

Clippings

When an item is dragged from an application or a Finder window to the desktop,
the Finder creates a clipping that contains the data in the dragged item. If
discontinuous selections are dragged from a source to the Finder, a separate
clipping is created for each selected item.

Your application should provide a number of representations (such as TEXT, PICT,
and native formats) to ensure flexibility with different subsequent destinations.
Regardless of which representations are stored, round-trip data integrity should be
preserved; a clipping dragged back into its source should be identical to the original
item.
Clippings 227
  Apple Computer, Inc. June 2002

C H A P T E R 1 2

Drag and Drop
228 Clippings
  Apple Computer, Inc. June 2002

C H A P T E R 1 3
13 Language
Although Mac OS X uses graphics as a primary means of user-computer
interaction, text is still very prevalent throughout the interface for such things as
button names, pop-up menu labels, dialog messages, and onscreen help. Using text
consistently and clearly is a critical component of interface design.

Your product team should include a skilled writer who is responsible for reviewing
all user-visible onscreen text as well as creating the instructional documentation.

Style

The Apple Publications Style Guide (APSG) defines style and usage issues, and is the
key reference for how Apple uses language. This document is available at the
Mac OS X developer documentation website; consult it whenever you have a
question about the preferred style of particular terms.

For information about specific Mac OS X interface terms, see “Mac OS X
Terminology Guidelines” (page 273).

For issues that aren’t covered in the APSG or the Mac OS X terminology appendix,
Apple recommends three other works: The American Heritage Dictionary, The Chicago
Manual of Style, and Words Into Type. In cases where these books give conflicting
rules, The Chicago Manual of Style takes precedence for questions of usage and the
American Heritage Dictionary for questions of spelling.
Style 229
  Apple Computer, Inc. June 2002

C H A P T E R 1 3

Language
Terminology

Developer Terms and User Terms
Don’t use technical jargon or programming terms in interface elements or user
documentation. Table 13-1 shows a few examples; for a more complete list, see the
Apple Publications Style Guide (available at the Mac OS X developer documentation
website).

Labels for Interface Elements
Make labels for interface elements easy to understand and in the user’s language.
Try to be as specific as possible in any element that requires the user to make a
choice, such as radio buttons, checkboxes, and push buttons. It’s important to be
concise, but don’t sacrifice clarity for space.

Menu items and buttons that produce a dialog should include an ellipses character
(…). The menu command and the dialog title should match.

Table 13-1 Translating developer terms into user terms

Developer term User term equivalent

Data browser Scrolling list or multicolumn list

Dirty document Document with unsaved changes

Focus ring Highlighted area; area ready to accept user input

User-visible text Onscreen text

Mouse-up event Mouse click

Reboot Restart

Byte length Number of characters
230 Terminology
  Apple Computer, Inc. June 2002

C H A P T E R 1 3

Language
Capitalization of Interface Elements

Title style means that you capitalize every word except

� articles (a, an, the)

� coordinating conjunctions (and, or)

� prepositions of three or fewer letters, except when the preposition is part of a
verb phrase, as in Starting Up the Computer.

In title style, always capitalize the first and last word, even if it is an article, a
conjunction, or a preposition of three or fewer letters.

Sentence style means that the first word is capitalized, and the rest of the words are
lowercase, unless they are proper nouns or proper adjectives. Use periods in dialogs
only after complete sentences.

Table 13-2 Proper capitalization of onscreen elements

Element Capitalization style Examples

Menu titles Title See the Highlight Color pop-up menu in
General preferences.

Menu items Title Save as Draft
Save As…
Log Out
Make Alias
Go To…
Go to Page…
Outgoing Mail

Push buttons Title Add to Favorites
Don’t Save
Terminology 231
  Apple Computer, Inc. June 2002

C H A P T E R 1 3

Language
Using Contractions in the Interface

In cases where space is at a premium, such as in pop-up menus, contractions may
be used, as long as the contracted words are not critical to the meaning of the
phrase. For example, a menu could contain the following items:

Don’t allow printing
Don’t allow modifying
Don’t allow copying

In each case, the contraction does not contain the operative word for the item. But
in Sherlock, for example, menu items enabling users to choose between text that
“contains” and “does not contain” are communicated more clearly without the use
of contractions.

Writing Good Alert Messages

A good alert message states clearly what caused the alert to appear and what the
user can do about it. Express everything in the user’s vocabulary. Here’s an example
of an alert message that provides little useful information:

Labels that are not full
sentences (for example, group
box or list headings)

Title Mouse Speed
Total Connection Time
Account Type

Options that are not strictly
labels (for example, radio
button or checkbox text), even
if they are not full sentences

Sentence Enable polling for remote mail.
Cache DNS information every ___
minutes.
Show displays in menu bar.
Maximum number of downloads

Dialog messages Sentence Are you sure you want to quit?

Table 13-2 Proper capitalization of onscreen elements (continued)

Element Capitalization style Examples
232 Writing Good Alert Messages
  Apple Computer, Inc. June 2002

C H A P T E R 1 3

Language
Figure 13-1 A poorly written alert message

You could improve this message by describing the problem in the user’s
vocabulary:

Figure 13-2 An improved alert message

To really make the alert useful, provide a suggestion about what the user can do to
get out of the current situation:
Writing Good Alert Messages 233
  Apple Computer, Inc. June 2002

C H A P T E R 1 3

Language
Figure 13-3 A well-written alert message

For information about when to use alerts, see “Types of Dialogs and When to Use
Them” (page 95).
234 Writing Good Alert Messages
  Apple Computer, Inc. June 2002

C H A P T E R 1 4
14 User Help and Assistants
Mac OS X supports two user help components: Apple Help and help tags.
CarbonLib-based applications can also use these facilities back to Mac OS 8.6.

With Apple Help, you can display HTML files in Help Viewer, a browser-like
application designed for displaying onscreen help documents. Help Viewer can
also display documents with QuickTime content, open AppleScript-based
automations, retrieve updated help content from the Internet, and provide
context-sensitive assistance.

Help tags, which replace the help balloons introduced in System 7, give your
application the ability to identify its interface elements and provide basic help
information without forcing the user to leave the primary interface.

Apple’s Philosophy of Help

When users refer to help, it is usually because they are having difficulty
accomplishing a task—they know what they want to do, but not how to accomplish
it. When faced with an impasse, most users first try to figure it out for themselves
by exploring and experimenting with the interface. If that fails, they ask someone
else for assistance; if no one is available, they may consult the onscreen help.

Users come to help with a specific goal in mind, bringing their cumulative
Macintosh experience and the recent and cumulative experience of using the
product. In all likelihood, they are somewhat impatient and frustrated at having
failed to figure out how to accomplish their goal.
Apple’s Philosophy of Help 235
  Apple Computer, Inc. June 2002

C H A P T E R 1 4

User Help and Assistants
To assist users in quickly locating their information and getting back to work,
onscreen help should do the following:

� Focus on real-world user tasks.

� Get to the point quickly, so users can return to work.

� Be organized by task, not the layout or functionality of the software.

In large help systems, searching is often the most efficient way to locate a particular
topic, particularly when users have turned to help with a specific idea about what
they are trying to accomplish. To facilitate usable search results, do the following:

� Cover one topic per page, to avoid burying some tasks.

� Title the page descriptively, using words that relate to real-world goals.

� Use Apple Help keywords to ensure synonyms and common misspellings get
appropriate search results.

� Write steps and descriptions using words that appear in the interface.

Write your help so that users can quickly find the steps on the page and can follow
the steps without having to repeatedly switch between the product and the Help
Viewer.

� Don’t repeat notes and warnings enforced by the interface. For example, if you
have to click OK to confirm a setting, don’t describe it in the steps—it will be
apparent as the users follow the instructions.

� Tailor descriptions to the probable experience of users. For example, a user who
wants to adjust kerning is likely to be already familiar with selecting a typeface
and font size. A user who looks for help with basics such as opening a document
may require more detailed instructions.

� Automate common tasks using AppleScript. For example, if a task requires
opening a preferences pane, provide an automation that opens it for users. If you
can automate the entire task, do so.

� Emphasize trouble identification and resolution. Users might already know
how to accomplish a task but turn to help because of a condition or requirement
they can’t identify. If a step or task might be impossible because of an error
condition, remind users to check for it early in your instructions.
236 Apple’s Philosophy of Help
  Apple Computer, Inc. June 2002

C H A P T E R 1 4

User Help and Assistants
Help Viewer

Use Help Viewer to display onscreen documentation. Help Viewer displays HTML
documents, fully supports QuickTime media, provides full-text searching of help
with relevancy-ranked results, and provides for task automation using AppleScript.
Additionally, Help Viewer allows you to integrate Internet-based help files,
permitting you to update and improve your instructions as often as necessary.

The collection of your HTML help files is called a help book. When you use Help
Viewer, your help book automatically becomes accessible via the Help Center, an
Apple-provided location that allows users to easily browse and search all of the
help available on their system.

A help book should be the primary location for your application’s user instructions
and information. If you provide other instructional resources, such as full-screen
tutorials or “how to” articles on your website, include hyperlinks to them in your
help book. Users can find these other resources by searching or browsing the help,
reinforcing its usefulness as a reference.

Providing Access to Help

Users can access the help system in three ways:

� The Help menu. The Help menu is the far-right item in the application region
of the menu bar. The first item in the Help menu should be Application Name
Help, which should open Help Viewer to the first page of your help content. It’s
best to have only one item in the Help menu, but if you want to add additional
items that are distinct from your help content, such as tutorials or website links,
they should appear below the Application Name Help item.
Help Viewer 237
  Apple Computer, Inc. June 2002

C H A P T E R 1 4

User Help and Assistants
Avoid adding items to the Help menu that essentially lead to the same place—
your help book. Multiple entries that open Help Viewer can be confusing;
differences between sections of your help book may not be as obvious to users
as you think they are. Navigating between sections of a help book is typically
best handled by providing links in the Help Viewer window.

� Help buttons. When necessary, you can use a Help button, typically placed in
the lower-left corner of a dialog or window, to provide easy access to specific
sections of your help. When a user clicks a Help button, send either a search term
or an anchor lookup (which leads to a specific page or pages) to Help Viewer.

It’s not necessary for every dialog and window in your application to have a
Help button. If there is no contextually relevant information in the help, don’t
display a Help button.

� Contextual Help menu item. If contextually appropriate help content is
available for an object being pointed to, the first item in the contextual menu
is Help. As with help buttons, the menu item can send either a search term or an
anchor lookup to Help Viewer.

Help Tags

Help tags are short messages that appear when the user leaves the pointer hovering
over an interface element for a few seconds. When the pointer leaves the object, the
tag vanishes. Use help tags to assist users in identifying the purpose of interface
elements. You can define an object’s help tag in Interface Builder for Carbon and
Cocoa applications.

The text of the help tags should

� name an object only if the name is relevant to its function and does not have a
text label

� briefly describe what the object does

� reflect the current state of the interface item or be state-independent. You can
check the state of the item (dimmed, selected, and so on) before displaying
the tag.
238 Help Tags
  Apple Computer, Inc. June 2002

C H A P T E R 1 4

User Help and Assistants
For example, the help tag for a button labeled “Forward” in an email program might
read “Send the selected message to someone else.” This provides more detail than
the button label, but does not repeat it, and it explains that a message must be
selected to enable the button.

It is not necessary for every object to have a help tag. Don’t provide them for
common interface elements, menu items, or items that are self-explanatory or
obvious.

If necessary, Carbon developers can implement expanded help tags—text that
replaces the original help tag and that further explains the control’s function. Users
display an expanded help tag by pressing the Command key. Not every tag needs
an expanded state.

Figure 14-1 A help tag and an expanded help tag

Help tags should always appear in the same place, regardless of the pointer
location. The default position for help tags in Carbon applications is below the
control, centered horizontally (if necessary, this position can be changed on a
per-tag basis).

Help Tag Guidelines
Here are some guidelines to help you create effective tag messages.

� Use the fewest words possible. Try to keep your tags to a maximum of 60 to 75
characters. Since help tags are always on, it is important to keep your tag text
unobtrusive—that is, short—and useful. Present one concept per tag and make
sure the concept is directly related to the item. Localization lengthens the text by
20 to 30 percent, which is another good reason to keep the tag short.

� Write the main help tag in any of these ways, depending on the interface you’re
documenting:
Help Tags 239
  Apple Computer, Inc. June 2002

C H A P T E R 1 4

User Help and Assistants
� Describe what the user will accomplish by using the control. Examples:
“Add or remove a language from your list.” “Reduce red tint in the selected
area.” Most help tags can use this format.

� Give extra information to explain the results of the user’s action. This kind of
tag is most effective in an interface that already includes some instructional
text, because the tag and the interface text work together to describe what the
control does and how the user manipulates it.

� Define terms that may be unknown to the user. This kind of tag should be
used only if the interface already contains instructions to the user.

� You can create contextually sensitive help tags but you don’t have to; the same
text can appear when an item is selected, dimmed, and so on. By describing what
the item accomplishes, you may help the user understand the current state of the
control even if the tag is applicable to all situations.

� Use help tags to provide functional information for controls that are unique to
your application. Don’t tag window controls, scroll bars, and other parts of the
standard Mac OS X interface.

� Don’t put the item’s name in the tag unless the name helps the user and isn’t
available onscreen. If an item is referred to by name in the documentation and
in the tag, make sure the names match.

� You can use a sentence fragment beginning with a verb, for example, “Restores
default settings.” You can also omit articles to limit the size of the tag. If the tag
text is a complete sentence, end it with a period.

� Describe only the item the user points to.

� Use help tags primarily to provide necessary information, rather than incidental
tips.

� If you implement an expanded tag to add another layer of information, don’t
repeat the text in the original tag. An expanded tag should do one of the
following:

� More fully explain or describe the results of the action described in the small
help tag.

Help tag: Shuffles the play order.
Expanded tag: Plays the current list of songs in random order.
240 Help Tags
  Apple Computer, Inc. June 2002

C H A P T E R 1 4

User Help and Assistants
� Explain when or why the user would do the action described in the original
tag.

Help tag: Creates folder on player.
Expanded tag: Creates folders to help you organize music on the player.

If the main tag is an explanation or a definition that helps supplement
instructions in the interface, you’re less likely to need an expanded tag.

Carbon developers should see Inside Mac OS X: Providing Help Tags in Carbon,
available on the Mac OS X developer documentation website, for implementation
information.

Setup Assistants

For products with complex setup procedures, a setup assistant, a small application
that guides users through the setup options, can be helpful.

You can open a setup assistant automatically when appropriate—when the system
detects a new hardware device or the first time the user opens your application, for
example. Ideally, the user should use the assistant only once. Store the assistant in
your application’s Utilities folder.

For an icon, use the setup assistant icon with an application badge superimposed in
the lower-right corner, as shown in Figure 14-2.

Figure 14-2 The icon for AirPort Setup Assistant
Setup Assistants 241
  Apple Computer, Inc. June 2002

C H A P T E R 1 4

User Help and Assistants
Figure 14-3 shows the layout for a sample setup assistant window. Notice that the
text is flush left within the inset area, and controls are indented.

Figure 14-3 A typical setup assistant pane

Keep the following guidelines in mind when designing a setup assistant:

� While the assistant is active, display only the application menu, containing
About and Quit items, and the Edit menu, containing standard items to assist
users in entering text. Don’t provide a Help menu (or a help button); the setup
assistant is help.

� Provide Go Back and Continue buttons for navigation.

� The assistant window title bar should contain a dimmed close button, an
available minimize button, and a dimmed zoom button.

� Title the first pane “Introduction.” This pane should explain the purpose of
subsequent panes.
242 Setup Assistants
  Apple Computer, Inc. June 2002

C H A P T E R 1 4

User Help and Assistants
� Title the last pane “Conclusion.” This pane should tell users what changes were
made to their system and how to modify these settings. This pane should have
a default Done button and a dimmed Go Back button.

� In most cases, it’s best to ask only one question per pane.

� Provide relevant feedback when appropriate. If needed, you can display a
progress bar to the left of the Go Back button (the left edge aligned with the text
box).

� Don’t fill the entire screen; users should be able to access other parts of their
system while the assistant is open.
Setup Assistants 243
  Apple Computer, Inc. June 2002

C H A P T E R 1 4

User Help and Assistants
244 Setup Assistants
  Apple Computer, Inc. June 2002

C H A P T E R 1 5
15 Files
This chapter contains guidelines for installing applications—including where to
locate application-support files and user-created files—and handling filename
extensions.

Installing Files

Installing your software is the first task users must accomplish before they can use
your application, and you should ensure that it is a quick and painless experience.
The best method is a simple drag install: The user drags an icon or a folder from
your CD, for example, to a chosen destination on another disk. The easiest way to
achieve such a process is to create an application bundle (for more information, see
Inside Mac OS X: System Overview, available on the Mac OS X developer
documentation website). If files need to be installed in various locations, you’ll need
to create an installer; follow the guidelines described in this section.

If components of your application must be installed in locations that require
authentication, you should use Package Maker, the Mac OS X application for
creating installation packages (available on the Mac OS X Developer Tools CD).

For an update to an already-installed application, you should provide an installer
that modifies only the files required for the new version. Remember that files may
have been renamed or moved; don’t look only in the Applications folders, and don’t
rely exclusively on filenames to identify your application files; check for creation
and modification dates, version numbers, file size, and so on to uniquely identify
Installing Files 245
  Apple Computer, Inc. June 2002

C H A P T E R 1 5

Files
your application. If you detect multiple versions of your application, provide
information such as the location and creation date of each, and let the user choose
which one to update.

If users can download your application from the Internet, help simplify the
installation process by making it a disk image. Make sure to clean up after a
successful installation by moving unneeded files to the Trash.

When designing your product’s installation procedure, keep the following
guidelines in mind:

� Before installing anything, your installer should check the destination volume
for previously installed application components. When searching for files,
follow the guidelines described previously for software updates.

� Always provide users with a simple default install (an “Easy Install”). Most
products should also provide a custom install; if a user has accidentally thrown
away a particular file, for example, he should be able to restore it without having
to reinstall the whole application.

� Always let users choose a specific folder (or the Desktop) as the installation
destination. Don’t require your application to be installed in a particular
location.

� Install files only in the locations recommended in “Where to Put Files”
(page 247). If users want to delete your application for some reason, most users
will simply drag its icon to the Trash; avoid littering the user’s hard disk with
remnant files. If your product uses an installer, it should include an uninstall
option that lets the user delete all associated files.

� Advise users about data that might be overwritten during the installation and
provide a way for them to back it up first. Don’t overwrite previous user
preferences; deal with version and format differences the first time the user
opens the updated application.

� Provide choices and explain their impact. For example, one installation option
could result in faster performance but consume more disk space; another might
use less space but result in slower performance.

� Provide help where appropriate. For example, in a custom install pane, clicking
a More Info button should help the user understand why she would want to
install the component and the consequences of not installing it. Make
dependencies between components clear, but don’t force the user to install
anything, even recommended files.
246 Installing Files
  Apple Computer, Inc. June 2002

C H A P T E R 1 5

Files
� Don’t uninstall Apple system software.

� If your application installs Apple system software—such as QuickTime,
CarbonLib, or Help Viewer—make sure the version you install is newer than
any version the user already has; otherwise, don’t install it. Make it clear to users
which version they already have and which version your application needs, and
provide an option for skipping installation of those items.

� During installation, indicate progress, such as the current stage and the time
remaining. (See “Feedback and Communication” (page 29).)

� Provide a Cancel or Stop button; if cancelling the installation would compromise
the system’s stability, disable the button during those times. If a user cancels an
installation, leave the destination disk in the same state it was in before the
install (in other words, delete any files installed before the process was
cancelled).

� Consider performing your installation the first time the user opens the
application, rather than when the user copies the program. This technique is
especially well suited for children’s games.

� Consider your application’s audience. It’s likely, for example, that elementary
school children install their own games, so tailor your instructions for them
(don’t use confusing or technical terms like directory) and make installation as
easy as possible for that audience.

Where to Put Files

Mac OS X creates a suite of directories for each new user account. This structure is
provided to assist users in organizing related types of files, maintain a default
location for task-specific applications (such as iMovie), and facilitate transferring
files to and from iDisks.

There are eight predefined top-level user directories. With the exception of certain
subdirectories in the user’s home directory (Desktop and Library), users can move
or delete these directories.

The Library folder in the user’s home directory contains system or
application-support files. Within the Library directory is an Application Support
directory, in which you can create a developer-specific or application-specific
Where to Put Files 247
  Apple Computer, Inc. June 2002

C H A P T E R 1 5

Files
directory to contain all files such as document templates, databases, user
preferences, nonsystem fonts, product licenses, and plug-ins (see “Handling
Plug-ins” (page 249)). You may want your application to provide its own interface
for accessing and managing the contents of this directory.

Three of the predefined folders in the user’s home directory support basic system
functionality:

� Desktop: Contains all files visible on the desktop when the user logs in. By
default, the contents aren’t visible to other accounts. This directory is the default
location for files downloaded with a Web browser (the user can change the
location in Internet preferences).

� Public: Allows the user to share files with local and remote users. By default, the
contents are visible to other user accounts. This directory contains a drop box,
where others can put files for the owner that aren’t visible to other users.

� Sites: Allows users to host a website. When the user turns on Web Sharing (in
Sharing preferences), other users can access Web pages in this folder. A sample
Web page is provided in this directory.

The remaining directories are intended to provide default locations for storing files.
They are not intended to contain files whose primary access is through the
application. For example, AppleWorks templates and iTunes music databases
should go in the Library directory. The provided directories are the following:

� Documents: The default for storing user-created files not better served by the
other directories. Examples include AppleWorks text or spreadsheet documents
and TextEdit documents. Don’t put application support files—including user
preference settings—here; put them in the user’s Library directory.

� Movies: The default for storing moving images created by the user or exchanged
with other users. Examples include QuickTime Player files, iMovie projects, and
imported digital video sequences.

� Music: The default for storing music, sound, or MIDI files created by the user or
exchanged with other users. Applications that generate music or sound-related
files should use this directory as the default storage location. Examples include
iTunes user playlists and converted MP3 files.

� Pictures: The default for storing still images created by the user or exchanged
with other users—images downloaded from a digital camera, for example.

When a user saves a file to a destination other than the default directory, your
application should keep the user’s selection as the default location for saving files.
248 Where to Put Files
  Apple Computer, Inc. June 2002

C H A P T E R 1 5

Files
Handling Plug-ins

Third-party plug-ins needn’t deter you from providing a drag-installable bundle;
the Finder in Mac OS X (version 10.2 and later) provides built-in support for
managing plug-ins within your application’s bundle. A Plug-ins pane added to
your application’s Info window in the Finder provides a user interface for adding
and removing these files, as well as turning them on and off.

If your application supports plug-ins, use this feature instead of creating your own
plug-in management method. Create a folder for them in your application bundle
(<AppName>.app/Contents/Plugins); each item in this folder appears in the
Plug-ins pane. You may want to provide user documentation explaining how to
use this feature.

Naming Files and Showing Filename Extensions

Mac OS X 10.1 introduced a new model for handling filename extensions. Your
application should follow the guidelines described in this section.

Any file that has a specific format can have a filename extension indicating that
format. When a user copies a file to a computer that uses another operating system,
the filename extension gives the system the information it needs to handle the file
correctly.

Users, however, don’t need to be aware of a filename’s extension. Filename
extensions are hidden by default, but users can choose to display a document’s
filename extension by deselecting the “Hide extension” checkbox in the expanded
Save dialog, and can choose to show all filename extensions in Finder Preferences.
Your application should always display filenames that respect the user’s preference.
Handling Plug-ins 249
  Apple Computer, Inc. June 2002

C H A P T E R 1 5

Files
Applications that already write out filename extensions for interoperability
purposes now provide an enhanced user experience; these filename extensions can
be hidden in Mac OS X but automatically get transferred with the file as it moves to
a non-HFS file system. For example, when a user uploads a website containing
HTML and movie files, because the movie files already have filename extensions,
they don’t need to be renamed, and links in associated Web pages function properly.

To preserve the “what you see is what you typed” user experience, while
supporting robust interoperability by using filename extensions to indicate file
format, applications have several responsibilities. Apple recommends that
applications adopt the following behavior:

� All document files should have an extension indicating the file’s format.

� Any user-visible filename—in a list, an Info window, or any other situation—
should always use the file’s display name. Mac OS X 10.1 and later includes a
function to get the display name.

� When saving files, users should be able to control whether filename extensions
are hidden. For more information, see “Saving, Closing, and Quitting Behavior”
(page 105).

� Applications should save newly created document files with a filename
extension, for easy exchange with other operating systems and other users over
the Internet. This filename extension can be hidden, as described above.

� When opening and saving a document file, applications should preserve the
value of the document filename extension hidden flag and should preserve the
existing filename extension unless the user creates a new document file by
choosing Save As.

� When saving a document file without an extension as a new file in a Save As
operation, applications should add an extension, as they would when creating a
new document file.

Important
Don’t provide your own options for handling filename
extensions; use the standard Open and Save dialogs. The
behaviors described above happen automatically for Cocoa
developers using NSDocument. Carbon developers should
set a new flag, PreserveSaveFileExtension, when calling the
Save dialog, and use NavCompleteSav to set the flag to hide the
filename extension.
250 Naming Files and Showing Filename Extensions
  Apple Computer, Inc. June 2002

C H A P T E R 1 5

Files
Displaying Pathnames

Some dialogs, such as Save and Open, provide a text field in which expert users can
type file-system paths to navigate in the dialog. The slash symbol (/) is used as the
path separator.

Avoid displaying pathnames in your application (in document titles, for example).
If it’s necessary to display a pathname, avoid truncating it.
Displaying Pathnames 251
  Apple Computer, Inc. June 2002

C H A P T E R 1 5

Files
252 Displaying Pathnames
  Apple Computer, Inc. June 2002

C H A P T E R 1 6
16 Speech Recognition and Synthesis
Mac OS X version 10.2 contains speech technologies that recognize and speak U.S.
English. These technologies provide benefits for all users and present the possibility
of a new paradigm for human-computer interaction. This chapter discusses various
approaches for implementing these technologies and provides guidelines for
doing so.

Speech recognition is the ability for the computer to recognize and respond to a
person’s speech. Using speech recognition, users can accomplish tasks comprising
multiple steps—for example, “Schedule a meeting next Friday at 3 P.M. with John,
Paul, and George” or “Create a 3-by-3 table”—with one spoken command.
Mac OS X users can control the computer by voice, rather than being limited to the
mouse or keyboard; consequently, speech-recognition technology is very important
for people with special needs, as well as for general users. Developers can take
advantage of the speech engine and API included with Mac OS X, as well as the
built-in user-interface.

Speech synthesis, also called text-to-speech (TTS), converts text into audible
speech. It provides a way to deliver information to users without forcing them to
shift attention from their current task. For example, the computer could, in the
background, deliver such messages as “Your download is complete; one of the files
has been corrupted” and “You have email from your boss; would you like to read
it now?” TTS is also crucial for users with vision or attention disabilities. As with
speech recognition, Mac OS X TTS provides both an API and several user interface
features.

For more information about implementing these technologies, see Inside Mac OS X:
Speech Recognition Manager Reference and Inside Mac OS X: Speech Synthesis Manager
Reference, both available on the Mac OS X developer documentation website.
253
  Apple Computer, Inc. June 2002

C H A P T E R 1 6

Speech Recognition and Synthesis
Speech Recognition

It’s important to distinguish between the speech engine and the applications that
call the engine. The Mac OS X speech-recognition engine

� is speaker independent. Users don’t have to invest any time training it to
recognize their voice before they can use it.

� supports continuous speech. Users don’t have to pause between words.

� has a large vocabulary (more than 120,000 words) and linguistic analysis to
predict the correct pronunciation of words not in its dictionary.

� works with “far-field” microphones, so users don’t have to tether themselves to
the computer with a headset. In addition, most Macintosh computers have a
built-in microphone. All microphones in Macintosh computers are optimized to
work well with the Mac OS X speech-recognition engine.

� works with a finite-state grammar. This is the most successful general-purpose
speech technology and is optimal for uses such as interactive dialogs,
command-and-control, and language/literacy. It is not optimal, however, for
unrestricted dictation.

In order to have the most flexibility in using speech recognition, an application
should call the speech engine functions directly. Doing so requires the following
steps:

1. Tell the engine what to listen for (that is, define what users can say).

2. Start listening.

3. Act on the message sent to the application when the engine hears a defined
command.

Alternatively, you can easily provide basic speech control of your application by
taking advantage of Apple’s Speakable Items application (see “Speakable Items”
(page 255)).
254 Speech Recognition
  Apple Computer, Inc. June 2002

C H A P T E R 1 6

Speech Recognition and Synthesis
Speakable Items
Speakable Items, an application built in to the Mac OS X user interface, calls the
speech-recognition engine and provides all users with the ability to control their
computer by voice. It does this by creating a folder in the user’s Library folder
(Library/Speech/Speakable Items). Anything in the Speakable Items folder is
launched when the user speaks its name; saying its name is equivalent to
double-clicking that item’s icon, except that it works even if the folder is not visible
or the Finder is not active.

Developers can add their own items to the Speakable Items folder—such as
AppleScript scripts, documents, templates, applications, or aliases—and when the
user speaks the item’s name it executes.

The Speakable Items folder can also contain XML files that associate spoken
commands with keyboard shortcuts. “Make this bold,” for example, sends
Command-B; “Copy this to the Clipboard” sends Command-C.

The Speakable Items folder also contains an Application Speakable Items folder,
which contains a subfolder for each application, so that you can create spoken
commands that apply only to your application. Items in your application’s folder
are speakable only when your application is active (frontmost). Alternatively, you
can include application-specific speakable items in a folder within your application
bundle.

The Speech Recognition Interface
Mac OS X provides a consistent, well-integrated user interface for
speech-recognition across all applications. This interface comprises the following
items:

� The Speech pane of System Preferences is where users can control general
speech-recognition settings, regardless of which application is using it. These
settings include microphone volume (helpful for using non-Apple
microphones) and the listening mode (push-to-talk versus continuous
listening). Developers get these interface features for free regardless of how they
use the speech-recognition engine.

The Speech pane also contains controls specific to the Speakable Items
application, such as whether Speakable Items is on or off and whether it applies
to menus and window controls.
Speech Recognition 255
  Apple Computer, Inc. June 2002

C H A P T E R 1 6

Speech Recognition and Synthesis
� The speech feedback window provides information about the level of sound
input, whether the system is actively listening, and which listening method the
user has chosen.

Figure 16-1 The speech feedback window

� The Speech Commands window shows users what they can say at a specific
time. It also displays what the speech-recognition engine “heard” and what it
spoke to the user in response.

Figure 16-2 The Speech Commands window
256 Speech Recognition
  Apple Computer, Inc. June 2002

C H A P T E R 1 6

Speech Recognition and Synthesis
Speech-Recognition Errors
Because speech and sounds can be ambiguous, the speech-recognition process
sometimes produces errors. Two such errors are the following:

� A rejection error occurs when the system hears something it considers speech
(rather than noise) but can’t match the sound to a known command. By default,
this kind of error returns “???”; your application can specify its own rejection
word or other response.

� A substitution error occurs when the system incorrectly interprets a sound—
recognizing the command “cut” as “quit,” for example.

Because substitution errors are generally more annoying to users than rejection
errors, the speech-recognition engine has been tuned to prefer to reject rather than
substitute.

With the “Listen for” AppleScript command, you can easily test your application’s
spoken commands without writing any code. Consult the Mac OS X Developer
Tools CD for examples of using the speech-recognition server’s “Listen for”
command.

Guidelines for Implementing Speech Recognition
To minimize speech-recognition errors, observe the following guidelines in
designing your spoken interface.

� Avoid commands that sound similar but have different meanings. For example,
“Turn backups on” and “Turn backups off” differ by only one phoneme and
might be confused by the recognizer in a noisy environment.

� Avoid single-word commands; they are less distinctive and can be confused by
the recognizer. “Cut” sounds similar to “Quit,” for example. Phrases that are
from three to six words long are more distinctive and will be better recognized.

� Define commands that are easy to remember, feel natural to say, and don’t
conflict with menu items or controls.

� Provide speech-recognition commands that add value by doing more than can
be accomplished through a single click or keyboard equivalent.
Speech Recognition 257
  Apple Computer, Inc. June 2002

C H A P T E R 1 6

Speech Recognition and Synthesis
� If a certain action is made available through speech, make sure that tasks
involving this action can be completed via speech. If confirmation is required,
make sure the user can speak the response (instead of forcing the user to type
something, for example). Users prefer to stay in one mode rather than switching
back and forth depending on the task.

� For commands that could result in data loss, ask for confirmation before
executing the command.

� Don’t make speech the only way for the user to accomplish a task; always
provide an alternative method.

Speech Synthesis

The Mac OS X speech-synthesis engine converts any text into highly intelligible,
natural-sounding speech. The engine speaks any text sent to it. Developers can send
their own text to it using one line of code. In addition, some speech synthesis is
automatically integrated into the interface via Talking Alerts, spoken Dock
notification, saying the name of certain controls when the mouse points to them,
and speaking selected text. Developers should not rely on those features alone,
however, because users may not have turned them on in Speech preferences.

Whenever your application uses a system alert sound or other aural cue to deliver
specific feedback to users, consider providing the option of using speech synthesis
instead. For many users, a spoken phrase is a much more natural and accessible
means of communication; it’s a cognitive burden to remember that a particular
sound means a particular action has occurred. You can augment the user experience
by providing speech feedback in addition to other forms of feedback. In order to
accommodate people with special needs, any feedback to the user should be
provided in audio as well as visual formats. (See “Universal Accessibility”
(page 37).)

Guidelines for Implementing Speech Synthesis
As much as possible, you should observe the following guidelines when designing
your application to support TTS.
258 Speech Synthesis
  Apple Computer, Inc. June 2002

C H A P T E R 1 6

Speech Recognition and Synthesis
� Use speech synthesis to notify the user of something that happened in the
background, such as, “Your download is finished” or “You have a meeting in 15
minutes.”

� When using speech synthesis to notify users that an event has occurred, consider
pausing for a few seconds between the visual display of the event—such as a
sheet—and the spoken message. Speech is an effective way to get users’
attention only if they are not already looking at the screen, and the delay gives
users the opportunity to respond to the notification without hearing any speech.
If such a pause is appropriate, provide a way for users to customize its length.

� Provide a way for users to turn TTS on or off within your application and to
control such things as volume, voice, and speaking rate.

� Information users enter, such as typing in text fields or selections from long lists,
should be spoken back by the computer. For example, if a user types an amount
of money, it’s helpful to speak it back immediately to confirm it. Similarly,
sometimes users select the wrong item from a list; speech synthesis is a good
way to bring this mistake to the user’s attention.

� Speak in response to spoken commands to confirm what was recognized and
what action is being performed. For example:

User: Disconnect from the Internet.
Computer: Disconnecting now.

User: Schedule a meeting.
Computer: For what time?

� When testing your application, test with speech on and be sure to listen to all
spoken text in your interface. You can override the default TTS of a control by
providing an alternative text string.

� Make spoken text sound best by breaking up long sentences and using
punctuation effectively, and by using embedded speech commands such as
[[emph+]] to focus users’ attention on important information. For technical
information, see the Apple developer documentation website.

� Make sure your alerts are well-written and clear. (See “Writing Good Alert
Messages” (page 232).) Avoid long sentences and awkward phrasing.

� In applications that make use of characters (human or otherwise) or running
commentary, such as games, consider using text-to-speech instead of digitizing
voices.
Speech Synthesis 259
  Apple Computer, Inc. June 2002

C H A P T E R 1 6

Speech Recognition and Synthesis
Spoken Dialogues and Delegation

The most powerful, successful, and compelling way to use speech technology is to
engage users in spoken dialogues. Spoken dialogues are multi-turn conversational
interactions in which the computer asks a question, the user speaks an answer, the
computer asks another question, and so on. When the computer asks a question, the
user automatically knows how to answer, and the speech engine has a better chance
of recognizing what was said. For example:

User: Schedule a meeting.
Computer: What day would you like to meet?
User: Friday.
Computer: What time?
User: 6 P.M.
Computer: Whom do you want to invite?
User: Tom, Jerome, Devang, Kevin, Matthias, and Kim.
Computer: OK. Scheduling a meeting on Friday at 6 P.M. with Tom, Jerome,

Devang, Kevin, Matthias, and Kim.

With spoken dialogues of this form, it’s possible to provide users with a means of
delegating a goal to the computer (scheduling a meeting, in the previous example),
rather than performing a sequence of steps that each involves the keyboard and
mouse. The computer can ask the user for any extra information it needs to reach
that goal. Speech is an ideal way to delegate a goal to an intelligent assistant.
260 Spoken Dialogues and Delegation
  Apple Computer, Inc. June 2002

A P P E N D I X A
A Checklist for Creating Aqua
Applications
This checklist is designed to help guide you in the process of making a great Aqua
application. Use it to remind yourself of important interface-related issues.

Consider the questions in the checklist as you review your software. Answering
every question with a “yes” will ensure that your product conforms to the Aqua
human interface guidelines. Even if you can’t answer “yes” to every question, this
checklist can help your product maintain the spirit of the guidelines and principles.

Although business realities (such as product schedules and budgets) often force you
to make design tradeoffs, remember that, for many users and product reviewers,
the extent to which you adopt Aqua is the most visible means of measuring how
“Mac-like” your product is. (You may also want to refer to “Deciding What to Do
First” (page 23).)

General Considerations

� Do you use standard Aqua controls provided by the system, instead of inventing
custom ones? Do you avoid assigning new behaviors to existing interface
elements?

� Does the application have the Mac OS X “feel,” including window
minimization, live scrolling, live window dragging, and sheets?

� If a metaphor is being used, is it suitable for the application? Does the metaphor
match a “real” visual and behavioral representation?

� Is the user always able to find an object or action on the screen? In other words,
does your interface follow the see-and-point principle of design?
General Considerations 261
  Apple Computer, Inc. June 2002

A P P E N D I X A

Checklist for Creating Aqua Applications
� Do document printouts exactly replicate what the user sees on the screen? Do
movies, sounds, and other types of data reproduce faithfully regardless of what
medium they’re in? In other words, is the application WYSIWYG?

� Is your application forgiving and explorable by supporting Undo? Are there
warnings about risky actions? Are users allowed to back away gracefully from
risky territory?

� If an operation can be interrupted, do you provide a Cancel or Stop button? Can
Escape or Command-period be used to cancel or stop these operations?

� Does the application feel stable?

� Do you respect all of the accessibility features in Mac OS X, such as keyboard
navigation and focus?

� Have you made a clear, consistent distinction between basic and advanced
features?

� If your application has modes, is there a clear visual indication of the current
mode? Does the visual indication of the mode appear near the object most
affected by the mode? Are there enough landmarks to remind the user what area
of the application he or she is in? For example, many graphics applications
change the pointer to an eraser in erase mode.

� Is each mode absolutely necessary? Do the modes within the application
properly track the user’s own modes? Do users consistently avoid the kind of
errors caused by the program being in a mode other than what the user wants
or expects? Making a mode visually apparent is no guarantee that the user will
track it: Test the application on users and find out what sorts of mistakes they
are making. If the errors are caused by modes, find ways to communicate the
modes more clearly, or eliminate them.

� Can the user save a document or quit an application at any time?

� Are the widest possible range of user activities available at any time? The user
should spend most of his or her time being able to interact with the application—
not waiting for it to complete a process.

� Does your application always use the file’s display name when the filename is
visible to users, except in expanded help tags?

� Is your application speech-enabled?

� Has all user-visible text been reviewed by a professional writer?

� Does all user-visible text use “curly” apostrophes and quotation marks rather
than straight ones (except for measurements or in code examples)?
262 General Considerations
  Apple Computer, Inc. June 2002

Installation and File Location

� Can a user install your application by dragging a single file or folder? Did you
provide an application bundle so that users can manipulate only certain files?
Are you using the Mac OS X interface to handle plug-ins?

� Does your application put application support files—user preference settings,
plug-ins, databases, and so on—in the user’s Library folder? Does it avoid
putting files in the Documents folder (except for user-created files)?

Graphic Design

� Does the application have the overall Mac OS X “look,” including high-quality
Aqua-style icons, controls, anti-aliased text, windows, and menus?

� Do windows, dialogs, and palettes look “clean” and free from clutter?

� Does the user have control over the design of the workspace (location and sizing
of windows, toolbar customization), allowing him or her to individualize it?

� Is the information in windows organized so the most important information can
be read first?

� Do you use white space and graphics to break up long pieces of text?

Menus

� Are the application, File, Edit, and Window menus present, with at least the
standard items?

� Does the application support Undo, Cut, Copy, and Paste, and are these items in
the Edit menu?

A P P E N D I X A

Checklist for Creating Aqua Applications
� Does your application menu contain About, Preferences, Hide, and Quit?

� Do the unique menus of the application have appropriate names? Are the names
sufficiently different from the standard system menu names? Can the user
understand and remember their meaning?

� Are frequently used menu items available at the top level rather than in a
submenu or a dialog? If not, can the user change their location?

� Are currently unavailable items dimmed (rather than being omitted)? Are
dimmed items unselectable? If all items in a menu are unavailable, is the menu
title dimmed? Can the user still pull down the menu and see the dimmed names
of the operations?

� Are toggled menu items unambiguously named?

� Are menu titles and items in caps/lowercase unless there is a compelling reason
to have a different style, such as an ALL CAPS item in a Style menu?

� Do menu items have an ellipsis character (…) if more information is required
from the user before completing the command?

� Are the menu items truly menu items? Menu items should not be used as text,
section titles, or status indicators.

� In a hierarchical menu, does the title of the submenu have a right-pointing
triangle? Are submenus used only for lists of related items?

� Can the user see all the commands, items, and submenu titles in a menu without
scrolling? Scrolling should be necessary only for menus that users have added
to or for menus that spill over because the user has selected a large system font.

Pop-Up Menus

� While the menu is open, is the current value checked?

� Are pop-up menus used to allow the user to choose only one of a set of choices?
Pop-up menus should not be used for choosing more than one item from a set of
several choices.

� Do you avoid using menu items that contain verbs (commands) in pop-up menus?

� Does each menu have a label to the left (for left-to-right scripts)?
264 Pop-Up Menus
  Apple Computer, Inc. June 2002

A P P E N D I X A

Checklist for Creating Aqua Applications
Windows

� Do the standard window size and position take into account the dimensions of
the screen and the location of the Dock?

� Is the standard state of a window best suited to working on the document (such
as no wider than the page width), and not necessarily as large as the full screen?

� Does your application sensibly open new windows in either the standard or the
user state?

� Can each resizable window be made as large as the smaller of either the
maximum document size or the maximum size of the displays, including
multiple monitor displays?

� Is the default position of a window contained on a single screen?

� Is each additional window opened below and to the right of its predecessor?

� If a user drags a window from one monitor to another monitor, does your
application open subsequent windows on the second monitor?

� Do you use the lowercase letters “untitled,” without additional punctuation, in
a new window title? Do you add a number to the second and subsequent new
windows, but not to the first? Do you avoid using blank titles?

� Do document titles display or hide filename extensions appropriately?

� Do document windows with unsaved changes display a dot in the close button?

� Before closing a window, do you check to see if the user has changed its size or
position? Do you save window positions, and then reopen windows in the size
and position in which the user left them?

� Before reopening a window, do you make sure that the size and position are
reasonable for the user’s current monitor or monitors, which may not be the
same as the monitor on which the document was last open?

� When zooming from the user state to the standard state, do you check if the size
of the standard state would fit completely on the screen without moving the
upper-left corner? If so, is the upper-left corner anchored? If not, is the window
moved to an appropriate default location?

� Do you appropriately display controls and selected items in inactive windows?
Windows 265
  Apple Computer, Inc. June 2002

A P P E N D I X A

Checklist for Creating Aqua Applications
Utility Windows

� Do your utility windows use the right window type (kFloatingWindowClass or
NSPanel)?

� If a tool palette is present, is the selected symbol (icon, pattern, character, or
drawing) highlighted?

� Do palettes provide tracking feedback when the mouse button is down? Does
any change in selection in palettes occur only when the mouse button is
released?

� If you use any small controls in a utility window, are all the controls in the
window the small versions (that is, you haven’t mixed standard size and small
controls in the same window)?

Scrolling

� Does the window use either the standard scroll bar mechanism or the hand for
scrolling? If it uses the hand, does the pointer either always become a hand in
the window or appear highlighted in a tool palette?

� Does clicking a scroll arrow cause the document to move a distance of one unit
in the chosen direction? (The unit should be appropriate and meaningful for the
application.)

� Does clicking in the gray area move the document by a windowful (or to the
pointer location, if the user has selected that option)?

� Are the scroll bars inactive when the entire document fits in the window?

� Are the scrolling keys on the keyboard (Page Up, Page Down, Home, End)
supported? Note that these keys do not move the insertion point and do not
affect the selection.

� Does the scroller indicate the approximate position of the visible part of the
document in comparison to the whole document?
266 Utility Windows
  Apple Computer, Inc. June 2002

A P P E N D I X A

Checklist for Creating Aqua Applications
Dialogs

� Are questions in dialogs posed in a straightforward and positive way—for
example, “Do you want to erase everything on the disk named “Macintosh
HD?” rather than “Do you not want to alter the contents of this disk?”

� Do you use sheets for document-specific dialogs?

� Are dialogs designed with a centered look (rather than flush left)?

� Are dialogs horizontally centered either on the screen or over the active window
if the window is on a large screen or on a screen other than the one the menu bar
appears on?

� Do you use modal dialogs only when necessary? If a movable modal dialog is
displayed, can the application run in the background? Can the system Help
menu be used when a modal dialog is displayed?

� If there is an active text input field in a modal dialog, can the Cut, Copy, Paste,
and Undo menu commands in the Edit menu be used?

� Do keyboard equivalents of the standard Edit menu commands operate
correctly in a modal dialog containing editable text items?

� Do you use the new data browser control for lists?

� Can type selection be used in scrolling lists? Can the arrow keys be used to move
the selection by one item in the direction of the arrow?

� Does the active area of a dialog (the “focus”) have an indicator if there is more
than one possible focus? (Focus areas are those that accept keyboard input.)

� Does pressing the Tab key cycle through the available elements? Does Shift-Tab
cycle in the reverse direction?

� When appropriate, are buttons named with a verb that describes the action that
it performs, such as Erase, rather than OK?

� Do you provide a Cancel button wherever possible, especially in progress
dialogs? Does pressing Escape or Command-period indicate Cancel? (Pressing
Escape should never cause the user to lose information.)
Dialogs 267
  Apple Computer, Inc. June 2002

A P P E N D I X A

Checklist for Creating Aqua Applications
� If an operation can be halted midstream, with possible side effects, is the button
named Stop instead of Cancel?

� Do the Return and Enter keys map to the default button, which is usually the
button with the safest result or the most likely response?

� Do default buttons have color and pulse?

� Are buttons wide enough to accommodate their text names?

� Are buttons placed in functional and consistent locations, both within your
application and across all applications that you develop? Is the action button
placed in the lower-right corner with the Cancel button to its left or above (for
Western readers)?

� Are hidden filename extensions supported? Does the application display a file’s
display name instead of its filename, and does the Save dialog support filename
extension hiding?

� Do Save dialogs place a default name in the Save As text field, and is the name
(but not its filename extension) selected?

� When a dialog refers to a document or an application, do you use the name of
the document or application in the message text?

� Has room been left to allow the dialog to grow during localization? Most
languages require more characters than English to convey equivalent messages.

� Are the bounding rectangles of interface elements (for example, radio buttons
and checkboxes) the same size? When the alignment of dialog elements is
reversed, they should align on the opposite side.

Feedback and Alerts

� Does the application always provide some indication that an activity is being
carried out in response to a command?

� Does the application provide suitable feedback during task processing? Does it
somehow indicate the completion of a task? Does it provide information about
the duration of the task?
268 Feedback and Alerts
  Apple Computer, Inc. June 2002

A P P E N D I X A

Checklist for Creating Aqua Applications
� Is an explanation offered if a particular action cannot be carried out? Are
alternatives offered?

� Do you make all changes clearly visible?

� Do you call the system alert sound when you want the user’s attention? Do you
provide all feedback in visual as well as auditory formats?

� Do you use the new standard alert functions for displaying alerts?

� Do you display your application icon in all dialogs? Do you also show the
caution icon in potentially data-damaging alerts?

� Does the alert have an informative title and text that not only tell the user what
is wrong, but also offer suggestions as to what to do to correct it? The best alert
messages answer the following questions: What happened? Why did it happen?
What can I do about it?

� Are all your alerts necessary? You can prevent many user errors with good or
preventative interface design. For example, if the application cannot handle an
80-character filename, don’t display an 80-character field in which to enter it.

The Mouse

� If the user initiates an action by pressing the mouse button, does the action take
place only when the button is released (except for drags)?

� Are there ways other than double-clicking to perform a given action?
Double-clicking should never be the only way to do something; it should be a
shortcut only.

Keyboard Equivalents

� Are Apple-reserved keyboard equivalents used properly? Even if your
application doesn’t support one of these menu commands, it shouldn’t use these
keyboard equivalents for another function.
The Mouse 269
  Apple Computer, Inc. June 2002

A P P E N D I X A

Checklist for Creating Aqua Applications
� Do you avoid using Command–Space bar and Command–modifier key–Space
bar in your application, since they are reserved for use by international systems?

� Do keyboard equivalents appear where appropriate? Are the keyboard
equivalents case-independent? (This second rule does not apply if the product
uses both cases in the keyboard equivalents and lets the user decide which case
to use.)

Text

� Can arrow keys be used in all text boxes (including in dialogs)? Can the Shift key
be used with the arrow keys to extend the selection (including in dialogs)?

� If text is selected, does pressing an arrow key cause the insertion point to go to
the corresponding end of the range and deselect it?

� Are discontinuous selections made with the Command key modifier (for lists
and arrays)? The Shift key is used for graphics selections and continuous text
extensions.

� Do you use Command–arrow key and Option–arrow key for moving the
insertion point in larger semantic units? (Note that when multiple script systems
are available, Command–Left Arrow and Command–Right Arrow are
intercepted by the system and used for changing the keyboard layout.)

� Does the active font size in a menu have a checkmark next to it?

� Do you avoid making assumptions about font sizes? For example, the system
font may have a different size in other countries.

Icons

� Do your icons represent objects that users are familiar with and that are
universally recognizable?

� Do you use a common theme for icons associated with your application?
270 Text
  Apple Computer, Inc. June 2002

A P P E N D I X A

Checklist for Creating Aqua Applications
� Do you avoid using replicas of Apple hardware (which change often) in your
icons?

� Do your icons fit in with the Aqua style—that is, high-quality, realistic, emotive?

� Are icon shadows realistic? Do you use a single center-top light source?

� Do all your icons use the appropriate perspective for their types?

User Documentation

� Is the instructional suite written for the right audience?

� Do you provide HTML help viewable in Help Viewer and a Help command in
the Help menu?

� Does your documentation focus on real-world user tasks and troubleshooting?

� When appropriate, do your dialogs have help buttons that open relevant help
text?

� Does your help automate common tasks using AppleScript?

� If any part of the documentation refers the user to another document, is the
reference more appropriate than including the information right there?

Help Tags

� Do you provide help tags to help users identify interface elements?

� Are your help tags very brief? Do they describe what the user will accomplish
by using the object?

� Do expanded help tags for a file display the filename extension, even if the user
has chosen to hide it on that file?
User Documentation 271
  Apple Computer, Inc. June 2002

A P P E N D I X A

Checklist for Creating Aqua Applications
272 Help Tags
  Apple Computer, Inc. June 2002

A P P E N D I X B
B Mac OS X Terminology
Guidelines
This appendix describes usage guidelines for terms found in Mac OS X. For ease of
use, it contains some terms from the Apple Publications Style Guide. For any item that
contradicts an APSG entry, use the guideline provided here.

For terms not included here, or for more information, see the APSG (http://
developer.apple.com/techpubs/faq.html) and the American Heritage Dictionary.

Apple has standard translations for some of these terms in other languages. Check
http://developer.apple.com/intl/localization.html.

Apple reserves the right to change terms and guidelines at any time.

abbreviations and acronyms: Spell out the following on first use (on a page or in a
document):

ISP (Internet service provider)
FTP (File Transfer Protocol)

You don’t have to spell out CD-ROM, HTML, or MIME.

abort: Don’t use; use cancel.

Address Book: Two words. An application, separate from Mail.

administrator: Use to refer to people who can do such tasks as create users and
groups, assign privileges to files and folders, and so on. Don’t use Owner. You can
say, for example, “You need to log in with an administrator password” or “Only
administrator users can make changes.” Don’t shorten to “admin user.”

analog-to-digital (adj.): Note hyphens.

Apple key: Don’t use; the key with the cloverleaf and the Apple logo is “the
Command key.”
273

http://developer.apple.com/techpubs/faq.html
http://developer.apple.com/techpubs/faq.html
http://developer.apple.com/intl/localization.html

A P P E N D I X B

Mac OS X Terminology Guidelines
application: It is not necessary to say “application program” on first use. (This entry
is different from the current APSG.) “Application” is OK to use alone.

application menu: The menu to the right of the Apple menu. Refer to it as “the
[application name] application menu” (“the Mail application menu,” “the Grab
application menu”).

application names: Unless the official product name contains an internal cap, two-
word application names should contain spaces, even if the filename in the file
system appears without a space. Examples of correctly spelled names:

Address Book
Disk Utility
Help Viewer
Image Capture
Key Caps
Keychain Access
NetInfo Manager
Network Utility
Print Center
Process Viewer
Script Editor
Setup Assistant
System Preferences
TextEdit
WorldText

In general, don’t use “the” with application names.

Correct: Open QuickTime Player.
Incorrect: Open the QuickTime Player.
Correct: Open Print Center.
Correct: Open the Print Center application.
Incorrect: Open the Print Center.

the Applications folder: There is only one, which is displayed when you click the
Applications button in a Finder window.

Aqua: Uppercase (an Apple trademark). Use mainly as an adjective (“the Aqua user
interface”).
274

A P P E N D I X B

Mac OS X Terminology Guidelines
attach: Don’t use to mean connect (as in “Connect your USB device to your
computer”).

boot: Don’t use for start up (except in technical documentation).

box: Don’t use “dialog box” anymore; OK to say “dialog.”

bus-powered, self-powered: Try to avoid when indicating whether devices draw
power from a power cord or from another USB device. When possible, describe the
device, don’t give it a label: “A device that plugs into an electrical outlet” (instead
of “a self-powered device”); “a device that gets its power from another USB device”
(instead of “a bus-powered device”).

button states: In a dialog, the default button has color and pulses, but avoid
references that say “blue”; call it “the default button.” Window buttons “have
color” or “don’t have color”; don’t refer to buttons as “clear.”

canceled/canceling: Note our style is one “l.”

Carbon application: Refers to an application written and compiled using the
Carbon API specification interfaces (Universal Interfaces 3.3.2 or later). Don’t say
“Carbonized”; instead say something like “update your application for Carbon.”
The term “Carbon” should be used only in developer documentation.

A Carbon application executes as a native process in Mac OS X if it is compiled as
either a Mach-O or CFM/PEF binary, and can be a single file binary or application
package. A Carbon application executes in Mac OS 8.1 to Mac OS 9.x with
CarbonLib installed if it is compiled as a CFM-executable binary, as either a single-
file binary or an application package.

CD-ROM disc: Don’t shorten to “a CD-ROM.” It’s either “a CD-ROM disc” or “a
CD.”

chain: OK to use when you mean a series of USB devices connected together. See
hierarchy.

Classic:

1. A Classic application is one originally created for Mac OS 9 (or earlier) that has
not been rewritten for Carbon. More specifically, a Classic application is one
written and compiled to the Mac OS Universal Interfaces prior to versions
including the Carbon API specification interfaces (version 3.3.1 or earlier).
Classic applications are single-file binaries containing both executable code and
Resource Manager code components in the Preferred Executable Format (PEF)
used by the Code Fragment Manager. In Mac OS X, Classic applications execute
in the Classic environment. Don’t use “Classic” alone.
275

A P P E N D I X B

Mac OS X Terminology Guidelines
2. A pane in System Preferences for automatically starting up the Classic
environment.

Classic application/Classic environment: Don’t refer to “the Classic application”
(Classic.app); instead say, for example, “When you open a Classic application, the
Classic environment starts up.”

Classic Mac OS: Avoid; instead say “Mac OS 9 and earlier” or whatever is
applicable. (“Classic” describes applications, not the operating system.)

Clipboard: The correct term in user documentation; don’t use “pasteboard” or
“scrap” in user documentation. In developer documentation, it’s OK to use
“pasteboard” when discussing the NSPasteboard class, but point out that users view
the contents of the pasteboard in the Clipboard.

close button: The leftmost (red) button of the three window controls at the left of
the title bar.

Cocoa application: Refers to an application written and compiled using the Cocoa
API frameworks. The term “Cocoa” should be used only in developer
documentation.

Cocoa applications written in Objective-C and C are compiled into Mach-O binaries
and application packages, and execute as native processes in Mac OS X. They
cannot execute in Mac OS 9 or earlier. Cocoa applications written in Java execute
only in the Mac OS X Java VM environment.

column-view button: The rightmost button in the view control.

connect: Use to refer to the general act of hooking devices together. (Don’t use
“attach.”) You can connect USB devices to a computer; you can connect computers
to an Ethernet network. Use “plug in” to refer to the specific action of plugging a
connector into a port.

Correct: Connect the USB device to a power source.
Correct: Plug the square end of the USB cable into the USB device.

Darwin: An operating system that includes some, but not all, of the components of
Mac OS X. Darwin comprises the kernel plus the BSD libraries and commands
essential to the BSD Commands application environment. The term “Darwin”
doesn’t appear in the Mac OS X interface.

Date & Time: A pane in System Preferences.

dialog: Use instead of “dialog box.”

directory: In user documentation, don’t use directory when you can say folder.
276

A P P E N D I X B

Mac OS X Terminology Guidelines
disable: Avoid in user documentation; say dimmed or turned off (or simply off).

disclosure button: The triangle that reveals more options when clicked (not “the
detail button”). You can also call it “the disclosure triangle.”

Disk First Aid: Has been replaced by Disk Utility. (But Disk First Aid may be
included on the Mac OS X CD, in the Mac OS 9 section.)

Disk Utility: Two words.

Dock: Don’t use as a verb. Items are “in the Dock,” not “on the Dock.”

Correct: Click an icon in the Dock.
Correct: Click the Mail application icon in the Dock.
Correct: Click a minimized window in the Dock.
Correct: To put a window in the Dock, click the minimize button.
Correct: When an item is in the Dock…
Incorrect: You can dock any window.
Incorrect: When an item is docked ….

drawer: A window that slides out from a parent window when you click a button
or choose a command, such as the Mailbox button in Mail (“the Mailboxes drawer”).

enable: Avoid in user documentation; say available or turned on (or simply on) or
selected.

Favorites button: In the Finder toolbar.

favorites toolbar: Use to refer to the user-customizable area at the top of the System
Preferences window.

filename: One word.

file server: Two words.

file sharing: Two words.

file system: Two words.

FireWire: Apple’s version of high-speed serial data link technology. IEEE 1394 is a
synonym. Don’t use i.LINK.

folders: When referring to folders on a computer used by more than one person,
you need to distinguish only the folders that are not accessible to all users. For
example, the top-level (global) applications folder is “the Applications folder.” An
individual user’s applications folder is “your Applications folder” or “a person’s
Applications folder.”
277

A P P E N D I X B

Mac OS X Terminology Guidelines
Grab: A screen-capture application that comes with Mac OS X.

Help Viewer: Two words.

help tags: Lowercase. Use instead of “Tool Tips” to refer to the instructional text
that appears when the pointer hovers over an interface element in Mac OS X.

hierarchy: Avoid this term when you mean a series of USB devices connected to one
another (and to a computer) in a branching structure using hubs. Simply describe,
if possible: “You can connect many USB devices to one computer using a series of
hubs,” or similar language.

home folder: Always lowercase (“Each user gets his or her own home folder”);
there is nothing actually called “the Home folder” (it’s named with the user’s
name).

HomePage: When you’re referring to the iTool available at mac.com, it’s one word
with an internal cap.

hot-pluggable: Try to avoid in user documentation.

hub: FireWire hub or USB hub. See also bus-powered, self-powered.

icon-view button: The leftmost button in the view control.

IEEE 1394: Synonym for FireWire.

i.LINK: Don’t use. Use FireWire. i.LINK is Sony’s version.

Image Capture: Two words.

Internet service provider (ISP): Spell out the first time this term appears on a help
page or in a document. After that, it’s OK to use the abbreviation.

Keychain Access: The application name is two words. You use the application to
create keychains (lowercase).

Language: One of the tabs in the International pane of System Preferences.

log in (v.): You log in to a computer or server (not log on). You log out, not off.

login items: Items that open when you log in. In user documentation, it’s preferable
to use descriptive language (for example, “items that start up automatically”)
instead of this term.

Login Items: One of the tabs in the Login pane of System Preferences.

login screen: The dialog that appears when a new user logs in to Mac OS X.
278

A P P E N D I X B

Mac OS X Terminology Guidelines
Mac: Avoid when referring generally to a Macintosh computer (it could be
confused with more specific names such as “Power Mac” or “iMac”). Use
“computer.” You can, however, use “Mac” judiciously as an adjective (“the Mac
desktop”).

Mac Help: The onscreen help for the Mac OS and hardware. The help system itself
is Apple Help, but you shouldn’t have to use that term in user documentation.

Mac OS Extended, Mac OS Standard: Disk formats.

Mac OS 9: Always use the full name; don’t shorten to “OS 9” or “9.” Note spacing
between each “word.” Don’t say “Mac OS 8/9”; instead say “Mac OS 8 and
Mac OS 9.”

Mac OS X: Always say “Mac OS X”; don’t shorten to “OS X” or “X.” Note spacing.

Mail: An application that comes with Mac OS X. Address Book is a separate
application.

mailbox: One word. In Mail, a mailbox is essentially a folder, which can contain
messages (received email) and other mailboxes.

Mailbox: The button you click in the Mail application to see the Mailboxes drawer
(which slides out on the left or right).

mailboxes drawer: In the Mail application, when you click the Mailbox button, the
mailboxes drawer slides out. It displays your mailboxes.

mass storage (adj.): No hyphen (as in “mass storage device”).

maximize: Don’t use. Instead, say something like, “To make an item in the Dock
active, click it.”

menu bar: Two words.

MIME format: An email format (as opposed to plain text format). You don’t have
to spell it out.

minimize button: The middle (yellow) button of the three window controls at the
left of the title bar. You click this button to put a window in the Dock.

minimized: OK to use to describe a window in the Dock: “Windows in the Dock are
minimized.”

Mouse: A pane in System Preferences.

name server: Two words.
279

A P P E N D I X B

Mac OS X Terminology Guidelines
Network: A pane in System Preferences and an icon you see when you click the
Computer button in a Finder window.

network time server: Not capped, but “Network Time” (the tab in the Date & Time
pane of System Preferences) is. So is Network Time Synchronization.

non-USB devices: Use to refer to devices that don’t use USB.

Owner: Don’t use. See administrator.

pane: Use to refer to different views within a window (views that can be changed
with a tab, a pop-up menu, a button, or by selecting an item, or views that change
automatically, as in Installer). In most cases in user documentation, you can avoid
using “pane” by describing how to get to a particular place: “Click System
Preferences, click Network, click AppleTalk….”

Examples of how to use “pane”:

Type your name in the Login Window pane of Login preferences.
Choose an item from the Configure pop-up menu in the TCP/IP pane of

Network preferences.
You can set a document’s access privileges in the Privileges pane of the file’s Info

window.
When you click Network in System Preferences, the TCP/IP pane appears. To

display the AppleTalk pane, click the AppleTalk tab.
Click the Workgroups tab, then click the Options tab and select “Check for email

when members log in.”
You choose a workgroup storage volume and set options for the volume in the

Volumes pane of the Workgroups pane.
Make sure “Play audio CDs” is selected in the “Group members may” section of

the Privileges pane of the Workgroups pane.
You can specify an RGB default in the Document Profiles pane of ColorSync

preferences.

Note that each of the system preferences panes can be shortened to, for example,
“Network preferences.” See also preferences.

panel: Don’t use; see pane and dialog.

pasteboard: Don’t use in user documentation. OK to use in developer
documentation that discusses the NSPasteboard class, but point out that users view
the contents of the pasteboard in the Clipboard.
280

A P P E N D I X B

Mac OS X Terminology Guidelines
pathname: Most user documentation does not need to refer to specific pathnames
(“TextEdit is in the Applications folder on your hard disk”). But when necessary—
if a user has to type a pathname in a dialog, for example—you can refer to it as “the
path” or “the pathname.”

plug in (v.): Use only when referring to the specific act of plugging a connector into
a port or outlet. For example, a power cord plugs into an electrical outlet; you can
plug a USB connector into a USB port. See connect.

preferences: Mac OS X has two types of preferences:

� System Preferences: The general preferences application (it has an icon in the
default Dock).

� application preferences: Use the application name, capped (“Mail Preferences”).

It’s OK to call the things you set in preferences “settings” (“You can change settings
with System Preferences”).

Correct: Click System Preferences (in the Dock) and click Sound.
Correct: Use the Sound pane of System Preferences to choose an alert sound.
Correct: Open System Preferences, click Network, and click the AppleTalk tab.
Correct: In Mail Preferences, click Accounts.

You can shorten the name of each of the system preferences “modules” to “<Name>
preferences,” as in “Startup Disk preferences.”

Preview: An application that comes with Mac OS X.

Print Center: Two words, capped. Because it’s an application, it’s correct to say
“Open Print Center” (not “the Print Center”).

resize control: The area in the lower-right corner of a window that you drag to
resize the window.

screen shot: Two words. Don’t use “screen dump.”

scroll bar: The whole control is “the scroll bar”; the former “scroll box” is the
“scroller.” Note that “scroll bar” is two words.

scroll box: Call what used to be called the “scroll box” the scroller (in Aqua it’s no
longer a box).

Setup Assistant: The application you use to set up your computer. Don’t call it “the
Mac OS Setup Assistant.”
281

A P P E N D I X B

Mac OS X Terminology Guidelines
sheet: Refers to a modal dialog attached to a specific document window (when you
choose Print, the Print sheet appears). In user documentation, call them “dialogs”
(“sheet” is mainly for marketing and developer purposes).

Sherlock: You don’t have to say “Sherlock 2.”

slider: The widget you drag to set a value on a continuum (a range of values). The
whole control is called “the slider control.”

Startup Disk: A pane in System Preferences (not “System Disk”). If you need to
distinguish between the Mac OS 9 version and the Mac OS X version, you can refer
to them as “the Startup Disk pane of Mac OS X System Preferences” and “the
Classic Startup Disk control panel” or “the Startup Disk control panel included with
Mac OS 9.”

system: Usually “computer” is preferable to “system,” as in “The computer requires
a folder named ‘Applications’ in this location.”

System Preferences: The user-modifiable set of preferences at the top is the
“favorites toolbar.” When you click a preferences button, the “[button name] pane”
appears (for example, “the Network pane”). See also preferences.

tab: In a dialog, the tab itself is called the “<tabname> tab,” but the content you see
when you click a tab is the “pane.” Don’t say “under the <tabname> tab.” Examples:

You can specify your home page in the Web pane of Internet preferences.
To set up automatic login, click Login, then click the Login Window tab.
You disconnect from the network time server in the Network Time pane of Date

& Time preferences.

Terminal: An application for using the command-line interface. Don’t say “the
Terminal”; “the Terminal application” is OK.

TextEdit: One word with an internal cap. A word-processing application that
comes with Mac OS X.

toolbar: An area containing buttons, such as in Finder windows and the Mail
application. Don’t call them “shortcuts.”

Tool Tips: Don’t use. Use help tags.

Type A connector: A type of USB connector. Use once and describe what it looks
like (“rectangular”).

Type B connector: A type of USB connector. Use once and describe what it looks
like (“square”).
282

A P P E N D I X B

Mac OS X Terminology Guidelines
UNIX: Don’t use when referring to the Mac OS X architecture. The correct term to
use instead depends on the context. Darwin (“With the Terminal application, you
can enter Darwin system commands”) and “BSD utilities” are possible alternatives.

UNIX File System (UFS): One of the file formats available in Disk Utility.

USB: Abbreviation for “Universal Serial Bus.” Provide spelled-out term only once;
otherwise, use simply “USB.”

USB adapter: Use to refer to a device that lets you connect non-USB devices to USB
ports.

user name: Two words.

view control: The three-button unit you use to change your view of Finder
windows. The view control comprises the icon-view button, the list-view button,
and the column-view button.

Users:: The name of this preferences pane has been changed to “Accounts.”

window controls: Standard controls for windows include the close button, the
minimize button, the zoom button, and the resize control.

workspace: Don’t use as a synonym for desktop or Finder.

zoom button: The rightmost (green) button of the three window controls at the left
of the title bar. Clicking this button toggles between the standard window size and
the user-resized size.
283

A P P E N D I X B

Mac OS X Terminology Guidelines
284

A P P E N D I X C
C Document Revision History
This document has had the revisions described in Table C-1.

Table C-1 Document revision history

Date Notes

11 June 2002 Updated for version 10.2. Deleted “What’s New in Aqua” sections
from Chapter 1 and beginning of each chapter.

Speech chapter added.

New controls: command pop-down menus, toolbar control, spin-
ning arrows, small image wells.

Other additions/changes include: accessibility features, installers,
metal windows, new document window position, utility window
controls, font constants.

1 Oct. 2001 Updated for Mac OS X 10.1.

Added information about filename extension hiding, Dock menus
and notification, setup assistants, new focus ring specifications,
accessibility guidelines, full keyboard access, customizing Print
dialogs, window positioning on multiple monitors, proxy icons.
Various other editorial changes throughout.

21 May 2001 Updated for WWDC.

Changes made to many illustrations.

Slight engineering comments and changes throughout.

Icons chapter expanded.

File Location chapter added.
285
  Apple Computer, Inc. June 2002

A P P E N D I X C

Document Revision History
“What’s New in Aqua” chapter appended to Intro chapter.

“Layout Guidelines” broken out from “Controls” chapter.

Other additions include “Additional Considerations” section in
principles chapter; windows with different panes.

11 Dec 2000 Updated for Jan 2001 Macworld; now called Inside Mac OS X:
Aqua Human Interface Guidelines.

Document divided into chapters. TOC added.

Major content added to entire document. Added many screen
shots.

Added Human Interface principles chapter.

Added Help chapter.

Added Language chapter.

Added Drag and Drop chapter.

Added Checklist appendix.

Added Mac OS X terminology appendix.

Added index.

Content revisions include click-through, icon creation process,
combo boxes, sheets, Save-Close-Quit behavior, keyboard equiva-
lents, About boxes, pop-up bevel buttons, and pop-up icon but-
tons.

8 Sep 2000 Updated for Mac OS X Public Beta Release.

Added section on working with the Appearance Manager.

Added section on designing alerts.

Added section on sheets.

Added section on drawers.

Added section on list and column view.

Table C-1 Document revision history (continued)

Date Notes
286
  Apple Computer, Inc. June 2002

A P P E N D I X C

Document Revision History
Added material on small controls.

Added examples of font usage.

Clarified description of tab control usage.

19 Apr 2000 Updated for Mac OS X Developer Preview 4 and retitled Adopting
the Aqua Interface.

Changed content and art to reflect new control metrics.

Added section on icon design.

Added section on window layering.

Added section on menu layout.

Added material on using ellipses in menus.

20 Jan 2000 Document published as Aqua Layout Guidelines.

Table C-1 Document revision history (continued)

Date Notes
287
  Apple Computer, Inc. June 2002

A P P E N D I X C

Document Revision History
288
  Apple Computer, Inc. June 2002

17 Glossary
About window A modeless window that
displays an application’s version and
copyright information.

accumulating attribute group A set of
attribute choices in which the user can select
multiple items, such as Bold and Italic. See
also mutually exclusive attribute group.

active end The location at which the user
releases the mouse button when selecting a
range of objects.

active window The frontmost window,
which accepts user input.

addition model A model for extending a
continuous selection using Shift-click, in
which new text is added to a selection. See
also fixed-point model.

alert A dialog that appears when the
system or an application needs to
communicate information to the user. Alerts
provide messages about error conditions and
warn users about potentially hazardous
situations or actions.

anchor point The location at which the user
presses the mouse button when selecting a
range of objects.

Apple Help The component that enables
applications to display HTML files in Help
Viewer, a simple browser.

Apple menu A menu that provides items
that are available to users at all times,
regardless of which application is active. It is
the leftmost menu in the menu bar.

application font The font used as the
default for user-created content. It is 13-point
Lucida Grande Regular.

application menu A menu that contains
items that apply to the application as a
whole, rather than to a specific document or
other window. The application menu is
immediately to the right of the Apple menu.

application-modal dialog A dialog that
prevents the user from doing anything else
within the owner application. See also
document-modal dialog; sheet.

arrow keys The four keys on Apple
keyboards (up, down, left, right) used to
move the insertion point or change the
selection. They can also be used with the Shift
key to extend or shrink a selection.

auto-repeat A feature that lets users to
produce numerous instances of the same
character by holding down its key rather
than pressing it over and over. Users can
make adjustments to this feature in Keyboard
preferences.

background selection A selection in an
inactive window. In Aqua, such selections
are in the secondary highlight color.
289
  Apple Computer, Inc. June 2002

G L O S S A R Y
bevel button A button with a beveled edge
that gives the button a three-dimensional
appearance.

bullet In a Window menu, a bullet
indicates that the document has unsaved
changes.

button See bevel button; icon button;
push button; radio button.

character key A keyboard key that sends a
character to the computer. Character keys
include letters, numbers, punctuation, the
Space bar, and nonprinting characters such
as Tab and Return.

checkbox A control for an option that must
be either on or off.

checkmark In the Window menu, a
checkmark appears next to the active
document’s name. In other menus,
checkmarks can be used to indicate that the
setting applies to the entire selection.
Checkmarks can be used for mutually
exclusive attribute groups or accumulating
attribute groups.

Clipboard A storage location for data the
user cuts or copies from a document. The
Clipboard is available to all applications and
its contents don’t change when the user
switches between applications.

clipping Data dragged from an application
to the Finder desktop.

close button A window control (the red
one in the upper left) that users can click to
close the window.

combination box A text entry field
combined with a pop-up menu or a
drop-down scrolling list. Combo boxes are
useful for displaying a list of likely choices
while still allowing the user to type in an item
not in the list.

contextual menu A menu that appears
when the user presses the Control key and
clicks an interface item. A contextual menu
provides convenient access to often-used
commands associated with the item.

continuous selection A selection that
includes everything between the anchor
point and the active end.

control A graphic object that causes instant
actions or visible results when the user
manipulates the object with the mouse.
Standard controls include buttons, scroll
bars, checkboxes, sliders, and pop-up
menus.

dash In a menu, a dash indicates that an
attribute applies to only part of the selection.
For example, if a highlighted selection
contains text with different styles applied to
it, a dash appears next to each style name in
the menu.
290
  Apple Computer, Inc. June 2002

G L O S S A R Y
data browser A control that provides a
standardized look for column browsers (such
as seen in the column view of a Finder
window or in an Open dialog) and scrolling
lists (such as seen in the list view of a Finder
window).

default keyboard access mode The mode
in which tabbing and other keystrokes move
keyboard focus only between fields that
receive keyboard input, such as text entry
fields and scrolling lists. See also full
keyboard access mode.

destination region The part of a document
that can accept data dragged to it. In a
document window, the destination region is
usually the content area minus the title bar
and areas used for controls such as scroll bars
and rulers.

dialog A window designed to elicit a
response from the user. See also alert.

diamond In a Window menu, a diamond
means that the document has been
minimized into the Dock.

dimmed An item that is dimmed, or grayed
out, is currently unavailable. Menu items, for
example, are dimmed rather than omitted
when they aren’t applicable at a particular
moment.

disclosure triangle A control that allows
the display, or disclosure, of information that
elaborates on the primary information in a
window. Disclosure triangles are used in the
Finder’s list view; clicking a triangle displays
a folder’s contents.

discontinuous selection A selection in
which unselected objects are between
selected objects.

display name The name of a file as it
appears to the user. The display name reflects
the user’s preference for hiding or showing
the filename extension.

document-modal dialog A dialog that
prevents the user from doing anything else in
the document until dismissing the dialog. All
sheets are document modal and all Aqua
document-modal dialogs should be sheets.
See also application-modal dialog; sheet.

document window A window containing
file-based data that users create and store.
See also utility window.

drag and drop The technique of dragging
an item, such as a graphic or selected text,
and dropping it on a suitable destination,
such as another document.

drawer A child window that slides out
from a parent window, and which the user
can open or close (show or hide) while the
parent window is open. Drawers contain
controls that are fairly frequently accessed
but don’t need to be visible at all times.

dynamic menu item A menu command
that changes when the user presses a
modifier key. For example, in the File menu
(in the Finder), if the user presses the Option
key, the Close Window command changes to
Close All. See also toggled menu item.
291
  Apple Computer, Inc. June 2002

G L O S S A R Y
Edit menu A menu that provides
commands for changing, or editing, the
contents of documents. It contains
commands such as Cut, Copy, and Paste.

emphasized system font The bold version
of the system font. It is used for the
application name in an About window and
the message text in an alert.

File menu A menu that contains
commands that provide housekeeping tasks,
such as Save As, for files.

fixed-point model A model for extending a
continuous selection using Shift-click, in
which the user can extend the selection on
either side of the insertion point. See also
addition model.

focus ring Highlighting around the
onscreen area that is ready to accept user
input.

full keyboard access mode The mode in
which tabbing and other keystrokes move
keyboard focus to more interface elements
than is possible in default keyboard access
mode.

function key One of the keys F1 through
F15 on Apple desktop computer keyboards,
plus the Help, Home, Page Up, Page Down,
Del, and End keys.

group box In a dialog, a visual indication
that certain controls belong together. In
Aqua, this indication is typically
accomplished with blank space rather than
lines.

help book The collection of HTML files
that provide onscreen help for a particular
product.

Help Center A window where users can
access any help book installed on their
system.

Help Viewer The simple browser used to
display Apple Help HTML files.

help tag A brief text explanation that
appears when the user leaves the pointer
hovering over an interface element for a few
seconds.

hierarchical menu A menu that includes a
menu item from which a submenu descends.
Submenus offer additional menu item
choices without taking up more space in the
menu bar. Hierarchical menus are indicated
with a triangle indicator.

hot spot The portion of the pointer that
must be positioned over a screen object for
mouse clicks to have an effect on the object.

hot zone The area of an onscreen object that
the pointer’s hot spot must be within for
mouse clicks to have an effect.
292
  Apple Computer, Inc. June 2002

G L O S S A R Y
icon button A button that does not have a
rectangular edge around it; the clickable
region is the graphic (for example, the toolbar
buttons in Finder windows).

image well A rectangular, recessed area
that displays an icon or picture and that
serves as a drag-and-drop target.

insertion point The point at which data
will be inserted in response to a user’s typing
or pasting.

Interface Builder An application that helps
you easily create application menus,
windows, dialogs, palettes, and other
standard Aqua interface elements.

label font The font used for labels with
controls such as sliders and icon bevel
buttons. It is 10-point Lucida Grande
Regular.

minimize button A window control (the
middle yellow one at the top left) that the
user clicks to put a window into the Dock.

modeless dialog A dialog that does not
require the user to dismiss it before
interacting with anything else onscreen. The
“find and replace” feature in many word
processors is an example of a modeless
dialog.

modifier key A key the user can hold down
to alter the meaning of another key being
pressed simultaneously or to alter the
meaning of a mouse action. The Option and
Command () keys are examples of modifier
keys.

mutually exclusive attribute group A set
of attribute choices in which the user can
select only one item, such as font size. See
also accumulating attribute group.

palette A window that is independent of
documents and that provides items to be
used when other windows are open, such as
a palette that provides drawing tools.

pane An area of changeable content in a
dialog or other window. Panes usually
change as the result of the user clicking a tab
or a button, or choosing an item from a
pop-up menu. In some cases, panes change
as a process takes place, such as while the
Installer application is running.

placard A control that displays
information. Typically placards are used in
document windows as a way to quickly
modify the view of the contents—for
example, to change the current page or the
magnification.

pointer The onscreen representation of the
mouse’s location. The pointer commonly
looks like an arrow, but can also assume such
shapes as a pencil, a cross, or a paintbrush,
depending on the application and the user’s
selection.
293
  Apple Computer, Inc. June 2002

G L O S S A R Y
pop-down menu A menu that contains
commands and appears in a window rather
than in the menu bar. Use of this control is
limited to cases where the window is shared
among multiple applications and the menu
contains commands that affect the window’s
contents. A closed pop-down menu always
displays the same text, which is the menu
title. Pop-down menus have a single,
downward-pointing triangle.

pop-up menu A menu that, when closed,
displays the current choice and can be
opened to present a list of mutually exclusive
choices in a dialog or window. Pop-up
menus have a double triangle indicator.

progress indicator A control that lets the
user know that a task is in progress.

proxy icon An icon in a document title bar
that users can manipulate as if they were
manipulating the corresponding file-system
object. Users can Command-click the proxy
icon to display a pop-up menu illustrating
the document path.

push button A rounded rectangle with a
text label on it, which the user clicks to
perform an instantaneous action, such as
saving a document, completing operations
defined by a dialog, or acknowledging an
error message.

radio button A control for one of a set of
mutually exclusive, but related, choices.

relevance control A control that indicates
the relative ranking of search results—the
longer the bar, the more relevant the item is
to the search criteria.

scroll bar A control for viewing areas of a
document or a list that is larger than can fit in
the current window. Only the active window
can be scrolled. A window can have a
horizontal scroll bar, a vertical scroll bar,
both, or neither.

scroller The part of a scroll bar that the user
drags to view other parts of a document. The
scroller size reflects how much of the
document is visible; the smaller the scroller,
the less of the content the user can see at that
time. The scroller represents the relative
location, in the whole document, of the
portion that can be seen in the window.

scrolling list A list in a dialog that uses
scroll bars to reveal its contents.

scrolling menu A menu that contains more
items than are visible onscreen. Scrolling
menus have triangle symbols that indicate
the presence of hidden menu items.
294
  Apple Computer, Inc. June 2002

G L O S S A R Y
setup assistant A small application that
guides users through the setup options for a
hardware device or software component.

sheet A dialog attached to a specific
window, ensuring that the user never loses
track of which window the dialog belongs to.
A Print dialog is an example of a sheet. See
also document-modal dialog.

Shift-click To click while the Shift key is
down. This combination is used to select
multiple objects or to extend a selection.

slider control A control enabling users to
choose among a continuous range of
allowable values. Slider controls can be
horizontal or vertical and can display
incremental tick marks.

small system font The font used for
informative text in alerts, headers in lists,
help tags, and text in the small versions of
many controls. It is 11-point Lucida Grande
Regular.

speech recognition The ability for the
computer to understand spoken commands
or responses.

spinning arrows An indeterminate status
indicator that can be used when space is very
constrained.

splitter bar A control for dividing a
document window into sections so that more
than one part of the file can be viewed at the
same time, or a control that divides a
nondocument window into sections.

standard state A new window’s initial size
and position (determined by the application).
See also user state; zoom button.

static text field Text in a dialog that users
can’t modify.

submenu A menu that descends from
another menu. The title of the submenu is a
menu item in the parent menu. See also
hierarchical menu.

system font The font used for text in menus
and in modeless dialogs, and for titles of
document windows. It is 13-point Lucida
Grande Regular.

tab control A control that looks like a file
folder tab and that provides a convenient
way to present dialog information in a
multipage format.

text input field A rectangular area in which
the user enters text or modifies existing text.
Also called an editable text field, it supports
keyboard focus and password entry.

text to speech (TTS) The ability of the
computer to convert text into spoken words.

toggled menu item A menu item or a set of
two menu items that change between two
states (for example, Turn Grid On and Turn
Grid Off).
295
  Apple Computer, Inc. June 2002

G L O S S A R Y
type-ahead Queuing of keystrokes for
processing later. It occurs when the user
types faster than the computer can handle or
when the computer is unable to process the
keystrokes.

user state A window’s user-defined size
and position. See also standard state; zoom
button.

utility window A window that floats
above other windows and provides tools or
controls that users can work with while
documents are open. See also document
window.

View menu A menu that provides
commands that affect what users see in a
window. In the Finder, for example, the View
menu contains commands for displaying
windows as columns, icons, or lists.

Window menu A menu that contains
commands for managing document
windows. The menu lists an application’s
open document windows, including
minimized windows, in the order in which
they were opened.

word wrap The automatic continuation of
text from the end of one line to the beginning
of the next without breaking in the middle of
a word.

zoom button A control that toggles a
window between its standard state and its
user state.
296
  Apple Computer, Inc. June 2002

Index
A

About command (application menu) 55
About windows 92–93
accessibility, as design principle 37–39
actions in menus 46
active windows

appearance of controls 81
background selections in 222
dragging to 222, 226

Add to Favorites button 104, 108
AddressBook framework 23
alert dialogs 95, 98, 268
alert message text, writing 232
anti-aliased text 198
Appearance Manager

and disclosure triangles 148
using, for Aqua compliance 24

Apple Developer Connection 24
Apple Help 235–238
Apple Help Viewer 237
Apple key. See Command key
Apple menu 53
Apple Publications Style Guide (APSG) 229
AppleScript and task automation 237
application fonts 197
application icons 204–207

adding permanently to the Dock 44
in alert dialogs 99
classifying 202
in the Dock 43, 44, 88
notification behavior of 42

Application Kit 96, 119
application menu 54–56
application-modal dialogs 96, 96–99
application-support files 245
application-wide commands (application menu)

55
Apply button 120

applying guidelines 22
Arrange in Front command (Window menu) 62
arrow keys 170–174

appropriate uses for 170
behaviors of 172
extending text selection with 173
and keyboard navigation 184
moving the insertion point with 171
with Shift key 173

arrows, spinning 143
ATSUI 199
attributes in menus 47–48
audience, knowledge of 33
automatic scrolling 87, 225
automatic typing. See type-ahead
automation, of user tasks 236
auto-repeat 185

B

background selections 222, 226
background, striped 130
Backspace key. See Delete key
benefits of applying Aqua guidelines 22
bevel buttons 131–136

as pop-up menus 134
specifications 131

Bold command (Format menu) 180
boldface fonts 198
boxes

About 92
checkboxes 122–124
combination 128–130, 144
group 151–154

Bring All to Front command (Window menu) 62,
113

bullets in menus 66
297
© Apple Computer, Inc. June 2002

I N D E X
buttons
Add to Favorites 104, 108
bevel 131–136
Cancel 120
default 120, 122
Help 238
pop-up bevel 134
pop-up icon 134
push 120–121, 231
radio 122
Review Changes 112

C

Cancel button 120
capitalization, of interface elements 231
Caps Lock key 169
caution icons 100
centering windows 76–78
character keys 166–169
characters in menus 65–67
chasing arrows. See spinning arrows
checkboxes 122–124
checklists for creating applications 261–271

alert dialogs 268
dialogs 267
documentation 271
general considerations 261–262
graphic design 263
help tags 271
icons 270
keyboard equivalents 269
menus 263
mouse events 269
pop-up menus 264
scrolling 266
text 270
user documentation 271
utility windows 266
windows 265

checkmarks in menus 51, 65
Choose dialogs 114–115
Clear command 60

Clear key 168
clicking 164, 186
click-through 82–85
Clipboard 59–61, 220
clippings in drag-and-drop operations 219, 227
close button 70, 93
Close command (File menu) 57, 179
Close dialogs 105
cloverleaf symbol. See Command key
Cocoa

guidelines for interface elements 119
color coding 38
Colors window 63
column view lists 145
combination boxes 128–130, 144
Command key 170
command pop-down menus 127
Command-, 55, 180
Command-~ 62, 82
Command-A 61, 180
Command-B 180
Command-C 60, 180
Command-click 188
Command-D 179
Command–Down Arrow 172
Command-F 180
Command-G 180
Command-I 180
Command-key equivalents 176–184
Command–Left Arrow 172, 177
Command-M 179
Command–modifier key–Space bar 177
Command-N 179
Command-O 102, 179
Command–Option–Space bar 177
Command-P 180
Command-Q 179
Command–Right Arrow 172, 177
Command-S 179
commands, menu

About (application menu) 55
application-wide items (application menu) 55
Arrange in Front (Window menu) 62
Bold (Format menu) 180
Bring All to Front (Window menu) 62, 113
298
© Apple Computer, Inc. June 2002

I N D E X
commands, menu (continued)
Close (File menu) 57, 179
Copy (Edit menu) 60, 180
Cut (Edit menu) 60, 180
Find (Edit menu) 61, 180
Find Again (Edit menu) 180
Hide (application menu) 56
Italic (Format menu) 180
Minimize (Window menu) 179
New (File menu) 57, 179
Open (File menu) 57, 102, 179
Open Font dialog (Format menu) 180
Open Recent (File menu) 57, 102
Page Setup (File menu) 58
Paste (Edit menu) 60, 180
Print (File menu) 58, 180
Quit (application menu) 56, 179
Redo (Edit menu)) 59
Save (File menu) 58, 179
Save As (File menu) 58
Select All (Edit menu) 61, 180
Services (application menu) 55
Underline (Format menu) 180
Undo (Edit menu) 59, 180, 220
Undo/Redo (Edit menu) 60
Zoom (Window menu) 62

Command–Space bar 177
Command-T 180
Command-U 180
Command–Up Arrow 172
Command-V 60, 180
Command-W 179
Command-X 60, 180
Command-Z 60, 180
compatibility, as design principle 33
confirmation dialogs 220
consistency

as design principle 30
of user experience 22

containers for drag-and-drop operations 220
contextual menus 64, 238
continuous selection 187

Control key 170
Control Manager 119
Control-F1 key combination 184
Control-F2 key combination 178
Control-F3 key combination 178
Control-F4 key combination 178
Control-F5 key combination 178
Control-F6 key combination 178
controls 119–148

appearance of 120–148
behavior of 120–148
bevel buttons 131–136
checkboxes 122–124
click-through behavior of 82
close button 70, 93
disclosure triangles 148
grouping in dialogs 151–154
image wells 147
layout guidelines for 149–157
minimize button 70, 88
pop-up bevel buttons 134
pop-up icon buttons 134
pop-up menus 124–126
progress indicators 141
push buttons 120–121, 231
radio buttons 122
resize control 70
scroll bars 85–87
scrolling lists 146
sliders 87, 137
small versions of 160–161
tabs 88, 138–141, 157
using in utility windows 160–161
window controls 70–71, 85–87, 92
zoom button 70, 80

copy and paste 220
Copy command (Edit menu) 60, 180
copy operations with drag and drop 220
cultural considerations 34
cut and paste 194, 220
Cut command (Edit menu) 60, 180
299
© Apple Computer, Inc. June 2002

I N D E X
D

dashes
in checkboxes 124
in menus 65

data browser 144
data loss, preventing in drag-and-drop

operations 221
default button 120, 122
default directories 245–248
default keyboard access mode 184
default location for saving documents 106,

245–248
default titles for new documents 74
Delete (Backspace) key 168
design principles 22, 27–39

aesthetic integrity 31
consistency 30
direct manipulation 28
feedback and dialog 29
forgiveness 31
modelessness 32
perceived stability 31
see-and-point 28
use of metaphors 27
user control 29
WYSIWYG 30

Desktop directory 247
desktop, dragging to 227
destination feedback, for drag-and-drop

operations 223–225
destinations for drag-and-drop operations 220
developer resources 21
developer terms, terminology for 230
dialogs 95–118

advanced options in 117
alert 95, 98, 268
application modal 96, 96–99
behavior of 101–118
changes in, accepting 101
checklist for creating 267
Choose 114–115
Close 105
confirmation 220
displaying filename extensions in 105

document modal 96–98
error checking in 102
expanded Save 107–108
grouping items in 151–154
icons in 99
laying out 149
localizing 36
minimal Save 106–107
modeless 91, 95, 197
Open 102
Page Setup 115–118
pop-up menus in 124
positioning controls in 149–160
Print 58, 115–118
Quit 105, 110–113
save 105–113
sheets 96–98
text in 197
types and usage of 95–99
using tabs in 157
writing text for 232–233

diamonds in menus 66
digital camera images, storing 248
dimmed items 31, 47
direct manipulation, as design principle 28
directories, user domain 245–248
disabilities 37–39
disabled items. See dimmed items
disclosure triangles 107, 148
discontinuous selection 187
display name 75, 250
Dock 41–44

activating windows from 44
animating icons in 42
application icons in 43, 44, 88
icon badging in 42
icon genres and 202
icon menus 43
icon notification behavior in 42
and positioning of windows 76, 77

document names 144
document updates 21
document windows

defined 69
opening 74
300
© Apple Computer, Inc. June 2002

I N D E X
document windows (continued)
unsaved changes in 71
untitled 74

documentation, checklist for creating 271
document-modal dialogs (sheets) 96–98
Documents directory 248
documents, storing 248
double-clicking 164, 190
Down Arrow key 172
drag feedback 223
Drag Manager 220, 223
drag-and-drop operations 219–227

clippings in 227
common operations and results 221
copying data in 220
destination feedback for 223–225
drag feedback for 223
drop feedback for 225–227
feedback for 222–227
Finder and 221, 226
moving data in 220
overview of 219
preventing data loss with 221
windows and 220, 222, 223–224

dragging 165, 187
See also drag-and-drop operations

drawers 88–91
Drop Box (Public directory) 248
drop feedback 225–227
dynamic menu items 49

See also toggled menu items

E

Edit menu 59–61
editable text fields. See text input fields
editing text 193–195
ellipses character

in menus and buttons 230
ellipsis character

in menus and buttons 67
in scrolling lists 144

emphasized system fonts 198
End key 174–176

Enter key 167
error checking in dialogs 102
error messages. See alert dialogs
Escape (Esc) key 168, 184
expanded Save dialog 107–108
extensions. See filename extensions, printing

dialog extensions

F

feedback and dialog, as design principle 29
feedback for drag-and-drop operations 222–227

drag 223
drop 225–227
for invalid drops 227
selection 222

file location 245–248
File menu 56–58
filename extensions 249–250

in dialogs 105, 106, 108
in documents 74–75

files, installing 245–247
file-system paths 251
Find Again command (Edit menu) 180
Find command (Edit menu) 61, 180
Finder

as destination for drag-and-drop operations
221, 226

drag-and-drop clippings in 227
progress feedback for drag and drop 226

Finder icons
See also icons
in drag-and-drop operations 226
drop feedback for 226

focus, keyboard 182–184
Font menu 67
Fonts window 63
fonts, standard 197–198
foreign languages 34–37
forgiveness, as design principle 31
Forward Delete (Del) key 168, 174–176
full keyboard access mode 178, 184
function keys 174–176
301
© Apple Computer, Inc. June 2002

I N D E X
G

global compatibility, as design principle 33
graphic design in applications, checklist for

creating 263
graying out. See dimmed items
group boxes 151–154
grouping items

in dialogs 151–154
in menus 47, 65

H

hardware, icons for 209
headings, text in 198
hearing disabilities 38
help balloons. See help tags
Help button 238
Help Center 237
Help key 174–176
Help menu 63, 237
help systems 235–243

accessing 237
Apple’s philosophy of 235
help tags 198, 238–241, 271
Help Viewer 237
searching within 236
setup assistants 241–243

help tags 238–241
checklist for creating 271
text in 198

Help Viewer 237
Hide command (application menu) 56
hierarchical menus 48
highlighting

in destination regions 223
Finder icons in drag and drop 226
of selections 185–192
text in drag-and-drop operations 226

Home key 174–176
hot spots 163

HTML, displaying in Help Viewer 237
human interface design principles. See design

principles

I

icons 201–218
application icons. See application icons
caution 100
checklist for creating 270
conveying with emotional qualities 216
design tips for 218
in dialogs 99
in Dock 42–44
families of 202
Finder, in drag-and-drop operations 226
genres of 202
non-application 207–210
notification behavior of 42
perspective for 213–215
as pop-up menus 134
proxy 72
for setup assistants 241
steps to create 216
in toolbars 211
types of 202–212

image wells 147
images, storing 248
inactive windows

clicking in 82–85
controls in 81
dragging from 222, 226
dragging to 224

initial capital style 231
insertion indicator for dragged text 224
insertion points 171, 174, 224
installing files 245–247
intelligent cut and paste 194
Interface Builder 24
interface design principles. See design principles
302
© Apple Computer, Inc. June 2002

I N D E X
interface elements
capitalization of 231
default alignment of 149
guidelines for Carbon developers 119
guidelines for Cocoa developers 119
help tags and 235
labels for 230
localizing 34
terminology for 230

international considerations 33, 35, 177
Internet preferences 248
invalid drops, feedback for 227
Italic command (Format menu) 180

J

Java tools for applying Aqua guidelines 24

K

keyboard equivalents 176–184
checklist for creating 269
creating your own 180
for international systems 177
reserved and recommended 179

keyboard focus 182–184
keyboard navigation 182
keyboards 166–182
keys

arrow 170–174, 184
character 166–169
function 174–176
modifier 166, 169–170

kMenuAttrAutoDisable attribute 52
kUtilityWindowClass utility window 69

L

label font 198
labels

capitalization of 232
for checkboxes 122
for combo boxes 128
for pop-up menus 124
for push buttons 120
for radio buttons 122
for tabs 139
terminology for 230

language 229–234
alert messages, writing 232
design principles for 34
style and usage 229, 273–283
terminology in the interface 230–232
translation considerations 35

layering of windows 61, 70, 113
laying out dialogs 149–157
Left Arrow key 172
Library directory 247
lists 144, 146
localization of interface elements 34

M

Mac OS X developer documentation website 24
magnifying the screen 38
MDEF (standard system menu definition

procedure) 50
menu bars 52–63
menu elements 45–48
menu items 46–51

capitalization of 46, 231
dynamic 49
grouping of 47–48
naming of 46
text styles in 67
toggled 50

Menu Manager 52
menu titles 46, 231
menus 45–67

Apple 53
application 54–56
attribute groups in 47–48
behavior of 49–51
303
© Apple Computer, Inc. June 2002

I N D E X
menus (continued)
checklist for creating 263
checkmarks in 51, 65
command pop-down 127
contextual 64, 238
dashes in 65
Edit 59–61
File 56–58
Font 67
grouping items in 48
Help 63, 237
hierarchical 48
nonstandard characters in 65–67
pop-up 124–126, 264
pull-down 52–63
scrolling 50
separators in 48
sticky 51
Style 67
symbols in 65
text styles in 65–67
View 61
Window 61

metaphors, use of as design principle 27
MIDI files, storing 248
minimal Save dialog 106–107
minimize button 70, 88
MLTE 199
modeless dialogs 91, 95, 197
modelessness, as design principle 32
modifier keys 166, 169–170
monitors and window size 78
mouse devices 164–165
mouse events, checklist for handling 269
Mouse Keys 39
mouse-down events

Option key modifier with 221
single-gesture selection and dragging and 222

move operations with drag and drop 220
Movies directory 248
moving windows 80
multiple windows for the same document 97,

109
Music directory 248
music files, storing 248

N

Navigation Services 103
New command (File menu) 57
NSDrawer class 89

O

onscreen elements. See interface elements
onscreen help. See help systems
onscreen zooming 38
Open command (File menu) 57, 102
Open dialogs 102
Open Font dialog command (Format menu) 180
Open Recent command (File menu) 57, 102
Option key

drag-and-drop operations and 220–221
uses of 169

Option–Arrow key combinations 172

P

Page Down key 86, 174–176
Page Setup command (File menu) 58
Page Setup dialog 115–118
Page Up key 86, 174–176
palettes. See utility windows
panes 88, 115–118, 138–141
passwords, entering 196
Paste command (Edit menu) 60, 180
pasteboard. See Clipboard
pathnames 251
PDEs (printing dialog extensions) 115
perceived stability, as design principle 31
physical disabilities 39
Pictures directory 248
placards 130
Plain command 66
plug-ins 249
plug-ins, icons for 209
pointers 163
304
© Apple Computer, Inc. June 2002

I N D E X
pointing devices 163
pop-up bevel buttons 134
pop-up icon buttons 134
pop-up menus 124–126, 130, 264

See also combination boxes
preferences

dialogs 55
Preferences command 55, 180
preferences, icons for 209
pressing the mouse button 165
principles of human interface design. See design

principles
Print command (File menu) 58, 180
Print dialog 58, 115–118
printing dialog extensions (PDEs) 115
priorities for implementing the guidelines 23
programming tools for applying Aqua guidelines

24
Programming With the Appearance Manager 24
progress feedback for drag-and-drop operations

226
progress indicators 141
proxy icons 72
Public directory 248
pull-down menus 45–67

behavior of 49–51
elements of 46

push buttons 120–121
capitalization of labels 231
specifications for 121
stacking 121

Q

QuickTime and Apple Help 237
Quit command (application menu) 56
quit operations, dialogs for 110–113

R

radio buttons 122

range-selection for drag-and-drop operations
222

recessed buttons. See image wells
Redo command (Edit menu) 59
region-dependent information, storing 36
relevance control 143
removable media, icons for 209
replace document dialog 113
Reset button 150
resize control 70
resources for storing region-dependent

information 36
Return key 167
Review Changes button 112
Right Arrow key 172

S

Save a Copy command, avoiding 58
Save As command (File menu) 58
Save command (File menu) 58, 179
save dialogs 105–113
Save To command, avoiding 58
screen-zooming feature 177
scroll arrows 85
scroll bars 85–87

See also sliders
scroll tracks 85
scrollers 85
scrolling lists

defined 144
specifications for 146
versus pop-up menus 130
versus sliders 144

scrolling menus 50
scrolling windows 85–87

automatically 87
checklist for proper behavior 266
by position 86
by unit 86
by windowful 86

see-and-point, as design principle 28
Select All command (Edit menu) 61, 180
305
© Apple Computer, Inc. June 2002

I N D E X
selecting 185–192
in arrays 192
changing selections 173, 187–188
by clicking 186
by dragging 187
graphics 192
in tables 192
in text 189–192
word boundaries and 190

selection feedback, and dragging 222, 226
sentence style capitalization 231
separators, menu 48
Services command (application menu) 55
setup assistants 241–243
Sharing preferences 248
sheets (document-modal dialogs) 96–98
Shift key 169, 173
Shift-Command-~ 62, 82
Shift–Command–arrow key combinations 174
Shift–Option–arrow key combinations 173
Shift-Tab key 184
shortcuts, keyboard. See keyboard equivalents
Show Colors command 63
Show Fonts command 63
single-gesture selection and dragging 222
Sites directory 248
sliders 87, 137

See also scroll bars
small versions of controls 120, 160–161
smart cut and paste 194
sound files, storing 248
Space bar 167, 184
speech recognition and synthesis 253–260
spinning arrows 143
standard fonts 197–198
standard pull-down menus 52–63
standard state of a window 80
standard system menu definition procedure

(MDEF) 50
static text fields 144
Sticky Keys 39
sticky menus 51
strings and word boundaries 189
style and usage of language 229, 273–283

Style menu 67
styled text in menus 65–67
submenus. See hierarchical menus
symbols in menus 65
system fonts 197

T

tab controls 88, 138–141, 157
Tab key 167, 184
tables, selecting text in 192
target audience, knowledge of 33
terminology 230–232, 273–283
text

See also fonts; labels
in alerts 98
anti-aliasing 198
checklist for working with 270
design principles for displaying 35
destination feedback in 224
drop feedback in 226
global support of 35
in labels 198

text editing 193–195
deleting 193
inserting 193
intelligent cut and paste 194
and keyboard focus 182
for localization 35
replacing selections 194
in text entry fields 195
using Shift and arrow keys 173

text input fields 144, 195
See also combination boxes

text styles in menus 65–67
text-to-speech converters 35
tick marks in slider controls 137
title bars 70
title style capitalization 231
titles for menus 46
toggled menu items 50

See also dynamic menu items
tool palettes. See utility windows
306
© Apple Computer, Inc. June 2002

I N D E X
toolbars 133–134
commands for 61
customizing 61
icons in 211

tools for applying Aqua guidelines 24
Trash icon 41
Trash, as drag-and-drop destination 225
triangles, disclosure 148
triple-clicking 190
truncating pathnames 251
type-ahead 185

U

unavailable items. See dimmed items
Underline command (Format menu) 180
Undo/Redo command (Edit menu) 60, 180, 220
Unicode 35
universal accessibility, as design principle 37–39
unsaved changes, handling on Close or Quit 109
Up Arrow key 172
updates to this book 21
user control, as design principle 29
user documentation, checklist for creating 271
user domain directories 245–248
user input 163–195

editing text 193–195
keyboards 166–182
mouse devices 164–165
non-Roman script systems 172
pointing devices 163
selecting 185–192

user state of a window 80
user terms, terminology for 230
user-created files, default locations 248
user-friendly language 230
utility windows 91–92

checklist for creating 266
defined 69
using small controls in 160–161

V

video files, storing 248
View menu 61
visual disabilities 38

W

Web Sharing 248
window controls

close button 70, 93
in utility windows 92
minimize button 70, 88
proxy icons 72
scroll bars 85–87
zoom button 70, 81

Window menu 61
windows 69–93

See also alert dialogs; dialogs
activating from the Dock 44
active 81
appearance 70–88
automatic scrolling in 87, 225
behavior 70–88
checklist for 265
closing 79
controls for 70–71, 85–87, 92
displaying on multiple monitors 78
document 69
as drag-and-drop destinations 220, 222,

223–224, 226
expanding 44, 88
in relation to the Dock 41
inactive 81
layering of 61, 70, 113
minimizing 88
modeless 92–93
moving 80
multiple views of same document 97, 109
naming 74–75
307
© Apple Computer, Inc. June 2002

I N D E X
windows (continued)
nondocument 77
opening 74
positioning of 76
resizing 80
scrolling 85–87
special 88–93
standard state 80
titles for 74
user state 81
zooming 80

words, selecting 189
worldwide compatibility, as design principle 33
WYSIWYG, as design principle 30

Z

zoom button 70, 81
in utility windows 92

Zoom command (Window menu) 62
zoomback behavior 227
zooming feature 38, 177
308
© Apple Computer, Inc. June 2002

	Aqua Human Interface Guidelines
	Contents
	Figures and Tables
	Introduction to the Aqua Human Interface Guidelines
	The Benefits of Applying the Interface Guidelines
	Deciding What to Do First
	Tools and Resources for Applying the Guidelines
	If You Have a Need Not Covered by the Guidelines

	Human Interface Design
	Human Interface Design Principles
	Metaphors
	See-and-Point
	Direct Manipulation
	User Control
	Feedback and Communication
	Consistency
	WYSIWYG (What You See Is What You Get)
	Forgiveness
	Perceived Stability
	Aesthetic Integrity
	Modelessness

	Knowledge of Your Audience
	Worldwide Compatibility
	Cultural Values
	Language Differences
	Text Display and
	Default Alignment of Interface Elements
	Resources

	Universal Accessibility
	Visual Disabilities
	Hearing Disabilities
	Physical Disabilities

	The Dock
	The Dock’s Onscreen Position
	Dock Notification Behavior
	Dock Menus
	Clicking in the Dock

	Menus
	Menu Elements
	Menu Titles
	Menu Items
	Grouping Items in Menus
	Hierarchical Menus (Submenus)

	Menu Behavior
	Scrolling Menus
	Toggled Menu Items
	Sticky Menus

	Standard Pull-Down Menus (The Menu Bar)
	The Apple Menu
	The Application Menu
	The Application Menu Title
	The Application Menu Contents

	The File Menu
	The Edit Menu
	The View Menu
	The Window Menu
	The Help Menu
	Menu Bar Status Items
	Other Menus

	Contextual Menus
	Using Special Characters and Text Styles in Menus
	Using Symbols in Menus
	Using Text Styles and Fonts in Menus
	Using Ellipses in Menus and Buttons

	Windows
	Window Layering
	Window Appearance and Behavior
	Textured Windows
	Opening and Naming Windows
	Positioning Windows
	Closing Windows
	Moving Windows
	Resizing and Zooming Windows
	Active and Inactive Windows
	Click-Through
	Scroll Bars and Scrolling Windows
	Automatic Scrolling

	Minimizing and Expanding Windows
	Windows With Changeable Panes

	Special Windows
	Drawers
	When to Use Drawers
	Drawer Behavior

	Utility Windows
	The About Window

	Dialogs
	Types of Dialogs and When to Use Them
	Document-Modal Dialogs (Sheets)
	Sheet Behavior
	When to Use Sheets
	When Not to Use Sheets

	Alerts

	Dialog Behavior
	Accepting Changes
	The Open Dialog
	Saving, Closing, and Quitting Behavior
	Save Dialogs
	Closing a Document With Unsaved Changes
	Saving Documents During a Quit Operation
	Saving a Document With the Same Name as an Existing Document

	The Choose Dialog
	The Printing Dialogs

	Controls
	Control Behavior and Appearance
	Push Buttons
	Push Button Specifications

	Radio Buttons and Checkboxes
	Radio Button and Checkbox Specifications
	Selections Containing More Than One Checkbox State

	Pop-Up Menus
	Pop-Up Menu Specifications

	Command Pop-Down Menus
	Command Pop-Down Menu Specifications

	Combination Boxes
	Combo Box Specifications
	The Text Entry Field
	The Scrolling List

	Placards
	Bevel Buttons
	Bevel Button Specifications

	Toolbars
	Pop-Up Icon Buttons and Pop-Up Bevel Buttons
	Slider Controls
	Slider Control Specifications

	Tab Controls
	Tab Control Specifications

	Progress Indicators
	Text Fields and Scrolling Lists
	Tools for Creating Lists
	Text Input Field Specifications
	Scrolling List Specifications

	Image Wells
	Disclosure Triangles

	Layout Guidelines
	Positioning Controls in Dialogs
	Group Boxes
	Sample Dialog Layouts
	Using Small Versions of Controls

	User Input
	The Mouse and Other Pointing Devices
	Using the Mouse
	Clicking
	Double-Clicking
	Pressing
	Dragging

	The Keyboard
	The Functions of Specific Keys
	Character Keys
	Modifier Keys
	Arrow Keys
	Function Keys

	Reserved and Recommended Keyboard Equivalents
	Key Combinations Reserved by the System
	Recommended Keyboard Equivalents

	Creating Your Own Keyboard Equivalents
	Keyboard Focus and Navigation
	Full Keyboard Access Mode

	Type-Ahead and Auto-Repeat

	Selecting
	Selection Methods
	Selection by Clicking
	Selection by Dragging
	Changing a Selection With Shift-Click
	Changing a Selection With Command-Click

	Selections in Text
	Selecting With the Mouse
	What Constitutes a Word
	Selecting Text With the Arrow Keys

	Selections in Graphics
	Selections in Arrays and Tables

	Editing Text
	Inserting Text
	Deleting Text
	Replacing a Selection
	Intelligent Cut and Paste
	Editing Text Fields
	Entering Passwords

	Fonts
	Icons
	Icon Genres and Families
	Application Icons
	User Application Icons
	Viewer, Player, and Accessory Icons
	Utility Icons

	Non-Application Icons
	Document Icons
	Icons for Preferences and Plug-ins
	Icons for Hardware and Removable Media

	Toolbar Icons

	Icon Perspectives and Materials
	Conveying an Emotional Quality in Icons
	Suggested Process for Creating Aqua Icons
	Tips for Designing Aqua Icons

	Drag and Drop
	Drag and Drop Design Overview
	Drag and Drop Semantics
	Move Versus Copy
	When to Check the Option Key State

	Selection Feedback
	Single-Gesture Selection and Dragging
	Background Selections

	Drag Feedback
	Destination Feedback
	Windows
	Text
	Multiple Dragged Items
	Automatic Scrolling
	Using the Trash as a Destination

	Drop Feedback
	Finder Icons
	Graphics
	Text
	Transferring a Selection
	Feedback for an Invalid Drop

	Clippings

	Language
	Style
	Terminology
	Developer Terms and User Terms
	Labels for Interface Elements
	Capitalization of Interface Elements
	Using Contractions in the Interface

	Writing Good Alert Messages

	User Help and Assistants
	Apple’s Philosophy of Help
	Help Viewer
	Providing Access to Help
	Help Tags
	Help Tag Guidelines

	Setup Assistants

	Files
	Installing Files
	Where to Put Files
	Handling Plug-ins
	Naming Files and Showing Filename Extensions
	Displaying Pathnames

	Speech Recognition and Synthesis
	Speech Recognition
	Speakable Items
	The Speech Recognition Interface
	Speech-Recognition Errors
	Guidelines for Implementing Speech Recognition

	Speech Synthesis
	Guidelines for Implementing Speech Synthesis

	Spoken Dialogues and Delegation

	Checklist for Creating Aqua Applications
	General Considerations
	Installation and File Location
	Graphic Design
	Menus
	Pop-Up Menus
	Windows
	Utility Windows
	Scrolling
	Dialogs
	Feedback and Alerts
	The Mouse
	Keyboard Equivalents
	Text
	Icons
	User Documentation
	Help Tags

	Mac�OS�X Terminology Guidelines
	Document Revision History
	Glossary
	Index

