

 < Home < Developers < Development Support < Documentation

Table of Contents
 Table of Contents | < Previous | Next > | Index

Title -
Palm OS® User Interface Guidelines

About This Document

Why Follow Guidelines?

How This Book Is Organized

What This Book Does Not Cover

Additional Resources

1 Palm OS Application Design

Palm OS Design Principles
Pocket Size
Fast and Simple
Low Cost, Long Battery Life, and High Value
Seamless Connection with Desktops

The Design Process
The Usual Approach
The Recommended Approach
Decide on Design Goals
Know Your Users
Develop User Scenarios
Propose an Implementation
Develop the Initial Design Concept
Complete the Design

2 Fitting In

User Interaction with Palm Powered Handhelds
Graffiti Writing
Onscreen Keyboard
HotSync Operation
Hard Keys
Icons in the Graffiti Area
External Keyboard
Application Controls

Integrating with the Application Launcher
Application Icons
Version String
Default Application Category

General Application Layout Guidelines
Main Application Forms
Controls
Control Placement
Labels
Fonts
Graphical Controls
Custom Controls
Application Categories

General Application Behavior Guidelines
Launching the Application

http://www.palm.com/
http://www.palmos.com/index.html
http://www.palmos.com/dev/
http://www.palmos.com/dev/support
http://www.palmos.com/dev/support/docs

Exiting the Application
Supporting Global Find
Respecting User Preferences
Allowing System Messages

Becoming Compatible Worldwide

3 Forms

Choosing between Types of Forms
Use Modal Forms Sparingly
Avoid Modal Forms for Lengthy Data Entry

Modeless Forms
System Supplied Behavior
Look and Feel
Breaking the Rules

Modal Forms
System Supplied Behavior
Look and Feel
Breaking the Rules

Alert Dialogs
Types of Alerts
Look and Feel
Breaking the Rules

Progress Dialogs

About Dialogs

Tips Dialogs

4 Executing Commands

Choosing between Buttons and Menus
Limit the Total Number of Commands
Use Buttons for Important Tasks
Use Menus for Destructive Commands
Don't Duplicate Commands
Remember the Goal: Minimize Taps
Use Buttons for Commands Executed by New Users
Don't Provide Save or Exit Commands

Command Buttons
System Supplied Behavior
Look and Feel
Breaking the Rules

Menus
System Supplied Behavior
Look and Feel
Breaking the Rules

5 Presenting Options

Choosing Which Element to Use
Choosing Several of Many Options
Choosing One from Many Options
Implementing a Combo Box

Check Boxes

Pop-Up Lists
System Supplied Behavior
Look and Feel
Breaking the Rules

Push Buttons
System Supplied Behavior
Breaking the Rules

Selector Triggers
System Supplied Behavior
Look and Feel
Breaking the Rules

Sliders
System Supplied Behavior
Look and Feel

6 Displaying Data

Choosing Which Element to Use

Fields
System Supplied Behavior
Look and Feel
Breaking the Rules

Lists
System Supplied Behavior
Look and Feel
Breaking the Rules

Tables
System Supplied Behavior
Look and Feel

7 Scrolling

Choosing between Scroll Bars and Scroll Buttons

Scroll Bars
System Supplied Behavior
Look and Feel
Breaking the Rules

Scroll Buttons
System Supplied Behavior
Look and Feel
Breaking the Rules

8 Color and Graphics

Palm OS Color Support

Colors of User Interface Elements

Graphics

A Ten Things to Remember

Index

©2001 Palm, Inc. All rights reserved. Training | Knowledge Base | Palm OS Platform | Legal Notices

http://www.palmos.com/dev/training/
http://www.palmos.com/dev/support/kb/
http://www.palmos.com/

 < Home < Developers < Development Support < Documentation

Palm OS® User Interface Guidelines
 Table of Contents | < Previous | Next > | Index

Title -
Palm OS® User
Interface Guidelines

Palm OS® User Interface Guidelines
CONTRIBUTORS

Written by Jean Ostrem

Engineering contributions by Bob Ebert, Roger Flores, JB Parrett, Jesse Donaldson, Ron
Fernandez, David Fedor, Greg Wilson, Clif Liu, Brian Maas, Ezekiel Sanborn De Asis, Brent
Gossett, and Maurice Sharp

Special thanks to Catherine E. White, Neil Rhodes, Julie McKeehan, Alexander Hinds, and Lee
Fyock

Copyright © 1996 - 2002, Palm, Inc. All rights reserved. This documentation may be printed
and copied solely for use in developing products for Palm OS software. In addition, two (2)
copies of this documentation may be made for archival and backup purposes. Except for the
foregoing, no part of this documentation may be reproduced or transmitted in any form or by
any means or used to make any derivative work (such as translation, transformation or
adaptation) without express written consent from Palm, Inc.

Palm, Inc. reserves the right to revise this documentation and to make changes in content
from time to time without obligation on the part of Palm, Inc. to provide notification of such
revision or changes. PALM, INC. MAKES NO REPRESENTATIONS OR WARRANTIES THAT THE
DOCUMENTATION IS FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR
YOUR USE. THE DOCUMENTATION IS PROVIDED ON AN "AS IS" BASIS. PALM, INC. MAKES NO
WARRANTIES, TERMS OR CONDITIONS, EXPRESS OR IMPLIED, EITHER IN FACT OR BY
OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING WARRANTIES, TERMS, OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, PALM, INC. ALSO EXCLUDES FOR ITSELF AND ITS
SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING
NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR
PUNITIVE DAMAGES OF ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF
BUSINESS, LOSS OF INFORMATION OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF
OR IN CONNECTION WITH THIS DOCUMENTATION, EVEN IF PALM, INC. HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

Palm OS, Palm Computing, HandFAX, HandSTAMP, HandWEB, Graffiti, HotSync, iMessenger,
MultiMail, Palm.Net, PalmPak, PalmConnect, PalmGlove, PalmModem, PalmPoint, PalmPrint,
and PalmSource are registered trademarks of Palm, Inc. Palm, the Palm logo, MyPalm,
PalmGear, PalmPix, PalmPower, AnyDay, EventClub, HandMAIL, the HotSync logo, PalmGlove,
PalmPowered, the Palm trade dress, Smartcode, Simply Palm, WeSync, and Wireless Refresh
are trademarks of Palm, Inc. All other brands are trademarks or registered trademarks of their
respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENT
ACCOMPANYING THE COMPACT DISC.

Palm OS User Interface Guidelines
Document Number 3101-001
January 10, 2002
For the latest version of this document, visit

http://www.palmos.com/dev/support/docs/.

Palm, Inc.
5470 Great
America Pkwy.
Santa Clara, CA
95052
USA
www.palmos.com

L

©2001 Palm, Inc. All rights reserved. Training | Knowledge Base | Palm OS Platform | Legal Notices

http://www.palm.com/
http://www.palmos.com/index.html
http://www.palmos.com/dev/
http://www.palmos.com/dev/support
http://www.palmos.com/dev/support/docs
http://www.palmos.com/dev/support/docs/
http://www.palmos.com/
http://www.palmos.com/dev/support/classes/
http://www.palmos.com/dev/tech/kb/
http://www.palmos.com/

 < Home < Developers < Development Support < Documentation

About This Document
 Table of Contents | < Previous | Next > | Index

Title -
Palm OS® User
Interface Guidelines

About This Document

Why Follow Guidelines?

How This Book Is Organized

What This Book Does Not
Cover

Additional Resources

This book describes how to design applications for Palm PoweredTM handhelds so that they
conform to Palm, Inc's user interface guidelines. Read it if you are an application designer or a
developer and you are considering creating applications that run on Palm OS®.

Why Follow Guidelines?
Users have come to know and love their Palm Powered handhelds. They expect the applications
that run on them to look a certain way and behave a certain way.

Follow the guidelines presented in this book, and your application will look and feel like other
Palm OS applications. Users will learn it more quickly, and you'll be well on your way to
creating an application that they love and recommend to their friends and colleagues. As a
bonus, you'll be able to focus on creating and improving the application itself because
documentation requirements and calls to technical support are reduced if the application works
the way users expect it to work.

Ignore the guidelines, and you invite user frustration and confusion. Your users may adapt to
your application eventually, but you run the risk of alienating a customer base. Sales can
suffer.

At the same time, guidelines are not hard and fast rules. A guideline can be broken, but you
should do so only after you know why it is there, you have considered all factors involved, and
you believe that breaking the guideline is more beneficial to your users than following it would
be.

Designing a proper user interface may feel at first like you are "wasting" a lot of time agonizing
over the user interface rather than focusing on the nuts and bolts of your application. While
most developers acknowledge the importance of user interface design, it's easy to let design
take a back seat until the application is working properly. If you do take the time to get the
interface right, however, you'll achieve greater success in the long run.

Consider as a case study the success the Palm Powered handheld has had compared its major
competitor, the Pocket PC handheld. The Palm Powered handheld was not the first handheld on
the market, but it was the first one to be successful because it focused on giving users what
they wanted. Palm OS was designed from the ground up with users in mind. Designers focused
on what users would want to do with a handheld and provided just that functionality. Palm,
Inc. adds more features only when they can do so without diminishing the overall user
experience.

In contrast, the first versions of the Windows Pocket PC operating system were designed by
stuffing as many features of a desktop Windows system as possible into a pocket-sized form
factor. The resulting user experience has been so negative that it has forced the designers
back to the drawing board more than once.

Windows Pocket PC handhelds have been on the market for more than three years. Only
recently have those devices begun to gain acceptance. In the meantime, 17.5 million Palm
Powered handhelds have been sold compared to 2 million Pocket PC handhelds (see Figure 1).

Figure 1 Sales of Palm Powered vs. Pocket PC handhelds

http://www.palm.com/
http://www.palmos.com/index.html
http://www.palmos.com/dev/
http://www.palmos.com/dev/support
http://www.palmos.com/dev/support/docs

You can see that if you design your interface right the first time, you get a big head start.

How This Book Is Organized
This book is organized as follows:

 Chapter 1 describes the basic principles behind the Palm user interface guidelines, and it
describes the design process used at Palm, Inc. Read it to get a good grounding in Palm interface
design that prepares you for the chapters that follow.

 Chapter 2 tells you how to design an application so that it fits in well with other Palm OS
applications.

 Chapter 3 through Chapter 8 help you with user interface element selection.

Each chapter describes a group of elements that have a common purpose: displaying data,
entering commands, and so on. The first section in each chapter describes how to determine
which of the elements in the chapter is best for your situation.

The remaining sections give appearance and behavior guidelines specific to each element.
Within those sections, you'll find specific display recommendations, descriptions of the
behavior Palm OS supplies for the element, and descriptions of the behavior your code must
provide.

Because user interface design is not an exact science, many sections end with examples of
when to break the rules.

 Appendix A lists the ten most important things to remember about Palm OS application design.

What This Book Does Not Cover
This book focuses solely on design. It does not provide instructions on how to use a
development environment to create user interface resources, and it does not discuss which API
calls to use to produce a desired behavior from a user interface element.

Augment the information in this book with the following:

 The Palm OS Programmer's Companion, which provides conceptual and task-based information
for developers

 The Palm OS Programmer's API Reference, which contains reference material for Palm OS
developers

 Documentation for the development environment of your choice

Additional Resources

 Documentation

Palm publishes its latest versions of this and other documents for Palm OS developers at

http://www.palmos.com/dev/support/docs/

 Training

Palm and its partners host training classes for Palm OS developers. For topics and schedules,
check

http://www.palmos.com/dev/support/classes/

 Knowledge Base

The Knowledge Base is a fast, web-based database of technical information. Search for
frequently asked questions (FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/tech/kb/

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/support/classes/
http://www.palmos.com/dev/support/kb/

©2001 Palm, Inc. All rights reserved. Training | Knowledge Base | Palm OS Platform | Legal Notices

http://www.palmos.com/dev/support/classes/
http://www.palmos.com/dev/support/kb/
http://www.palmos.com/

 < Home < Developers < Development Support < Documentation

1 Palm OS Application Design
 Table of Contents | < Previous | Next > | Index

Title -
Palm OS® User
Interface Guidelines

1 Palm OS Application
Design

Palm OS Design Principles

Pocket Size

Fast and Simple

Low Cost, Long Battery
Life, and High Value

Seamless Connection with
Desktops

The Design Process

The Usual Approach

The Recommended
Approach

Decide on Design Goals

Know Your Users

Develop User Scenarios

Propose an Implementation

Develop the Initial Design
Concept

Complete the Design

This chapter provides some principles that you should follow when designing your Palm OS®
application. It begins by describing how a Palm PoweredTM handheld differs from other types of
computers and how these differences affect your user interface design. Then it outlines a
design process that helps you to create a successful user interface.

This chapter supplies only very general design principles. Read it to give yourself a grounding
in Palm OS design. Specific guidelines are given in the remaining chapters of this book.

Palm OS Design Principles
A Palm OS application should provide information that users will want to access when they are
away from their desks. Its user interface should allow the user to get to the most relevant
information as quickly as possible.

It's common for beginning Palm OS programmers and designers to believe that a Palm
Powered handheld is simply a very small laptop. These designers try to port their existing
desktop application's look and feel directly over to the handheld, resulting in a very complex
and often unusable interface.

Instead of duplicating a desktop application's look and feel, it is better to provide only the
features that your users will want on the handheld. Handhelds are designed and used for
different purposes than laptop computers. Good UI design for any platform begins by
considering what the user needs to accomplish, and the Palm platform is no different in this
regard. If you simply try to duplicate your desktop user interface on the handheld, your users
may become frustrated and give up on your application.

This section describes some of the handheld's key characteristics and how they should
influence the design of your user interface.

 Pocket Size

 Fast and Simple

 Low Cost, Long Battery Life, and High Value

 Seamless Connection with Desktops

Pocket Size

A PalmTM handheld has a small screen and no keyboard-it is designed to fit in a shirt pocket.
The small device size has the following effects on application design.

Applications Must Limit Data Entry

Do not require users to enter a lot of data on the device itself. Because there is no keyboard,
users mainly enter characters using Graffiti® writing or a keyboard dialog. While these are
useful ways of entering data, they are not as convenient as using the full-sized desktop
computer with its keyboard and mouse. External keyboards exist and there are some Palm
Powered handhelds with small built-in keyboards, but neither of these should be considered a
requirement.

Menus Are Hidden

To allow more room for data, the menu bar is not displayed by default. Instead, the menu bar
is displayed by tapping an icon on the handheld. Because menus are hidden, many users do
not realize that they are available. You'll need to limit your use of menus to power commands
not necessary for the basic use of the application.

No Button Toolbars

It's common to see a long strip of buttons at the top of a desktop application. These button
toolbars are not ideal for the Palm platform because the buttons are too small to tell apart (see
Figure 1.1). Instead, you must provide buttons only for the essential commands.

Figure 1.1 Applications should not have toolbars

http://www.palm.com/
http://www.palmos.com/index.html
http://www.palmos.com/dev/
http://www.palmos.com/dev/support
http://www.palmos.com/dev/support/docs

Less Is More

To save space, sacrifice features that don't belong on a handheld. On a desktop system, users
use 20% of an application's features 80% of the time. Your application should provide only that
top 20% of features. Save any other functionality for the desktop application.

On a desktop system, it's easy to just add another button to the button toolbar or add another
menu. For a Palm OS application, you'll have to resist that temptation. Otherwise, your screen
becomes too cluttered, and your application becomes too complicated to use.

Fast and Simple

The Palm handheld is fast to use and easy to learn. Because the handheld's main purpose is to
make it easy to organize and manage your life, it requires a minimal learning curve. Users
must be able to pick up a Palm Powered handheld and, with no training or instruction, navigate
between applications (without getting stuck) and execute basic commands within five minutes.

This contrasts with desktop systems. Although desktop systems are also designed to be easy to
use, there is a desktop paradigm that new users must spend a day or two learning.

Because the Palm Powered handheld must be fast and easy to use, it has the following effects
on application design.

Perceived Speed Is Important

On a desktop, users don't mind waiting a few seconds while an application loads because they
plan to use the application for an extended amount of time. On a handheld, users want to
quickly look something up and then go on about their lives, and they do this several times a
day (see Figure 1.2).

Figure 1.2 Opposite usage patterns

Optimize your application to these short bursts of user activity. Remember that requiring a
user to spend an extra 30 seconds to find necessary information is excusable when they are
sitting down for 3 hours at a desktop computer but cumbersome on a handheld when that is
the only thing they are going to do before they turn it off.

As a rule of thumb, the user should be able to keep up with someone on the telephone when
setting up appointments, looking up phone numbers, and so on. Priorities include the ability to:

 Execute key commands quickly

 Navigate to key screens quickly

 Find key data quickly (for example, phone numbers)

Minimize Required Steps

Minimize the number of steps a user must perform to see vital information. Display the most
essential information on the first screen of the application. For example, Date Book always
displays today's calendar or agenda when it starts up. It does so because most users access
the Date Book to see their current schedule or agenda 80% of the time.

Reduce clutter so that users will find the information they need quickly. Strive for a balance
between providing enough information and overcrowding the screen.

Place command buttons on the first screen that perform the tasks the user will want to perform
most often. Accomplishing common tasks should be fast and easy.

Choose the number of buttons on the screen carefully:

 The fewer buttons on the screen, the less time it takes to learn how to use the product. If there
are too many buttons, users are forced to hunt and peck to find what they need until they
eventually learn the placement of each button.

 On the other hand, keeping a few frequently used buttons on screen helps reduce the time
spent learning basic functionality.

Chapter 4, "Executing Commands," covers the topic of choosing the number of command
buttons in more detail.

Minimize Taps

Most information about that data should be accessible in a minimal number of taps of the
stylus - one or two.

Desktop user interfaces are typically designed to display commands as if they were used
equally. In reality, some commands are used very frequently while most are used only rarely.
Similarly, some settings are more likely to be used than others. On Palm Powered handhelds,
more frequently used commands and settings should be easier to find and faster to execute.

 Frequently executed software commands should be accessible by one tap.

 Infrequently used or dangerous commands may require more user action.

Table 1.1 shows how the frequency of an action maps to its accessibility in the Date Book
application.

Table 1.1 Frequency of actions

Frequency Example Accessibility

Several times
per day

Checking
today's
schedule or to-
do items

One tap

Several times
per week

Scheduling a
one hour
meeting
starting at
the top of the
hour

One tap, write in
place

A few times a
month

Setting a
weekly
meeting
(repeating
event)

Several taps,
second dialog box

This goal of minimizing taps can be taken too far. It must be balanced with other guidelines.
For example, using a command button generally minimizes the taps to perform a command,
but if you have too many buttons, you overcrowd the screen and introduce confusion into the
interface.

Some designers break the behavior guidelines for a particular element for the sole purpose of
minimizing taps. User interface elements should behave the way users expect them to behave
unless there is good reason for them not to. Minimizing taps is not always a good enough
reason to break guidelines.

Be Consistent

Consistency reduces the time needed to learn an application by limiting the number of things
that people need to keep in their heads at once. The user should not have to memorize an
entire set of rules to use the handheld easily. For example, the up arrow key should not do

different things on different screens.

If possible, make your application consistent with the handheld's built-in applications; users
know how to interact with them and will quickly learn your application if the user interface is
similar to applications they already know.

Optimize Frequent Tasks

Most users launch Date Book to see today's schedule most of the time. Date Book helps with
this task. Not only does it open to today's schedule, it also always tries to show you all of
today's appointments, even if it means some of the hour blocks disappear. For example, if you
have appointments at 8:00 AM, 3:00 PM, and 8:00 PM, the Date Book shows you all three
appointments without forcing you to scroll to see that last appointment. To do so, it hides the
unused hour blocks between 4:00 PM and 8:00 PM. (See Figure 1.3.)

Figure 1.3 Datebook calendar optimization

Similarly, the Address Book is optimized to display a large number of contacts because most
users will have long lists of contacts. It allows the user to divide contacts into different
categories and display only the contacts in the selected category. It also has a look-up field on
the main screen that allows the user to easily navigate to the contact he or she wants by
entering a Graffiti character.

Consider providing power user features for people who use your application often. These
advanced features should be easily accessible but not get in the way. For example:

 If you start to write a Graffiti character or number while in Date Book, Date Book assumes you
are trying to schedule a new appointment and helps you do so. However, the Date Book still
shows a New command button so that novice users will know how to create an appointment.

 The Address Book beams your business card if you hold down the hard key. This is also a
power user feature that newcomers can discover eventually.

Low Cost, Long Battery Life, and High Value

Previous handheld products failed in part because they cost too much and devoured batteries.
For this reason, two key design goals of Palm handhelds have been to have the handheld fall
into a specific price range and have readily available batteries that last a long time. Many Palm
Powered handhelds run on readily available, cheap AAA batteries, and a battery life of one
month is not uncommon.

Keeping costs down and battery life high are key factors in determining which hardware
components are selected. Those component choices, in turn, affect the decisions you make
when designing your applications.

 Some Palm Powered handhelds have lower quality screens than competing handhelds because
the low quality screen uses less power, requiring the user to replace the batteries less frequently.

 The processor was also chosen for its low power usage rather than for its speed. All existing
Palm Powered handhelds have processors with clock speeds ranging from 16 MHz to 33 MHz, with
faster processor support planned for the future.

The Palm designers felt that "perceived speed" was more important than actual processing
speed, therefore a relatively low speed processor could be used to maximize battery life.
Perceived speed is the speed of the overall user experience. If a user can start up the Palm
Powered handheld and see a list of today's appointments faster than he or she can on a
competitor's handheld, then processing speed does not matter.

 Graffiti power writing software was another design decision affected by the battery selection.
During the design of the first Palm handhelds, users were clamoring for natural handwriting
recognition. However, natural handwriting recognition would require a more powerful processor
and more memory, which together required bigger batteries. Adding all these things to a
handheld would have weighed it down and made it cost too much for the market. Instead, the

Palm designers bet that users would settle for good-enough handwriting recognition if the result
was long battery life.

As the handheld evolves, some of these decisions made by the designers of the initial Palm
handheld are no longer as relevant as they once were. For example, some handhelds come
with lithium ion rechargeable batteries built in rather than using the AAA batteries. Users do
not worry about battery life as much if they can simply place the handheld in the recharger at
the end of the day. Because maximizing battery life is not as important on these handhelds,
they can use high resolution screens and faster processors.

Keep User Costs Down

Your application should help keep user costs down by maximizing battery life. To maximize
battery life, consider your actions carefully before performing tasks that consume a lot of
power. Serial communications, IR communications, playing sounds, disabling the auto-off
feature, and extended animation are among the tasks that consume a lot of power. When your
application must perform these tasks, it should do so in a way that consumes as little power as
possible. If you open the serial port, for example, you should close it immediately after you are
done using it.

Don't make the mistake of deciding that battery life is not ever important to users of handhelds
with rechargeable batteries. The lithium ion batteries often do not last as long as two AAA
batteries. Many users appreciate the convenience of being able to go for several days without
charging. Others often travel on business and may be away from their chargers for days at a
time. You should respect the experience of those users.

You affect battery life more with your programming choices than you do with your user
interface design choices. See the Palm OS Programmer's Companion for programming tips on
reducing the amount of power consumption.

Seamless Connection with Desktops

Desktop connectivity is an integral component of the Palm OS platform. The handheld comes
with a cradle that connects to a desktop computer and with software for the desktop that
provides "one-button" backup and synchronization of all data on the device with the user's
desktop.

Many Palm OS applications have a corresponding application on the desktop. To share data
between the handheld's application and the desktop's application, you must write a conduit. A
conduit is a plug-in to the HotSync technology that runs when you press the HotSync button. A
conduit synchronizes data between the application on the desktop and the application on the
handheld. The conduit that you write must handle several different environments:

 One handheld may synchronize with several desktop computers.

 Several handhelds may synchronize with different users on a single desktop computer.

 Data can be entered either on a desktop or on the handheld.

The conduit must run without user intervention. The user is not required to watch the desktop
screen or be anywhere near the desktop screen while the device synchronizes. The conduit
must determine which data records are the most relevant, considering all factors involved, and
then decide on its own which records are copied between the desktop computer and the
handheld.

The Design Process
In the previous section, you learned the key characteristics of the Palm handheld and how
these characteristics should affect your application's user interface. The handheld's
characteristics were determined by a design process that focused on the user: the user wanted
a fast, easy-to-use, inexpensive device with a long battery life. All design decisions were made
to give users just that.

This section introduces a user-centered design process used by successful designers both
inside of and outside of Palm, Inc. You can ensure that your application is successful if you
follow this process. A design process that focuses on the user is nothing particularly new or
unique; successful interface designers for any platform follow a similar process.

Even though there's nothing earth-shattering here, all too often the user-centered design
process is not followed. The results are poor user interfaces. For this reason, this section
begins by describing the wrong approach to interface design, an approach all too commonly
followed. Then it describes the recommended approach.

The Usual Approach

As soon as you know what application you're working on, it is very tempting to jump right in
and start coding features, thinking you'll fix any design problems later in the development
cycle. However, this is almost always the wrong way to design an application, particularly a

Palm OS application.

To an extent, you can get away with a poor user interface when you have a large, colorful
screen on a computer with almost unlimited processing power. Design flaws on a Palm Powered
handheld are more visible.

Because application developers are comfortable with technology, their first instinct often is to
focus on technological solutions. The actual user problem that they are trying to solve gets lost
in the rush to add cool features.

Suppose you have been assigned to design an application for book collectors. These users want
to keep track of the books they own, to whom they have lent the books out, and when they are
due back. A typical technology-focused approach to this problem goes something like this:

"This application needs at least two screens. The main screen lists the books, and the
second screen is a detail screen showing if the book is lent and to whom. We need a New
button to create a book, so we might as well add an Edit button and a Delete button just in
case. We can sort the books by title and author. For data entry, we'll allow users to scan in
the ISBN number for newly acquired books in case they have a Symbol bar code scanner.
That's much faster than Graffiti writing. We can allow the users to beam books back and
forth to each other. We'll also link the application to Web Clipping applications in case they
have a Palm VII series handheld and want to buy a book online with it..." and so on.

Shortly after this initial thought process, the initial sketches are drawn (see Figure 1.4).

Figure 1.4 Initial design sketches

As you can see, this method of application design more closely resembles a brainstorming
session than a reliable process.

Such a process may or may not lead you to an acceptable application. Some problems with this
initial design:

 Scanning the ISBN number might be nice, but that only gives you the ISBN number. The user
must then translate that into a book title by looking up the number on the web. What if the user
does not have a bar code scanner on the device or owns a lot of old books that do not have an
ISBN number?

 Beaming the book title has little utility and requires a lot of processing power for the little
utility it provides. What would it mean to beam a book title to someone else?

 Forcing the user to navigate to a detail screen to show who has borrowed the book might
become tedious if what the user really wants is to scan through his or her list of books and know
at a glance which books have been loaned out.

The Recommended Approach

Now that we've learned a little bit about the usual approach to interface design, let's discuss a
better approach. The better approach is a multi-step process that is more likely to give you the
desired results: lots of happy users willing to part with their money. The steps to the right
approach are:

 Decide on Design Goals

 Know Your Users

 Develop User Scenarios

 Propose an Implementation

 Develop the Initial Design Concept

 Complete the Design

You might not follow all of this design process exactly as it is described here, particularly if you
work in a small company or by yourself. Creating software is a complicated task affected by a
lot of variables. Every project is unique. Still, it's useful to know about this recommended user
interface design process and to try to follow it as closely as possible.

Decide on Design Goals

The Palm designers made decisions to achieve these design goals: a device that fits in a shirt
pocket, is fast and simple to use, requires no learning curve, is low cost, and has a worry-free
battery life. Just as the Palm designers started with their design goals, you should start with a
design goal for your application. A generic set of design goals for all Palm OS applications is the
following:

 Easy to learn and use

 Convenient

 Provides access to what most people want and need most of the time

 Helps users quickly achieve their goals

Your application may have additional goals, but to be successful on the Palm platform, it should
achieve the design goals listed above.

In a small company, you'll no doubt come up with the application idea and its design goals on
your own. In a large company, the design goals should come from the Marketing department.
Consider the Books application example from the previous section. The statement of what the
application should do may have come from the Marketing department of a large company or it
may have been an independent idea. "Create an application that allows book collectors to keep
track of their books, to whom they have loaned them out, and when." To this, the traditional
Palm design goals simply adds adverbs: "Create an application that allows book lovers to
quickly and easily keep track of their books and to whom they have loaned them."

Know Your Users

Users come in all shapes and sizes. If you are like most computer professionals, then you are
not the typical user of a Palm Powered handheld or of your future product.

Handhelds attract many people outside the computer industry due to their ease of use.
Because you work in the computer industry, you are comfortable with the differences between
"hardware," "software," and "applications." Typical users outside of the industry see the
handheld as one integrated device. They have no notion of what indicates a hardware problem,
a software problem, or an application bug. They only know that they have a task to perform,
and they want their Palm Powered handhelds to help them with that task.

Examine the user base your application is likely to attract. If possible, set up a focus group to
learn more about your target users and why they want to use your application. A wine
database application is likely to attract a wide non-technical audience. A utility to examine
internal memory is going to have a mostly technical audience. A computer game might attract
both the technical and non-technical members of the Palm community.

For broad audiences, you'll want to follow the built-in applications as much as possible. Users
already know how to use those, so they will implicitly know how to use your application as well.
Don't "improve" the features, such as supporting the ability to search on suffixes as well as
prefixes in the global Find facility.

If you have a narrow, highly technical audience, you can probably get away with a lot more in
your user interface design; however, it never hurts to have an excellent interface. Your users
will appreciate your application more if you do.

Like the design goals from the previous section, a description of the typical user is another
piece of information that often comes from a Marketing department. A small company may not
have the luxury of a large Marketing department with expertise in market research; however,
you can still identify target users among your friends and family and talk to them about their
needs.

For our Books application, we have discovered that people who are likely to buy our application
have the following characteristics:

 They love to read.

 They typically own hundreds of books.

 They spend much free time browsing book stores.

 They often can't remember which books they own, which they don't, and which they own but
still haven't read.

 Many freely loan books to friends, which becomes a problem when trying to determine which
books they own.

 Many are not very comfortable with technology.

Because a large part of our target audience is uncomfortable with technology, we'll need to
make our application as easy to use as possible, and we'll need to focus on making it work like
the built-in Palm OS applications with which our user base is already familiar.

Develop User Scenarios

After gathering a picture of your typical user, begin your design by considering that user. What
problem is the user trying to solve by using your application? Under what circumstances will
they be using the application? Will they be at the office, the airport, at home, or in the car?

Develop some user scenarios. User scenarios are statements of what the user will do with the
application and when. "The user needs to access email five times a day while riding on the
subway" is a good scenario statement. It describes what the user is doing, where he or she is
doing it, and how often. The best way to develop user scenarios is, of course, to talk to
potential users, whether in focus groups or through other means.

To determine user scenarios, you must know these things:

 The likelihood that the user will perform a task

 The frequency with which the user will perform the task

For example, starting up the Date Book to access today's schedule is both likely and frequent-it
is often done several times throughout the day. Tasks that are likely and frequent should be
the easiest to perform.

Scheduling an appointment is another task that is both likely and frequent; however,
scheduling a appointment that begins at other than a half hour or hour (for example, at 3:05)
is unlikely and infrequent. We might allow people to schedule such appointments, but we can
require more taps to do so because we know it is infrequently done.

A task may be likely but infrequent. For example, users are likely to run the Welcome
application because it is always the first application run when they start up a new Palm
Powered handheld. However, it usually is only run that one time, so its use is infrequent.

Develop as many scenarios as possible, including those you imagine to be unlikely and
infrequent. This is a tricky stage in the design process. It's easy to come up with only scenarios
that support preconceived notions of the application development team. If you focus only on
those scenarios, you'll end up with an application that meets the needs of your team but not
necessarily the needs of your users. An exhaustive user scenario effort keeps you focused on
the needs of the users.

Remember our discussion of the wrong approach to designing the Books application? We came
up with a design that involved bar code scanning, beaming, and buying books using a Palm VII
wireless Internet connection. These were not bad ideas, but we've since learned that our user
base is likely to include many people uncomfortable with technology. Such people are typically
attracted to the lower-end handhelds such as m100s. A few may even own Palm Professionals.
Our users are not likely to have Palm VII handhelds, and they most certainly don't have
Symbol bar code scanners. So we'll have to abandon our ideas of scanning ISBN numbers and
buying books from the Internet. Beaming may also be discarded if we discover that there are,
in fact, a large number of Palm Professional users out there. Any reliance on color in our
application is most certainly not a good idea. Color handhelds tend to be more expensive. We
can't guarantee that people have them.

Since the technology-focused design has led us down the wrong path, let's consider doing
some user scenarios for the application:

 Users want to see a list of all of the books they own, which may number in the hundreds.
(likely, frequent)

 Users are at a bookstore and want to see if they own a particular book. (likely, frequent)

 Users are at a bookstore and want to add a newly purchased book to the list. (likely, frequent)

 Users are away from their desktop computers and want to buy a book on the Internet
(unlikely, infrequent)

 Users want to lend a book to a friend (likely, infrequent).

 Users are at home, looking for a particular book, and want to see if it is loaned out. (likely,
frequent)

 Users want to see all books they have loaned out. (likely, infrequent)

 Users want to see all books they own by a particular author or about a particular subject.
(likely, infrequent)

 Users want to see all books they have loaned to a given person and when they are due back.
(unlikely, infrequent)

 Users have a bar code scanner and want to scan in the ISBN number of a new book. (unlikely,
infrequent)

Notice that we have not yet focused on how to solve the users problems in these first three
design steps (decide on design goals, know the user, and develop user scenarios). Instead, we
have focused on understanding our users so that we can solve their problems.

Propose an Implementation

Now that we have an idea of who the user is and how the user will use our application, the
next step is to describe the proposed implementation of the application. This description should
focus on the feel of the application rather than its look. In this way, the proposed
implementation flows naturally from the user scenarios.

The idea behind this step is twofold. First, once everybody involved in designing and
developing the application agree upon the proposed implementation, engineers can begin to
architect the features at the same time that human interface designers are designing the look.
Second, by focusing on the feel of the application, you postpone the traditional arguments
about the application look, which may unnecessarily delay software development at this point.

If you are working alone, of course, these two reasons for proposing an implementation before
developing the look are not relevant. You may find it helpful to write the software without
focusing much on the look until a little later, or you may not. Either way, you still should
develop an implementation that flows from the user scenarios and the description of the typical
users you created in the previous steps.

The proposed implementation for our Books application is:

 The initial screen will look very similar to the Address Book application. It will be a list of all
owned books, sorted alphabetically by title. We've decided to mimic Address Book's main screen
so that users will instantly feel familiar with our application.

 Because users may own hundreds of books, we will allow them to enter Graffiti characters to
quickly navigate through this list of books in the same way they navigate through the Address
Book.

 To allow the user to quickly determine whether he or she owns a particular book, we will
provide filters that allow special displays: All books by a particular author, all books on a
particular subject, all books currently on loan.

 The initial screen will provide ways to enter a new book or to see more details about a book.

 The Details screen will have fields for title, author, and category and will have a way to loan a
book to a friend.

 The main screen will have a way to indicate which books are out on loan so that the user can
quickly scroll through the list and see which books are out on loan.

 To ease data entry, we'll provide a conduit that integrates with a desktop application so users
can enter most of their books on the desktop and synchronize them down to the handheld. People
often buy several books by the same author, so we'll provide name completion for the author
name based on existing authors in the database.

 We'll also integrate with other built-in applications. Loaning a book to a friend is linked to the
Address Book as the friend's name and contact information is likely to be included there. We
might integrate with Date Book by entering an event on the date that a friend is to return a book;
however, because many people do not assign due dates when they lend to friends, we would
make this an optional feature enabled by a user preference rather than a feature that is always
available.

Recall that in our technology-focused design approach, we immediately came up with an Edit
and Delete button in addition to the New button (plus scanning, beaming, and buying books
through the wireless Internet-ideas we all but eliminated in the previous steps). In focusing on
what tasks the user will perform most often, the Edit and Delete buttons did not come up in
the conversation. Information about a book does not change, so the Edit button isn't as
important as it is in, say, the Address Book. Book lovers rarely throw away books either.
However, we should provide some way for users to correct mistakes in data entry, so we might
provide Edit and Delete menu items or command buttons on a subscreen.

Develop the Initial Design Concept

After you have described the feel of the application, it is time to develop the look. Begin by
focusing on the initial design concept. The initial design focuses on the main screens. At this
point, selection of user interface elements comes into play. However, the exact details of the
user interface may not be pinned down and subscreens, such as alerts, may be ignored until
later on.

It's important to consider the usage frequency and likelihood of your user scenarios. More
frequently used commands and settings should be easier to find and faster to execute.

To make your application's important features easily accessible, choose the appropriate user
interface element. Element selection is covered in detail in the remaining chapters of this book.

Figure 1.5 shows the initial design concept for the Books application. Notice how it differs from
the initial design shown for the wrong approach (Figure 1.4).

Figure 1.5 Initial design concept

Because we took the time to study our users' wants and needs, we know that the major
problem they are having is managing the hundreds of books in their collections. The likely and
frequent tasks from our user scenarios involve the user wanting to see what books they own
and where those books are. Because the list of books can grow to be lengthy, we've decided
that the most important tasks are the presentation of the list of books and the ability to enter
new books. The main screen helps the user navigate the list of books by allowing them to filter
the display according to categories of the user's own choosing and by entering Graffiti
characters in the Look Up field to navigate to a particular book. It uses the note icon so that
the user can easily scroll through the list of books and see which ones are out on loan. Tapping
the note icon shows more information about the loan. The loan information shows to whom the
book is loaned, when it was loaned, when it is due back, and provides a Lookup button so that
the user can quickly go to the contact information for this person in Address Book if the person
needs reminding that the book is due.

We will also provide other screens: a Preferences dialog that allows the user to sort by author
name instead of title and a Search screen that allows them to search for all books loaned to a
particular person. Because these tasks were described as likely but infrequent in our user
scenarios, they are accessed through menu items instead of through command buttons.

You may only have sketches at this point, but it is appropriate to begin usability testing your
interface at this stage to ensure that what you've designed meets the user's needs. You can
mock up a user interface using technology as simple as note cards and have the user walk
through common tasks. After you've performed a set of usability tests, refine your design
concept and retest as you complete the next stage.

Complete the Design

After the main concepts have been agreed upon by everyone involved in the project (which
might include human interface designers, marketing, and engineering), the design can be
solidified. At this point, you should design every screen for the application, know how to get to
every screen, have all user interface elements properly aligned and spaced on the screen, and
design the menus. All error states are also defined.

This phase should coincide with the alpha build of your software. Thus, after the alpha release,
you can have more user testing and feedback, which will refine your design for the beta build
and then for the final build.

Notice that we complete the design during alpha development. Many developers are tempted
to leave user interface design until much later in the product development cycle, but doing so
is a mistake. If you wait until the end, you have solidified your initial design in the code you
have written. The longer you wait to change the design, the harder it becomes to do so, and
the easier it becomes to rationalize leaving the interface as-is.

©2001 Palm, Inc. All rights reserved. Training | Knowledge Base | Palm OS Platform | Legal Notices

http://www.palmos.com/dev/support/classes/
http://www.palmos.com/dev/tech/kb/
http://www.palmos.com/

 < Home < Developers < Development Support < Documentation

2 Fitting In
 Table of Contents | < Previous | Next > | Index

Title -
Palm OS® User
Interface Guidelines

2 Fitting In

User Interaction with Palm
Powered Handhelds

Graffiti Writing

Onscreen Keyboard

HotSync Operation

Hard Keys

Icons in the Graffiti Area

External Keyboard

Application Controls

Integrating with the
Application Launcher

Application Icons

Version String

Default Application
Category

General Application Layout
Guidelines

Main Application Forms

Controls

Control Placement

Labels

Fonts

Graphical Controls

Custom Controls

Application Categories

General Application Behavior
Guidelines

Launching the Application

Exiting the Application

Supporting Global Find

Respecting User
Preferences

In the previous chapter, you learned what makes the Palm platform unique, and you learned a
process by which you can design a successful user interface for the Palm PoweredTM handheld.
This chapter documents the next step: making sure that your application integrates well with
the Palm Powered handheld environment.

When users work with a Palm OS® application, they expect to be able to switch to other
applications, have access to Graffiti® writing and the onscreen keyboard, access information
with the global Find, receive alarms, and so on. Your application will integrate well with others
if you follow the guidelines in this chapter. This chapter covers:

 User Interaction with Palm Powered Handhelds

 Integrating with the Application Launcher

 General Application Layout Guidelines

 General Application Behavior Guidelines

 Becoming Compatible Worldwide

User Interaction with Palm Powered Handhelds
Before you begin designing an application, you need to understand the different ways that
users interact with their Palm Powered handhelds:

 Graffiti writing

 Onscreen keyboard

 HotSync® operations

 External keyboards

 Hard keys on the handheld

 Icons in the Graffiti area

 Controls in the application

This section covers each of these methods in more detail.

Graffiti Writing

Graffiti characters are written in the text area on the digitizer (see Figure 2.1) and appear on
the screen at the cursor location. The user specifies the cursor location by tapping directly on
the screen with the stylus.

Figure 2.1 Graffiti area

Onscreen Keyboard

When the insertion point is in a text field, the user can open the onscreen keyboard by tapping

http://www.palm.com/
http://www.palmos.com/index.html
http://www.palmos.com/dev/
http://www.palmos.com/dev/support
http://www.palmos.com/dev/support/docs

Allowing System Messages

Becoming Compatible
Worldwide

on the letters "abc" or "123" in the lower corners of the Graffiti area. The keyboard dialog
appears (see Figure 2.2).

Figure 2.2 The keyboard dialog

The dialog displays any text currently in the field that contains the cursor. The user can then
add to or modify the text as necessary.

HotSync Operation

To enter data into a Palm OS application, users can enter data into the corresponding
application on the desktop computer and then perform a HotSync operation. The data is loaded
into the appropriate application on the Palm Powered handheld.

Hard Keys

A Palm Powered handheld contains a minimum of four hardware application buttons (known as
hard keys) plus two scroll buttons and a power button (see Figure 2.3). Some handhelds
contain other hardware controls, such as a brightness or contrast adjust button or a jog wheel.

The four application buttons launch built-in applications such as Date Book, Address Book, To
Do List, and Memo Pad. The exact list of applications launched by hard keys depends on the
model.

Figure 2.3 Hard keys

Icons in the Graffiti Area

The four icons on either side of the Graffiti area (see Figure 2.4) display the Application
Launcher, the current application's menu, the Calculator application, and the global Find
facility. Some Palm Powered handhelds, such as handhelds sold in Japan, may have additional
icons in this area.

Figure 2.4 Icons

External Keyboard

Many Palm Powered handheld models can accomodate an external keyboard. The keyboard

attaches to the serial port. When it is attached and the appropriate software is installed on the
handheld, users can type on the keyboard to enter text in any text field. They can also perform
keyboard navigation such as tabbing to the next and previous fields.

Because external keyboards are an optional item priced separately, do not rely on your users
having one. Instead, allow all lengthy data entry to be performed on a desktop computer.

Application Controls

The final way that users interact with their Palm Powered handhelds is by tapping the pen on
controls in an application. Application controls are introduced in the section "Controls" and
described in more detail in the rest of this book.

Integrating with the Application Launcher
The Application Launcher (see Figure 2.5) is the screen from which most applications are
launched. Users navigate to the Launcher by tapping the Applications icon in the Graffiti area.
They then launch a specific application by tapping its icon.

To integrate well with the Application Launcher, you must provide application icons and a
version string as described in the following sections. In rare cases, you might need to provide a
default application category as well.

Application Icons

Provide two icons for the Launcher: a large icon for the icon view (see Figure 2.5) and a small
icon for the list view (see Figure 2.6). Choose a short application name and an icon that's easy
to recognize.

Figure 2.5 Application Launcher icon view

Make sure that the large icon has an identifiable center so that the user knows where to tap.
It's best, although not required, if the large icon is circular or has a circular background like the
ones shown in Figure 2.5. The circular element is usually removed for the small icon.

Figure 2.6 Application Launcher list view

Make sure your icons blend well with the icons for the built-in applications in addition to
presenting the marketing message your company wants to project. For example, using a 3-D
style icon would not blend well with the icons for the built-in applications.

For further guidelines on presenting graphics on Palm Powered handhelds, see Chapter 8,
"Color and Graphics."

Version String

Provide a short (usually 3 to 7 character) string that gives your application's version number.
This version string is contained in the application's resource file. It is not the version you
provide to the PalmRez post linker. This string is displayed in the Info dialog (see Figure 2.7).

Figure 2.7 Launcher info

A version string should have the format:

major.minor.[stage.change]

where major is the major version number, minor is a minor version number, stage is a letter
denoting the development stage (a for alpha, b for beta, or d for developer release) and
change is the build number. Remove the stage and change numbers for the final release.

Default Application Category

Launcher divides applications into categories. If you specify a default application category in
the application resource file, the Launcher places your application into that category when it is
installed. If no application category is specified, the application is installed into the Unfiled
category, and each user chooses where to file the application.

Most applications should not specify a default application category. Only specify one in these
instances:

 Your application is intended for consumers and clearly belongs to one of the Launcher
predefined categories (see Table 2.1).

 Your application is intended for a vertical market or you've created a suite of custom
applications that work together to provide a complete custom solution.

In this case, you might define a custom category name. Launcher creates the category if it
doesn't already exist in the Launcher database.

Table 2.1 Launcher predefined categories

Default Launcher
Category Description

Games Any game

Main Applications that would be
used on a daily basis, such
as Date Book or Address
Book

System Applications that control
how the system behaves,
such as the Preferences,
HotSync, and Security
applications

Utilities Applications that help the
user with system
management

Unfiled The default category

Do not treat the default application category as something analogous to the Microsoft Windows
Start menu category. On a Palm Powered handheld, the user is limited to 16 categories
including Unfiled. Obviously, that limit would be quickly reached if each application defined its
own category. Besides, placing your application in its own category only makes it harder to find
and launch. Only assign a default category where it is a clear benefit to your users.

General Application Layout Guidelines
This section provides a general outline of what a Palm OS application looks like. The remaining
chapters in this book provide more specific guidelines for the look of individual controls.

Main Application Forms

On Palm Powered handhelds, each screen of information is called a form. In general, the first
form in your application is a base form that offers an overview of all available information and
command buttons for the most frequently used commands. For example, the Address Book
shows a list of all contacts (see Figure 2.8).

Figure 2.8 First form in Address Book

Applications with a base form tend to also need one or more details forms to display more
information about a record and to allow the user to edit the record (see Figure 2.9). Many
applications use a single form for both purposes. Address Book uses two different forms for
display and edit because many of the available fields in the Edit form are often left blank. Using
a separate form to display a contact means users are more likely to see the information they
need without having to scroll.

Figure 2.9 Detail forms in Address Book

For more detailed guidelines on creating all types of forms, see Chapter 3, "Forms."

Controls

Controls allow the user to perform commands, enter options, and edit data. Table 2.2 shows
the basic controls you might provide in your application and lists the chapter in this book that
provides guidelines for the control.

Table 2.2 Controls

Control Name Main
Purpose

For More
Information

Command
button

Perform
command

Chapter 4,
"Executing
Commands,"

Check
boxes

Toggle
state

Provide
list of
options
that are
not
mutually
exclusive

Chapter 5,
"Presenting
Options,"

 Field Display
or edit
text

Chapter 6,
"Displaying
Data,"

List Display
text

Chapter 6,
"Displaying
Data,"

Menu Perform
command

Chapter 4,
"Executing
Commands,"

 Pop-up
list

Display a
list of
mutually
exclusive
options

Chapter 5,
"Presenting
Options,"

Push
buttons

Display a
list of
mutually
exclusive
options

Navigate
to new
view

Chapter 5,
"Presenting
Options,"

Scroll bar Scroll the
display

Chapter 7,
"Scrolling,"

Scroll
buttons

Scroll the
display

Chapter 7,
"Scrolling,"

Selector
trigger

Display
setting
that user
can
change
from
modal
form

Chapter 5,
"Presenting
Options,"

Slider Adjust a

setting
Chapter 5,
"Presenting
Options,"

Table Display
data

Chapter 6,
"Displaying
Data,"

Control Placement

Place the most frequently accessed controls near the bottom of the form. The user interacts
most often with the Graffiti area, with the icons in the Graffiti area, and with the hard keys on
the handheld. Placing controls at the bottom of the form puts them as close as possible to the
Graffiti area, making them quicker and easier to access.

People from Western cultures tend to read the screen from top to bottom and left to right.
Therefore, anything important for users to read (rather than interact with) should be near the
top of the form. Horizontally, you should arrange controls so that the leftmost control is the
most important.

Do not clutter the screen. Running out of space is a usually a sign that simplification is needed.

Squashing a lot of controls on the form by reducing white space is usually the wrong answer.

In most cases, use spacing instead of lines and boxes to separate user interface elements into
logical groups. Lines and boxes add to screen clutter and actually make the small screen
harder to read.

Labels

Provide a label for any control or option that requires further explanation. Right justify the
labels and left justify the fields (see Figure 2.10).

Figure 2.10 Label guidelines

Use bold font and title capitalization for labels. That is, capitalize the first letter of each
important word in the label in the same way you would capitalize the title of a book. For
example, use "Set Date" as a label, not "Set date." Never use all lowercase ("set date") or all
uppercase ("SET DATE") for labels.

NOTE: This guide uses the term label to refer only to a textual label that appears
outside of the user interface element. Sometimes, the text appearing inside the user
interface element is also called a label. This guide refers to the text inside the user
interface element as its contents. For example, "Daylight Saving:" is the label for the
pop-up list in Figure 2.10. The word "Off" is the pop-up list's contents.

Fonts

Palm OS supports four different fonts: 9 point regular, 9 point bold, 12 point regular, and 12
point bold.

Use 9 point regular for the textual content of most controls, such as the text that appears
inside of command buttons, pop-up triggers, and selector triggers.

Labels like those shown in Figure 2.10 should be shown in 9 point bold font.

When displaying textual data, consider allowing users to set the font they would like to use.
The standard font picker dialog resource included in the system allows the user to choose
between 9 point regular, 9 point bold and 12 point bold.

You can also create your own custom font and include it in the system. Use a custom font only
for displaying textual data. Don't use a custom font for labels or text inside of controls. For
example, a document reader might show the document text in a custom font, but it should still
use the system fonts for control contents and labels.

Graphical Controls

The command button and push button controls allow you to substitute a graphic for the button
name.

Only use graphics on buttons if there is a common, clear precedent in similar desktop
applications that you can leverage. For example:

 Web browsers use similar arrow buttons for browsing history.

 Document readers often use arrows to move to the next page.

 Most desktop applications use a a clipboard to denote paste, scissors to denote cut, and so on.

If there is not a clear precedent, avoid creating your own graphical symbol for a command. It's
difficult to make a graphic small enough to be useful while clearly conveying its meaning.
Desktop applications often have several graphic buttons, but desktop applications often rely on
tool tips to help the user learn what each graphic means. Palm OS does not provide tool tip
support (see Figure 2.11).

Figure 2.11 Graphic buttons

For more information on creating graphics for Palm OS, see Chapter 8, "Color and Graphics."

Custom Controls

Palm OS supports the creation of custom controls, called gadgets. You can create your own
gadget if you have a need that the user interface guidelines don't address. Your gadget must
support the general design principles outlined in Chapter 1, and your users must be able to
intuit how to use it.

Some examples of gadgets include:

 Launcher uses a gadget to display the current battery level.

 Date Book uses a gadget for the main portions of its week view and month view forms (see
Figure 2.12).

 A medical application might use a gadget that displays an outline of the human body so that
users can tap to record where they are injured.

Figure 2.12 Date Book gadget

Application Categories

Organize your application's database records into user-defined categories if that makes sense.
Categories usually result in more efficient screen use. Users can switch between categories
using a pop-up list or can display all records at once.

Categories are application-specific and are stored with the database. An application can have a
total of 16 categories, including the Unfiled category. Users are allowed to create categories
and are allowed to decide which records belong in which categories.

Your application can provide a set of predefined categories. Limit the number of categories you
predefine so that your users are free to create categories that make sense to them. If you do
provide predefined categories, allow your users to delete them so that they can add new ones.
The Unfiled category must be one of your predefined categories. Do not allow users to delete
the Unfiled category.

Provide a category pop-up list in the title bar of the base form to allow the user to change
which category of records are displayed (see Figure 2.13).

Figure 2.13 Category pop-up list

Applications typically have a Details dialog that allows the user to change uncommonly

accessed parts of a database record. The Details dialog is typically where you place controls to
change the category. If your application has a form that edits a single record, you can also
supply a selector trigger on that form that displays a pop-up list from which the user can select
a record's new category. See "Selector Triggers" for more information.

If your application does not support categories but you still want to use the right side of a title
bar for a pop-up list, that pop-up list must contain category-like information that filters the
display. It should not perform some other operation. For example, a spreadsheet application
might show a pop-up list in the title bar that allows the user to display a different worksheet if
the spreadsheet has multiple worksheets.

General Application Behavior Guidelines
This section covers general guidelines for how applications should behave:

 Launching the Application

 Exiting the Application

 Supporting Global Find

 Respecting User Preferences

 Allowing System Messages

The remaining chapters in this book provide more specific guidelines for the behavior of
individual controls.

Launching the Application

Your application must launch quickly. The typical user session with a Palm Powered handheld is
one or two minutes long. Users do not want to add an extra several seconds to each session
waiting for an application to launch.

During a normal launch, you should not display a splash screen. You might display a splash
screen if this is the first time the user launched the application or if the application is running
as a demo that will eventually expire and you want to show how much time is left.

You do not necessarily display the base form when users launch your application. Do so only if
it makes sense. It's often better to return to the place the user exited last. For example, Memo
Pad always returns you to the memo you were last reading.

Displaying the location where the user exited is desired because it creates a seamless
interface. If you make your application behave like the user never exited, users can think of all
Palm OS applications as running at the same time.

Exiting the Application

Applications do not provide an exit command. On the Palm Powered handheld, users do not
think in terms of exiting one application and then launching another. The paradigm is such that
they consider all applications to be running at once and they can move between them at will.
Users move between applications by pressing one of the four hard keys on the handheld or by
tapping the Applications icon.

Allow the user to exit any form, including modal dialogs or alert dialogs, gracefully at any time.
If the user has been editing data, save the data before the user exits the form. If the user is in
the middle of editing a database record when the form is exited, your application should allow
the user to exit the form and perform the least destructive operation on the data.

The built-in applications define a minimum set of data that must be present for the record to
be saved. In most cases, it is one character of data. In the Expense application, the expense
type must be set.

For example, suppose you are editing a contact in Address Book, and you need to look
something up in another application. You can tap the Applications icon and launch another
application without losing your data. Address Book saves the changes you have made even
though you have not tapped the Done button at the bottom of the screen. When you return to
Address Book, you see the main form, and the record you last edited contains your changes
(see Figure 2.14).

Figure 2.14 Address Book with partial record

In certain vertical market applications, it is both possible and acceptable to write your
application so that it never exits. This is an acceptable practice only as long as the application
is preloaded onto the handheld for each user and the handheld will never be used as a personal
digital assistant.

Supporting Global Find

Support the global Find facility (see Figure 2.15) if your application stores textual data in a
database. The Find facility should perform a prefix-only case-insensitive search on each word in
a database record. A prefix-only search finds matches only if a word begins with the string the
user enters. For example, suppose an application contains two records, one with the text "And
Then There Were None" and the other one "How To Use a Lathe." If the user enters the word
"the," the Find facility will find matches in the words "Then" and "There" in the first record, but
not in the word "Lathe" in the second record.

In many applications, a user can mark a record as private. A private record is stored in the
database but may not be displayed. If your application supports private records, make sure
that the records are unavailable to the global Find facility when the user has them hidden or
masked.

Figure 2.15 Find

Respecting User Preferences

Palm OS has system preferences for the display of:

 Date formats

 Time formats

 Number formats

 First day of week (Sunday or Monday)

Be sure your application uses the system preferences for display of this type of information.

Palm OS also provides standard panels that can be used to select a date, a starting and ending
time, or just a single point in time. If your application works with dates and times, use these
standard panels. Users are familiar with their usage from the Date Book and Preferences
applications.

Palm OS preferences also allow users to remap the hard keys and icons in the Graffiti area so
that they launch different applications. Respect the user's preference for which application to
launch; however, you can help the user override the preference. For example, suppose you
provide a replacement for the Date Book application and you would like the Date Book hard

key to display your application. You can display an alert dialog upon startup that asks the user
if they want to remap the Date Book hard key so that it launches your application. If they tap
the OK button, your application can change the preference. If they tap Cancel, you should not
ask the question again, but it is acceptable to provide a user preference that allows the user to
remap the button at a later time.

Allowing System Messages

Allow the system to post these messages:

 Alarms

 Low-battery warnings

 System messages during synchronization

The normal event loop used by virtually all Palm OS applications allows ample time for the
system to post messages and handle necessary events. You only need to take special care if
your application performs a lengthy computational task. For example, if your application has a
large database with greater than 20,000 records and it must search through each of these
database records, you might want to check for system events every so often during this loop.

Becoming Compatible Worldwide
If you're planning to localize your application, it's best to plan for localization starting from the
beginning. Keep in mind the issues listed below:

 Try to leave extra room for translation. Many languages simply take up more space than
English does. German and French words, for example, are on average 25% longer than their
English counterparts. Try to allow extra space for strings to display and larger modal forms than
the English version requires.

 Be aware that items such as colors and symbols also need to be localized. For example, red is a
warning color in English, but that is not true in all cultures. Avoid colors and symbols that may be
offensive in other cultures.

 Dates and numbers are represented differently in other parts of the world. Always respect the
user preferences that have been set for date, number, and time displays.

 Abbreviations may be the best way to accommodate the particularly scarce screen real estate
on the Palm Powered handheld.

 Consider using string templates. For example, the Memo Pad application uses the template:
Memo # of %. The application can replace # and % to change the text. Use as many parameters
as possible to give localizers greater flexibility. Avoid building sentences by concatenating
substrings together, as this often causes translation problems.

 Remember that user interface elements such as lists, fields, and tips dialogs scroll if you need
more space.

 Write your code so that the application is easily localizable. For coding guidelines, see the
chapter on localization in the Palm OS Programmer's Companion.

©2001 Palm, Inc. All rights reserved. Training | Knowledge Base | Palm OS Platform | Legal Notices

http://www.palmos.com/dev/support/classes/
http://www.palmos.com/dev/tech/kb/
http://www.palmos.com/

 < Home < Developers < Development Support < Documentation

3 Forms
 Table of Contents | < Previous | Next > | Index

Title -
Palm OS® User
Interface Guidelines

3 Forms

Choosing between Types of
Forms

Use Modal Forms Sparingly

Avoid Modal Forms for
Lengthy Data Entry

Modeless Forms

System Supplied Behavior

Look and Feel

Breaking the Rules

Modal Forms

System Supplied Behavior

Look and Feel

Breaking the Rules

Alert Dialogs

Types of Alerts

Look and Feel

Breaking the Rules

Progress Dialogs

About Dialogs

Tips Dialogs

This chapter describes the different types of forms available. Forms are analogous to windows
in a desktop application. They are containers for control and data objects. There are two basic
types of forms:

 Modeless Forms

 Modal Forms

There are also several special cases of modal forms:

 Alert Dialogs

 Progress Dialogs

 About Dialogs

 Tips Dialogs

This chapter tells you how to choose which type of form to use and then describes behavior
and appearance guidelines for each type of form. The form types are covered in order from
most commonly used to least commonly used.

Choosing between Types of Forms
Most applications should use more modeless forms than modal forms. Modeless forms are full-
screen forms that are the primary screens in your application. Modal forms are sub-forms used
for a specific purpose.

Each application must have at least one modeless form, and most applications have more than
one. For example the Address Book offers a main form that shows a list of contacts, an
Address View form that shows the details for a single contact, and an Address Edit form that
allows you to edit the contact information (see Figure 3.1).

Figure 3.1 Modeless forms in the Address Book

http://www.palm.com/
http://www.palmos.com/index.html
http://www.palmos.com/dev/
http://www.palmos.com/dev/support
http://www.palmos.com/dev/support/docs

Modal forms (see Figure 3.2) are often shorter than the screen. They typically display only a
few controls.

Figure 3.2 Modal form

Use Modal Forms Sparingly

Reserve the use of modal forms for instances where a user must acknowledge a certain state
before they can continue. Some acceptable uses of modal forms are:

 Setting options, such as application preferences

 Editing data that is changed rarely. For example, marking a record as private is an infrequent
operation. The built-in applications place the control for this on a modal form.

 Editing commonly used parts of a database record if the rest of the record does not consist of
discrete fields.

For example, a Date Book appointment consists mainly of text, the name of the
appointment. Setting an alarm for that appointment is common, but the alarm appears in
the Details modal form with the uncommon fields because there is no room for it elsewhere.
If your data consists of discrete fields similar to Address Book, it's better to edit all
commonly used parts of your records in a single modeless form.

Avoid Modal Forms for Lengthy Data Entry

Avoid the use of modal forms for lengthy data entry. Sometimes, applications that perform

data validation display a series of modal forms, one stacked on top of the other. Avoid creating
such a user interface. If, for example, you require a user to create a record by displaying three
different modal forms, this requires a minimum of six taps: one tap to display each of the three
forms, and one tap to dismiss each of the three forms. It is better to allow users to navigate
between data entry forms at will, and it is better to have as few forms as possible.

If your application needs to perform data validation, it is tempting to use a modal form and not
allow the user to leave the form until the record is complete and validated. Doing so is a poor
design decision that may result in user frustration. The user may be distracted in the middle of
entering the data. Suppose the user receives a phone call and needs to schedule an
appointment with the caller. If you don't allow the user to leave your application without
validating the data, he or she must cancel the data entry operation to schedule the
appointment and re-enter all of the data later.

Instead, consider having your application behave in a similar manner as Memo Pad. Define a
minimum set of data that must be present. If the user leaves the application in the middle of
editing a record, save the record without validating it as long as that minimum data has been
entered. When the user returns to your application, restore the edit form and restore the
record that was previously being edited. Validate the data only when the user taps the Done
button at the bottom of your form. If you have a corresponding desktop application, your
conduit will have to check for and handle the case where a data record has not been validated.
Your conduit can skip that database record and log the reason why it has not been
synchronized.

Modeless Forms
A modeless form is the main GUI area of your application. Most forms are composed of a title
bar at the top of the screen, an area for viewing or entering data, and one or more command
buttons at the bottom that navigate to other forms (see Figure 3.3).

Figure 3.3 Modeless form parts

Table 3.1 Modeless form details

Dimension Value

Width 160

Height 160

Top 0

Left 0

Border None

System Supplied Behavior

Palm OS® supplies the following behavior for every modal form.

Always Full Screen

The currently displayed form takes up the entire screen and remains on the screen at the same
location until the user chooses a new form. It's not possible for the user to resize, move, or
collapse a form.

Keep in mind that screen sizes of future Palm Powered handhelds may vary. The Sony Clie
already has a different screen resolution (320 X 320 pixels) than other Palm Powered
handhelds although its screen is still the same size as other handhelds. The HandEra 330 has
introduced the ability to rotate the display and the ability to collapse the Graffiti® area. If the
user collapses the Graffiti area, there is more space available to the application.

Only Topmost Form Is Active

Only one form has the input focus at a time. This form is called the active form. If one form is
drawn on top of the other (as is the case with modal forms), the topmost form is active until it

is closed. Then the previous form becomes active.

Form Navigation

To navigate to another form, the user does one of the following:

 Taps one of the controls in the current form.

 Taps an icon in the Graffiti area that displays another application.

 Presses a hard key that navigates to another application.

Look and Feel

Follow these guidelines for the behavior and appearance of a modeless form.

Limit Form to a Screenful of Information

Try to ensure that a form contains only one screenful of information. However, if it does not
make sense to break the information into multiple forms, a form can be scrollable. For
example, the Launcher form is scrollable so that it can show all of the installed applications.
The Address Edit form is scrollable so that you can edit all fields in a contact entry on a single
form.

Use Title Bar to Orient the User

The title bar shows the title of the form flush left with the screen. If the form displays a
database that uses categories, information about the category is flush right with the screen.
Forms that display multiple records show a category pop-up list that can be used to filter the
display. Forms that allow editing a single record display a selector trigger that allows you to
change the category for that record. (See Chapter 5, "Presenting Options," for more
information about selector triggers.) The Palm OS draws a 2-pixel line on the border between
the title bar and the data area. Figure 3.4 shows example title bars.

Figure 3.4 Title bars

The purpose of the title bar is to orient the user. From a quick glance at the handheld, the user
should be able to recognize the current application and current form within that application.
Applications often look alike, so most should display a title bar that gives the name of the
application followed by the name of the form. The Address Book follows this guideline, as
shown in Figure 3.4.

The title bar can also provide extra information. The Mail application shows how many
messages there are in the current mailbox. (See Figure 3.5.) The Address Book shows an icon
that indicates when the user's business card is being displayed or edited.

Figure 3.5 Extra information on title bar

Title Bar Controls Are Primarily Informational

You can place controls in the title bar. The Date Book application shows a control that allows
the user to select a day of the week. It is best if controls in the title bar are primarily
informational in nature, that is, if they are the type of control that the user seldom changes.
Keep in mind that users interact mainly with the Graffiti area of the handheld, which is below
the bottom of the form. If your controls are in the title bar, users must move their hands as far
away from the Graffiti area as possible. It is better to place the more commonly accessed
controls near the bottom of the screen.

If your application does not support categories but your title bar has a pop-up list on the right
side of the screen, that pop-up list must display category-like information that filters the
display. Do not use this space for a pop-up list that has a purpose other than filtering the
display.

Games Should Have Title Bars

On Palm PoweredTM handhelds, even games have title bars (see Figure 3.6). The title bar
makes an excellent location to show the game status: the score, current level, and so on.

Figure 3.6 A title bar for a game

Breaking the Rules

This section points out a few of the applications that break modeless form guidelines and tells
you if doing so was appropriate.

Nonstandard Title Bars

If the form's data area is so distinctive that it cannot be mistaken for another application, you
may use the title bar to display something other than the application and form name. However,
the information in the title bar still should orient the user.

For example, the Date Book main form (see Figure 3.7) uses its title bar to show the current
date, the day of the week, and controls that allow users to navigate to a different date. It can
do so because the main form is clearly an appointment calendar for a certain date. The user
would gain little if the Date Book showed a title that said "Date Book Day View" and had the
current date and the day selection controls below the title bar.

Figure 3.7 Other orienting information in title bar

In rare circumstances, the title bar may be skipped altogether, but only if the form cannot
possibly be mistaken for some other application and the user could not be confused about its
purpose. The Calculator application does not display a title bar (see Figure 3.8). This provides
more room for the numeric display area and the buttons, allowing for buttons large enough to
be tapped with fingers instead of the stylus.

Figure 3.8 Modeless form with no title bar

Note, however, that if users see a title bar, they expect to see some form of a title, whether it
is the current date or time or the title of the form. Resist the temptation to include the title bar
but omit the title in favor of adding other controls to your application (see Figure 3.9).

Figure 3.9 Bad example of title bar

The Note view (see Figure 3.10) used in Address Book, Date Book, and To Do is another
example of a modeless form that breaks the title bar rules. In this case, you should never
follow its example. The Note view shows a dark background for the entire length of the title bar
and centers its title rather than left-justifying it. This makes the Note view look like a modal
form without a border.

Figure 3.10 Bad example of title bar

The Note feature was designed early in the development of the Palm OS and its built-in
applications. It uses the name of the appointment, contact, or task as its title. At the time, it
was thought that left-justifying the title made the form look strange. In retrospect, there were
several better ways to solve this problem without breaking the guidelines. It would be better to
make the Note view a modal form to underscore that this form simply changes one field in a
database's record, or to use a modeless form whose title began with the word "Note."

Modal Forms
A modal form, or dialog, is a sub-form that is used for a specific purpose. Modal forms are
displayed on top of the current form. Modal forms have a different title bar style than modeless
forms, and they have a border (see Figure 3.11).

Modal forms should be far less common in your application than modeless forms. Their main
use is for setting options, such as application preferences.

Figure 3.11 Modal form

Table 3.2 Modal form details

Dimension Value

Width 156 (to allow for the border)

Height 20 to 141
or 156 if it must be > 141
Always make as small as possible

Top 158 - height

Left 2

Border 2 pixels on each side

System Supplied Behavior

The Palm OS ensures that the topmost modal form is the only form that receives pen down
events or keystrokes. The user cannot, for example, click the main form's title bar to dismiss a
modal form. Also, the global Find facility is not available while a modal form is displayed.

Look and Feel

Follow these guidelines for the behavior and appearance of a modal form.

The User Can Exit at Any Time

You must allow the user to exit the application by tapping an icon in the Graffiti area or
pressing a hard key even while a modal form is displayed. When you create the modal form,
you specify a default button. If the user exits the application without tapping a button on the
modal form, the application behaves as if this button were tapped. The default button should
be the one that results in the least destructive action. Typically, this is the Cancel button, but
in some cases the OK button is least destructive.

Make Modal Forms as Short as Possible

Although modal forms are always the width of the screen, they are not always the height of the
screen. It's best to make the modal form shorter than the screen so that the main form,
appearing below the modal form, provides context. Try to make the modal form as short as
possible. Allow at least 3 pixels of space between the main form's title bar and the top of the
modal form. If the modal form obscures any portion of the main form's title bar, make the
modal form the full size of the screen. (See Figure 3.12.)

Figure 3.12 Full screen modal form

Always align the modal form with the bottom of the screen. Modal forms align with the bottom
of the screen for two reasons. First, it allows the main form's title to be visible, providing more
context for the user. Second, it places the modal form's controls closer to the Graffiti area.

Buttons on Modal Form

Most modal forms have an OK button in the bottom left and a Cancel button immediately to its
right. They may have other buttons aligned with these buttons as necessary (see Figure 3.11).

If the modal form performs more than one action, use a Done button to dismiss the form
rather than OK and Cancel. For example, you might beam more than one application from the
Launcher's Beam form (see Figure 3.13). In this case, a Cancel button does not make sense
because you can't cancel a beam after it has finished. The OK button is renamed Done in this
case because users tap the button to indicate that they are done beaming applications.

Figure 3.13 Modal form with Done button

Edit Menu Required if Form Has a Text Field

If the modal form has an editable text field, you must associate a menu bar with it, which
should contain the Edit menu at minimum. This allows support for the copy and paste shortcut
keys. The menu always displays from the top of the screen (see Figure 3.14).

Figure 3.14 Menu on modal form

A Graffiti Shift Indicator is required as well as an Edit menu for forms with editable text fields.
See "Fields" for more information.

Breaking the Rules

This section points out a few of the applications that break modal form guidelines and tells you
if doing so was appropriate.

Modal Forms Without OK Button

Your modal form may exclude the OK button if it helps minimize the number of required taps.
Most modal forms have more than one control or have a text field. The OK button is required
to let the application know when the user is done entering information. However, consider the
Go To Date form in Date Book (see Figure 3.15). This form is dismissed as soon as the user
has tapped one of the dates. Because choosing a date is the only purpose of the form, the OK
button has been removed.

Figure 3.15 Modal form with no OK button

Modal Forms that Don't Exit

It's possible for a user to miss a modal form entirely. Suppose the user becomes distracted
immediately before the form is displayed, the handheld powers off, and then, to turn it back on
again, the user presses one of the hard keys. The hard key dismisses the modal form by
simulating a default button tap.

In most cases, the default button should protect the user from any unintended consequences
of not seeing the modal form. For example, if the form was a Delete confirmation dialog, the
default button would be the Cancel button, so not seeing the modal form is not destructive.

If a default button is not enough protection for the user, you can create the modal form such
that it is not dismissed until one of its buttons is explicitly tapped. Usually, this is only the case
when the form presents vital information to the user. The low battery alert dialog, for example,
must be explicitly dismissed because its intent is to inform the user of impending data loss. The
Date Book alarm dialog and the Attention Manager dialog (see Figure 3.16) also must be
explicitly dismissed because they present information that the user has requested to see at a
specific time. If the user were to miss this information, it would be more annoying than having
a dialog that must be explicitly dismissed.

Figure 3.16 Attention Manager dialog

Alert Dialogs
An alert dialog is a special case of a modal form. Alert dialogs are used in specific instances
and have more rigid rules about appearance. Alert dialogs have no other controls on them
besides the command buttons used to dismiss the alert (see Figure 3.17). They display an alert
icon and a message.

Figure 3.17 Alert dialog

Table 3.3 Alert dialog details

Dimension Value

Width System determined

Height System determined

Top System determined

Left System determined

Border 2 pixels on each side

Types of Alerts

Use an alert dialog to display an error condition, to prompt the user for a response, to inform
the user of an event, or to warn the user of an upcoming event (such as low battery level).

Table 3.4 describes the four possible types of alerts, when to use them, the icon to display on
each, and an example message.

Table 3.4 Alert dialog types

Type Icon Definition Example
Message

Information

Lowest-
level
warning.
Action
shouldn't
or can't be
completed
but
doesn't
generate
an error or
risk data
loss.

An alarm
setting
must be
between
1 and 99.

Confirmation

Confirm an
action or
suggest
options.

Your
option to
receive
beamed
data is
turned
off. Do
you want
to turn it
on now?

Warning

Confirm a
serious or
potentially
dangerous
action.

Are you
sure you
want to
delete
this
entry?

Error

Attempted
action
generated
error
and/or
cannot be
completed.

The
battery is
too low
for this
operation.

Look and Feel

Follow these guidelines for the behavior and appearance of an alert dialog.

The User Still Can Exit at Any Time

The rules for an alert dialog's behavior are the same as those described in "Modal Forms."
Specifically, you must allow the user to press a hard key or tap an icon in the Graffiti area to
exit the application while an alert is displayed. If so, your application behaves as if the default
button on the alert were tapped. You specify which button is the default when you create the
alert.

Title Describes Operation That Caused Alert

The title of the alert dialog should describe the operation that the user was trying to perform.
For example, alert dialogs about the beaming operation have "Beam" in the title bar. An alert
dialog about deleting an address from the Address Book is titled "Delete Address."

Message Is a Complete Jargon-Free Sentence

The message you display should be a complete sentence. It should describe the problem in
plain language and, where possible, describe how to correct the problem. It should not contain
computer jargon. "Disk full" is an example of a poor alert message. Palm Powered handhelds
do not have disks, and users may not know what a disk is. A better message would be "The
storage area is full."

Buttons Directly Answer Question

If the dialog simply displays a message, it should have a single button named "OK". If the
dialog asks a question about how to proceed, avoid using generic buttons such as "Yes" and
"No" or "OK" and "Cancel" wherever possible. When users are provided a message such as
"Save data?" with buttons "Yes," "No," and "Cancel," they are often confused about which
button to choose. Instead, it is better to make the affirmative answer to the question more
explicit. Repeat the verb of the message (see Figure 3.18). If the message is "Delete this
record?" the buttons should be "Delete" and "Cancel," making it clear that choosing "Delete"
deletes the data. Resort to "Yes" or "No" only if the alternative is cumbersome. The
confirmation alert "Make this address your business card?" uses "Yes" and "No" buttons for this
reason.

Figure 3.18 Alert dialog buttons

Use Attention Manager for Reminders

If your application must remind the user of a particular event similar to the way the Date Book
reminds users of appointments, use the Attention Manager dialog (see Figure 3.19) on Palm
OS 4.0 and later releases rather than displaying an alert dialog. To use the Attention Manager,
you don't create an alert dialog resource. You write code that tells the Attention Manager what
text to write in its dialog. The Attention Manager displays all current and past due reminders in
a single dialog.

Figure 3.19 Attention Manager dialog

In earlier releases, each application that reminded the user displayed a separate alert dialog
for each reminder. Most users have run into the situation where they have had their handheld
turned off all day, turn it on, and are presented with a series of alert dialogs about
appointments that have passed. The Attention Manager displays a single dialog so that the
user can dismiss all past reminders at once. It also has the ability to perform non-visual
reminders such as playing sounds or vibrating the handheld.

The Attention Manager is only designed for attempts to get attention that can be effectively
suspended. It is not suitable for the following:

 Anything requiring an immediate response, such as the "put away" dialog that is used during
beaming or a request to connect to another user

 Error messages

 To Do List items or incoming email messages

Breaking the Rules

If you want any other control on the alert dialog, you must create a modal form rather than an
alert dialog. Use the alert icons on the modal form to make it look more like an alert dialog.
Figure 3.20 shows an example of a modal form that behaves as an alert dialog. In this way,
the dialog can include a check box that allows the user to archive the deleted record.

Figure 3.20 Modal dialog disguised as alert

If your application runs only on Palm OS 3.5 and later, you can create an alert dialog that has
a text field on it. You can use this, for example, to have a user enter a password to confirm the
operation.

Progress Dialogs

Despite your best efforts, you may find that some lengthy operations cannot be avoided. For
example, if you need to connect to a network or use the serial or infrared ports, there is no
way to make a connection happen more quickly. In these cases, use a progress dialog (see
Figure 3.21) to indicate that an action is taking place.

Figure 3.21 Progress dialog

Table 3.5 Progress dialog details

Dimension Value

Width System determined

Height System determined

Top System determined

Left System determined

Border 2 pixels on each side

The progress dialog has a bitmap and a message that are updated periodically to indicate that
the operation is progressing. For example, when you beam a business card to another Palm
Powered handheld, the Beam progress dialog shown in Figure 3.21 toggles between two
beaming bitmaps and updates the message in the following order: "Initializing," "Starting,"
"Searching," "Connected," and "Sending."

Progress dialogs dismiss themselves when the operation completes, so they do not include an
OK or Done button. They do have a Cancel button so that the user can cancel the operation.

The purpose of using a progress dialog is to placate the impatient or unknowing user who may
believe that the handheld has crashed. The progress dialog informs the user of what the
system or application is doing. If your task does not have multiple steps and if it takes more
than one second but less than three seconds to complete, you may instead use a simple Please
Wait form centered in the screen. The Launcher uses such a form while it gathers database
information when you choose the Info menu item (see Figure 3.22). However, as with progress
dialogs, the Please Wait form is to be avoided if at all possible. Use it rarely if at all.

Figure 3.22 Please Wait form

NOTE: Do not display the Please Wait form for more than a few seconds. If you do, the
user will still believe that the handheld has frozen.

About Dialogs
Use the about dialog (see Figure 3.23) to display the version number and copyright notice for
your application. All applications should have an about dialog. The about dialog must be
accessible from the Options menu on the main form. Its title is "About application" where
application is the name of your application. It has an OK button centered on the form and no
Cancel button.

Figure 3.23 About dialog

Table 3.6 About dialog details

Dimension Value

Width 156

Height 156

Top 2

Left 2

Border 2 pixels on each side

The about dialog should contain the following types of information:

 Copyright notice

 Version number

 Terms of usage: Can your program be copied? Is it freeware, shareware, or commercial
software?

 Registration information, such as the user's license number if they have paid or the amount of
time remaining on the demo if they have not paid

 A phone number or web site where they can go for support

Tips Dialogs
Tips dialogs (see Figure 3.24) are displayed by modal forms when the user taps the "i" button
in the corner of the modal form.

Figure 3.24 Tips dialog

Table 3.7 Tips dialog details

Dimension Value

Width System determined

Height System determined

Top System determined

Left System determined

Border 2 pixels on each side

The tips dialog provides further assistance to a user who is wondering how to use a particular
modal form. It is a good idea to associate a tips dialog with most, if not all, modal forms in
your application other than progress or about dialogs.

The tips dialog should briefly describe each field on the form, the purpose of each field, and
any special symbols on the form. Some tips dialogs also tell the user about shortcuts that are
otherwise hidden. For example, in Address Book a user can attach a note to a contact by
tapping to the right of the contact's information in the list view. The user learns this if he or
she reads the tips in the Address Book Details dialog.

There is little or no formatting to the string that you supply for the tips dialog. You cannot, for
example, change fonts or add a graphic to the tips. You also cannot change the dialog's title.

TIP: It's common to show a bulleted list in the tips dialog. To type a bullet in
Constructor for Palm OS, set the string so that it shows all characters as hexadecimal,
type "95", and then deselect the "View as Hex" option.

Tips dialogs should only contain necessary and useful information. Because of the compact
nature of the text presented in the dialog, this dialog is not a good venue for providing users
with conceptual background material they might need to know to use your application
effectively. Such information is best presented in an external user manual, not on the handheld
itself. Tips dialogs also are not a place for extra information, such as programmer credits that
you might see in an about dialog.

©2001 Palm, Inc. All rights reserved. Training | Knowledge Base | Palm OS Platform | Legal Notices

http://www.palmos.com/dev/support/classes/
http://www.palmos.com/dev/tech/kb/
http://www.palmos.com/

 < Home < Developers < Development Support < Documentation

4 Executing Commands
 Table of Contents | < Previous | Next > | Index

Title -
Palm OS® User
Interface Guidelines

4 Executing
Commands

Choosing between Buttons
and Menus

Limit the Total Number of
Commands

Use Buttons for Important
Tasks

Use Menus for Destructive
Commands

Don't Duplicate Commands

Remember the Goal:
Minimize Taps

Use Buttons for Commands
Executed by New Users

Don't Provide Save or Exit
Commands

Command Buttons

System Supplied Behavior

Look and Feel

Breaking the Rules

Menus

System Supplied Behavior

Look and Feel

Breaking the Rules

This chapter discusses user interface elements that, when selected, perform an action in your
application. In other words, these elements execute commands.

There are two main methods of executing commands on Palm OS®:

 Command Buttons

 Menus

The first section tells you how to choose which of the elements listed above is best for your
application. The rest of the chapter describes behavior and appearance guidelines for each
element.

Choosing between Buttons and Menus
Choosing which application features should have command buttons and which should have
menu items is a fine art. Command buttons provide instant access but take up valuable screen
space (see Figure 4.1).

Figure 4.1 Command buttons

Menu items do not take up screen space, but they are hidden and require more taps to execute
(see Figure 4.2).

Figure 4.2 Menus

In general, you use command buttons for common commands and menus for uncommon
commands. This section provides further guidelines to help you choose.

Limit the Total Number of Commands

Remember that a new user must be able to pick up a Palm PoweredTM handheld and
successfully navigate the system within five minutes. If you have too many buttons, you may
overcrowd the screen and ultimately confuse the user. If you have too few buttons, you may
end up with an interface that is not instantly understandable or easy to learn. Likewise,

http://www.palm.com/
http://www.palmos.com/index.html
http://www.palmos.com/dev/
http://www.palmos.com/dev/support
http://www.palmos.com/dev/support/docs

providing too many menu commands confuses the user.

Instead of focusing on how many command buttons and menu items you can squeeze in, focus
on providing the minimum number required for your application. Running out of space is
usually a sign that simplification is needed. Remember that users use 20% of a desktop
application's features 80% of the time. You should concentrate on finding the top 20% of the
features required by your users and provide commands that implement only those features.

Remember also that you are limited by the size of the screen. Realistically, you can fit only five
or six buttons on a form. You can fit three or four menus on each form, and each menu can
have at most 13 commands.

Use Buttons for Important Tasks

Use command buttons for important tasks, tasks that are essential to your application and that
are frequently performed. Reserve the use of menu items for the less important, less
frequently accessed commands.

Using command buttons for essential tasks serves two purposes: They make the commands
visible to all users, and they minimize the number of taps required to execute the commands.

For example, all of the built-in applications have a New command button on the main form so
that even new users can see how to create a record. Navigating between the main forms of the
application is another important task that is nearly always worthy of a command button.

Many users do not even know that menus are available in Palm OS applications. If you place an
essential command like the New command in a menu, those people won't find it.

Note that context plays a role in deciding which commands are important and which are not. A
command may be important enough to deserve a command button on one form of your
application but not on another or a command may be important in one application but not
another. For example, most games use a menu item for the New Game operation because it is
more important to devote the entire screen to the playing of the game.

Use Menus for Destructive Commands

Just as essential tasks should have a command button so that new users know where to find
them, destructive commands should be relatively hidden so that a user does not execute the
command by mistake. Menu items are good for this purpose because menus are a somewhat
hidden interface.

An alternative is to maximize the number of taps for a destructive operation. For example,
deleting a contact from the Address Book is performed by a command button, but it requires
three taps to reach the Delete button.

Just as context plays a role in determining which commands are important, it also plays a role
in determining how difficult it should be to execute destructive commands. Some applications
may want to elevate the importance of the Delete command by placing its button at the same
level as, for example, the New or Edit button. Consider an application that loads digital images
from a camera into the handheld. In such an application, you may want the Delete button to
have the same accessibility as the Edit button so that the user can quickly and easily free up
space on the handheld.

All destructive operations should display a confirmation alert before actually performing the
task.

Don't Duplicate Commands

Don't provide both a command button and a menu item for the same operation in the same
form.

In desktop applications, it's common for there to be both a New menu item and a New
command button on the toolbar, for example. On Palm Powered handhelds, screen space is so
limited that such an interface is discouraged. Use command buttons for the important, common
commands only. Use menu items for infrequent commands only.

Keep in mind, however, that each form in an application can have a different menu. It's
acceptable for one form's menu items to duplicate command buttons that appear on a different
form. For example, in Memo Pad the main form has a New button to create a new memo. The
Memo Edit form has a menu item that performs the same function. This way, the user does not
have to return to the main form to create a second memo.

For further discussion on duplicating commands, see "Duplicating Menu Items".

Remember the Goal: Minimize Taps

Don't use a command button or a menu when some easier method of performing the task is
available.

Each of the built-in applications allows you to edit an existing record and to display a record's
details. They use different means for performing these tasks depending on what fits that
application best. The Date Book and To Do List applications allow you to edit a single record in
the main form simply by tapping it. For viewing the record's details they provide a command
button, so this action requires one more tap than editing the record does. Address Book
reverses this functionality: viewing the record's details requires a single tap on the record.

Editing the record requires the user to tap the record and then tap the Edit button. (See Figure
4.3.)

Figure 4.3 Minimizing taps in built-in applications

Even though these applications use different means for editing an existing record and
displaying a record's details, each uses the best means for its data. In Date Book and To Do
List, you rarely need to see more information about a record than is shown in the main form.
Therefore, editing the record is more common than viewing the details. In Address Book,
viewing the details is more common than editing because Address Book's main form cannot
display all relevant information about a contact (such as the contact's address). Each of these
applications minimizes the number of taps for the most frequently performed operation.

Use Buttons for Commands Executed by New Users

Provide command buttons for tasks commonly executed by novice users if they are otherwise
hidden.

In Address Book, tapping anywhere in the View form takes you to the Edit form. This is a
power user feature; two quick taps on a contact listed in the main form takes you to the Edit
form. Newcomers may not discover this feature right away, so Address Book still provides an
Edit command button on the View form.

You do not have to provide a command button if the functionality is easily discovered,
however. Tapping a contact name in the main form of Address Book has no command button
counterpart. Newcomers can easily figure out this interface.

Don't Provide Save or Exit Commands

Most desktop applications have menu commands to save changes and to exit the application.
These commands are so ubiquitous on desktop applications, novice Palm OS application
designers try to fit them into their handheld applications. This is almost never a good thing to
do.

You find no Save command in the built-in applications. Palm users are not used to saving
changes before they switch to another application. Changes are always saved as they are
made. Undo is available if the user makes a mistake in an editable text field, and destructive
operations have a confirmation.

Palm Powered handheld users are also not used to exiting applications. On the Palm Powered
handheld, users do not think in terms of exiting one application and then launching another.
The paradigm is such that they consider all applications to be running at once and they can
move between them at will. (In reality, the system only runs one application at a time, and the
applications are written in a way that moving between them looks seamless. This is an
implementation detail that the end user does not know about.)

Command Buttons
A command button (see Figure 4.4) is a button that has a rounded rectangular border and that
performs a command. Place a single a row of command buttons at the bottom of the form.

Figure 4.4 Command button dimensions

Table 4.1 Command button details

Dimension Value

Width 36
or content width + 10

Height 12
or font height + 3 if not using
standard font

Top 147 (modeless forms)
or 160 - button height - 1
form height - button height - 5
(modal forms)

First Button Left1 1 (modeless forms)
5 (modal forms)

Button(n) Left1 button(n-1) left + button(n-1)
width + 6

Border 1 pixel rounded rectangle

Content Text or graphic that succinctly
describes command

1.
See "Left-Align Buttons at the Bottom of the Form".

System Supplied Behavior

The user executes the button's command by tapping the button once with the pen or with a
finger. When the user does so, Palm OS highlights the button while it is being pressed. Palm
OS ensures that the command is not executed if the user drags the pen or finger outside of the
bounds of the button before releasing it.

Look and Feel

Follow these guidelines for the behavior and appearance of a command button.

Never Require a Double Tap

Never require a double tap on a command button, even as a power user feature. Reserve
double taps for text fields.

Left-Align Buttons at the Bottom of the Form

Command buttons belong at the bottom of the form. Remember that the user is working most
often in the Graffiti® area. Because the user will tap these command buttons often, it is best to
place them at the bottom so that they are nearest the user's pen.

On a modeless form, buttons and all other user interface controls begin at the left edge of the
screen (see Figure 4.5).

Figure 4.5 Command buttons on modeless form

On a modal form, you must leave space between the edges of the form and the buttons to
make sure that the button borders don't blend with the form borders (see Figure 4.6).

Figure 4.6 Command buttons on modal form

Borders are drawn outside of an object's boundaries. That means to align the button with the
left edge of the form, the button must begin at pixel 1. Its border is then drawn at pixel 0.
Similarly, to place 4 pixels between buttons, you must actually add 6 to the width and left
origin of the button on the left. Adding 6 allows for the left button's 1-pixel border on the right
and the right button's 1-pixel border on the left. See Table 4.1.

Use Succinct Names

The names of command buttons should be succinct and should clearly convey what the
command button does. Remember, the user should be able to learn your basic interface in five
minutes. That does not leave much time for learning by experimentation. It is best to use
standard command names wherever possible so that the user can instantly recognize the
button and know its purpose. Table 4.2 lists some of the command buttons found in the built-in
applications.

Table 4.2 Common command button names

Name Minimum
Width Description

OK 23 Confirm action and return
to previous form

Cancel 36 Revert the current form to
the previous settings and
return to the previous form

Delete 37 Remove record

Details... 44 Display Details dialog

Done 31 Return to previous form

Edit 25 Edit an existing record

New 27 Create a new record

Note 30 Add a note to a record

Use an ellipsis (...) in the button name if the user must provide more information before the
operation is complete. In general, if the button displays a dialog other than an alert, about, or
progress dialog, its name should have an ellipsis. The ellipsis can be omitted if you need more
space.

TIP: Type three periods instead of using an actual ellipsis character. The character is not
available in all fonts.

You can use graphics in the button instead of text (see Figure 4.7). If you keep the graphics
small, you can generally fit more graphic buttons on the screen than you can text buttons.
However, as with text, the graphic must instantly convey what the button does. On a desktop,
application designers often rely on the tool tips feature to teach users what the buttons do.
(The user can hover the cursor over the button, and a text box pops up that describes the
button.) No such feature exists in Palm OS, so users will have to learn your icons by trial and
error.

Figure 4.7 Graphic buttons

Never Dim a Disabled Button

Never dim or gray out a button to show that it does not apply to the current situation. If the
button depends on a certain user context, display an alert dialog that explains why the button
does not apply. For example, To Do List has buttons at the bottom of the main form that apply
to the currently selected task. If the user has not selected an item, tapping one of the buttons
results in an alert dialog explaining how to select an item (see Figure 4.8).

Figure 4.8 Alert dialog when button does not apply

If the button depends on certain hardware capabilities, such as the ability to connect to a
network, you can test for those capabilities before the form opens and hide the button if it does
not apply.

Repeating Buttons

If you want a button to repeatedly perform an action while the user holds down the pen on it,
use a repeating button instead of a command button. Use of repeating buttons is relatively
uncommon. Two of the more common uses of repeating buttons are:

 As scroll buttons that scroll the display (see "Scroll Buttons")

 To increment or decrement a value (see Figure 4.9)

Figure 4.9 Repeating buttons

Repeating buttons may look exactly like command buttons, but usually the border is removed
from a repeating button.

Breaking the Rules

This section points out a few of the applications that break command button guidelines and
tells you if doing so was appropriate.

Placing Command Buttons Elsewhere on the Form

If a command button applies only to a particular field on a form, you can place that button next
to the field instead of at the bottom of the form. Figure 4.10 shows a form in the SMS
Messenger application. In this form, the To command button looks up a phone number in the
Address Book. Placing this button next to the field it modifies helps the user understand what
the button does. If this button were placed at the bottom of the form, the word "To" would not
be a descriptive name for the button. Instead, it would have to be named "Phone Lookup,"
which still is not as clear as naming the button "To" and placing it next to the field.

Figure 4.10 Command button elsewhere on form

Before breaking the command button guidelines in this manner, consider using a selector
trigger in combination with a modal form. The selector trigger could replace the command
button and text field. It could display a modal form containing a text field and a list of contacts.
Users could either choose a phone number from the list of contacts or write the phone number
directly in the text field.

For the SMS Messenger application, a selector trigger is less desirable because it would force
people to always use the phone lookup feature. Many people might want to bypass the phone
lookup feature if they know a phone number by heart. A selector trigger would not allow for

this behavior.

See "Implementing a Combo Box" for further discussion of this style of interface.

Centering Command Buttons

You may notice that every form in Palm OS and its built-in applications has left-aligned
command buttons with the exception of about dialogs and progress dialogs (see Figure 4.11).
About and progress dialogs each have a single button that is centered on the screen. Do not
model any other form after about or progress dialogs. Consistently left justifying buttons is
best for the user; the user expects all buttons to appear in a certain location. Note that single-
button alert dialogs always left justify the button.

Figure 4.11 Bad example of button placement

Omitting the Ellipsis

The ellipsis character is used inconsistently within the built-in applications. Don't follow what
the built-in applications do. Try to follow the ellipsis guideline as it is presented in this chapter:
Any button that displays a modal dialog other than an alert, about, or progress dialog should
have an ellipsis in its name. The ellipsis should only be omitted if you need to make space.

You may notice that in the built-in applications sometimes omit the ellipsis even when there is
room for it (see Figure 4.12).

Figure 4.12 Button that requires ellipsis

The use of an ellipsis on the Delete button also can confuse newcomers to the platform. In
general, a Delete command would not have an ellipsis because it displays only a confirmation
dialog in response. Many of the Palm built-in applications, however, correctly use the ellipsis on
Delete because they do require extra information to complete the operation (see Figure 4.13).

Figure 4.13 Delete confirmation with extra information

Buttons with Nonstandard Height

The Date Book alarm dialog uses buttons that are taller than normal so that users can dismiss
the dialog as quickly as possible (see Figure 4.14).

Figure 4.14 Date Book alarm buttons

It's quite common for this dialog to appear and the alarm to sound when the user has the
handheld turned off. Users want to dismiss the dialog as quickly as possible and finish what
they were doing. The large buttons allow for "finger navigation," enabling virtually all users
(not just those with small fingers) to dismiss the dialog without having to get out the stylus.

Use large buttons such as these only if your application has a dialog that is likely to display
when the user does not have the stylus out. Once the user has the stylus in his or her hand for
some other task, the advantage of the large buttons is lost.

Menus
A menu displays a set of commands that the user can perform (see Figure 4.15). The user
either taps the form's title or the Menu icon to display the menu bar, then chooses an item
from one of the menus. That command is executed.

Figure 4.15 Menu bar and menu

Table 4.3 Menu details

Dimension Value

Width System determined

Height System determined

Top System determined

Left System determined

Border Bold rectangle

Content Adjective or verb that succinctly
describes command

System Supplied Behavior

The menu bar is displayed when the user taps either the menu icon or the form's title.

Palm OS ensures the behavior of menus as outlined in Table 4.4.

Table 4.4 Default behavior of menus

When... Then...

User drags the pen
through the menu

Command under the pen is
highlighted

Pen is released over
a menu item

That item is selected and
the menu bar and menu
disappear

Pen is released
outside both the
menu bar and the
menu

Both menu and menu bar
disappear and no selection
is made

Pen is released in a
menu title (Palm OS
3.5 and later only)

Menu bar and menu
remain displayed until a
selection is made from the
menu

Pen is tapped outside
menu and menu bar

Both menu and menu bar
are dismissed but no event
is posted

Menus are fairly simple. Palm OS provides no concept of having a submenu because of the
limited screen space. Menus also are not scrollable.

System Displays Last Command Executed

To make it easier for users to perform commonly used commands, the system remembers the
last menu item that the user selected (Graffiti shortcuts do not count). The next time the user
displays the menu bar, the menu for the previously selected item is displayed and that item is
highlighted.

The system only remembers the last menu item as long as the current form is displayed. If a
new form is displayed, the current form's menu memory is erased. This means that if the result
of the menu item is to display a new form, such as an about dialog, the command is not
remembered.

Look and Feel

Follow these guidelines for the behavior and appearance of a menu.

Note that you have no control over the height and width of a menu. The system always
determines a menu's boundaries at run time.

Each Form Can Have a Different Menu

Each form can have a menu bar associated with it. (The menu bar is optional; a form does not
have to provide menus.) You can provide a different menu bar with a different set of menus for
each form in the application.

Provide Options Menu with About Command

Provide an Options menu with an About menu item to display your about dialog. This menu
must at least be present on the main form.

If your application has a Preferences dialog, the Preferences command also belongs on the
Options menu.

Edit Menu Required for Text Fields

Provide the standard system Edit menu if the form has an editable text field. The Edit menu
must look as shown in Figure 4.16. You can add your own items below the last item.

Figure 4.16 Standard Edit menu

Menus Are Static

Keep menus and menu items static. Menu items should not gray or dim when inapplicable.
Never remove a menu item nor change its name based on user context. If a menu presents
commands that are dependent on certain hardware capabilities and the handheld does not
contain those capabilities, hide the menu items before the menu bar is displayed the first time.

Naming Menus and Menu Items

The rules for naming menus and items within menus are similar to those used in desktop
applications.

For the menu name, choose a single word that describes the type of items in that menu. Some
common menu names:

 Record-The items are actions performed on the selected database record and can also create
and delete records.

 Edit-The items change the text displayed on the form.

 Options-The items allow the user to control how the application behaves.

For the menu item name, use either verbs or adjectives. If the item performs an action, use a
verb. If the item changes an attribute of an object on the screen, use an adjective. In some
cases, it's appropriate to use a noun. Typically, nouns display a dialog with the same name,
such as "Preferences." It is particularly important on Palm OS to keep the menu names short.
You can manage around 20 characters per item name, but try to keep them much shorter than
that. Twenty characters takes up the entire width of the screen, obscuring the entire form.

Use title capitalization in menu items and in all user interface items. That is, capitalize all
important words in the item just as you would the title of a book. The menu item for attaching
a note, for example, is "Attach Note," not "Attach note."

Use an ellipsis (...) in the menu item if the user must provide more information before the
operation is complete. In general, if the item displays a dialog other than an alert, about, or
progress dialog, it should have an ellipsis. As with command buttons, type three periods
instead of using an actual ellipsis character.

Divider Lines Group Menu Items

If your menu contains a long series of commands (greater than five as a rule of thumb), try to
group related commands together with a divider line. In Figure 4.16, you can see the Edit
menu uses a divider to separate the usual cut, copy, paste, and undo operations from the
menu commands that display the keyboard dialog and that display the Graffiti Help dialog. By
providing dividers to group related menu items, you help the user learn and understand the
interface. See Figure 4.17.

Figure 4.17 Menu with dividers and without

Menu Shortcuts

A menu shortcut is an alternative to selecting a menu item. Users enter the Graffiti command
stroke (a diagonal line drawn upward from left to right) followed by a single character.

This support is present in all versions of Palm OS. In Palm OS 3.5 and later, a command
toolbar is displayed. (On earlier releases, just the word "Command" was displayed.) The
shortcut toolbar (see Figure 4.18) displays a status message on the left and buttons on the
right. After entering the command character, the user has the choice of entering a Graffiti
character or of tapping one of the buttons on the shortcut toolbar. Both of these actions cause
the status message to be displayed briefly and then cause the corresponding menu item to be
executed.

Figure 4.18 Menu shortcut toolbar

There is no requirement to give every menu item a shortcut. Writing Graffiti characters is
difficult for many users, and mistakes are common. If the command is destructive (such as
Delete), it is better not to provide a shortcut to avoid having the user inadvertently select it. If
the destructive command is followed by a confirmation alert, you can assign a shortcut to it.

NOTE: If you assign a shortcut, it must be unique through the entire application, not
just the current menu system.

Avoid assigning letters with similar strokes to two different menu items. For example, the
Graffiti shortcut for Paste is P rather than the V used on most systems. One reason for this is
that the Graffiti stroke for V is similar to the Graffiti stroke for U, which is the shortcut for
Undo. It could be detrimental to the users intending to Paste if they instead performed Undo by
mistake. Another reason is that most Palm Powered handheld users do not use keyboards with
their handhelds, and many may not even know how to type. For keyboard users, the V
shortcut for Paste is easy to remember because the V key is right next to the C key. The V
shortcut for Paste would not make sense to users who do not know how to type.

Consider Graffiti shortcuts already assigned by other applications when assigning your own
Graffiti shortcuts. Make sure that you use the same shortcut if you include the same menu

item. This makes the entire system easier for users to learn. Table 4.5 shows the common
Graffiti shortcuts used by the built-in applications.

Table 4.5 Common Graffiti shortcuts

Command Shortcut

New Record N

Delete Record D

Beam B

Undo U

Cut X

Copy C

Paste P

Select All S

Keyboard K

Graffiti G

Preferences R

Buttons on the Shortcut Toolbar

You can include your own buttons on the toolbar for the more commonly executed Graffiti
shortcuts (see Figure 4.19). The buttons displayed on the toolbar depend on the user context.
If the focus is in an editable field, Palm OS displays buttons for cut, copy, and paste on the
shortcut toolbar. If there is an action to undo, the system also displays a button for undo.

Figure 4.19 Toolbar buttons

Only add a button to the toolbar if you define a Graffiti shortcut for that command. Don't
arbitrarily add extra buttons to the toolbar.

Limit the buttons displayed on the shortcut toolbar to four or five. There are two reasons to
limit the number of buttons. First, you must leave room for the status message to be displayed
before the action is performed. Second, consider that the toolbar is displayed only briefly.
Users must be able to instantly understand the meaning of each of the buttons on the toolbar.
If there are too many buttons, it reduces the chance that users can find what they need.

As described previously, the system already potentially displays four buttons by itself (for cut,
copy, paste, and undo). You can suppress this behavior if you feel your users would benefit
from seeing other buttons instead.

The system contains bitmaps that represent such commands as beaming and deleting records.
If your application performs any of these actions, it should use the system bitmap. Table 4.6
shows the system bitmaps and the commands they represent. If you use any of these, you
should use them in the order in which they are listed in Table 4.6, from right to left. That is,
BarDeleteBitmap should always be the rightmost of these bitmaps, and BarInfoBitmap should
always be the leftmost.

Table 4.6 System shortcut toolbar bitmaps

Name Bitmap Command

BarDeleteBitmap

Delete record

BarPasteBitmap

Paste clipboard
contents at
insertion point

BarCopyBitmap

Copy selection

BarCutBitmap

Cut selection

BarUndoBitmap

Undo previous
action

BarSecureBitmap

Show Security
dialog

BarBeamBitmap

Beam current
record

BarInfoBitmap

Show Info dialog
(Launcher)

Breaking the Rules

This section points out a few applications that break the menu guidelines and tells you if doing
so was appropriate.

Including an Exit Command

If you are writing an enterprise application to be used only within a particular company, your
users may insist on having an Exit command. These users are used to their desktops, and they
feel uncertain about moving from application to application on a Palm Powered handheld.

In this case, it may be best to give your users either an Exit menu command or an Exit
command button. Before you do so, make sure they know that when an application is exited
(that is, when the system receives an application exit event), the system returns to the last
screen displayed before the user launched that application. For most applications, the previous
screen is the Launcher because it is used to launch most applications. If your application is
launched by one of the hard keys on the handheld, then exiting the application would not
always take the user to the Launcher.

Even if your users insist on an Exit command, you should always design your application so
that it can be exited in the normal means for a Palm OS application-by pressing one of the
hard keys or by tapping the Applications icon-at any time. Consider this a power feature for
your users. Your users may use the Exit command at first but will eventually become used to
using the other buttons.

Never include an Exit command on an application intended for broad third party distribution.

Nonstandard Menu Names

You do not have to name the first menu "Record" even if it contains items that manipulate a
single record in your database. Instead, it is probably better to name it something more
familiar to your users. Users are typically not expected to know the terms "record" or
"database" as they are used in the Palm OS paradigm. For example, it would probably be
better for the "Record" menu in Date Book to be named "Event" and for it to be named
"Contact" in Address Book.

Duplicating Menu Items

You may have noticed that the Date Book application violates the rule of not duplicating a
command button with a menu item (see Figure 4.20).

Figure 4.20 Menu item duplication

This gives the user several ways to create a new appointment:

 Tapping the field next to a time and entering the name of the appointment

 Writing in the Graffiti area (creates an appointment at the specified time if a number is written
first or an untimed appointment if a letter is entered first)

 Tapping the New button, selecting the time, and then entering the name of the appointment

 Tapping the title bar, choosing the New Event menu item from the Record menu, choosing the
time, and then entering the name

 Entering the Graffiti shortcut for the New Event menu item, choosing the time, and then

entering the name

The first two methods of creating a new appointment are somewhat hidden interfaces. Most
users catch on that they can simply start writing to create an appointment, but not all users
discover this right away. Therefore, some duplication is necessary. Because novice users are
the ones most likely to not understand how to enter a new appointment, the New command
button (rather than a menu item) is necessary. You cannot provide a menu item and expect
novice users to find it because many novice users don't know about the menu. Therefore, the
New Event menu item and shortcut are simply redundancies that are probably never used.

Some application designers duplicate commands in the menu so that they can provide a Graffiti
shortcut for the command. This is a common practice in desktop applications; however, it is
unnecessary for most users of the Palm Powered handheld. Command buttons are placed at
the bottom of the form immediately above the Graffiti area. If a command has a button, it is
actually more convenient and quicker to tap the button than it is to enter the Graffiti shortcut
stroke followed by a letter. Plus, the more shortcuts you provide, the more you risk duplication
of shortcut letters.

Do keep in mind, however, that external keyboards have a key that simulates the Graffiti
shortcut stroke. This means that users with external keyboards will find a shortcut more
convenient than a command button. Therefore, if you have room in your menu, you may want
to duplicate a command if it is not one of the standard commands. The external keyboards
usually have preassigned keys that simulate taps on the common command buttons, such as
New, Delete, Details, OK, and Done, which makes providing a shortcut for these commands
unnecessary.

©2001 Palm, Inc. All rights reserved. Training | Knowledge Base | Palm OS Platform | Legal Notices

http://www.palmos.com/dev/support/classes/
http://www.palmos.com/dev/tech/kb/
http://www.palmos.com/

 < Home < Developers < Development Support < Documentation

5 Presenting Options
 Table of Contents | < Previous | Next > | Index

Title -
Palm OS® User
Interface Guidelines

5 Presenting Options

Choosing Which Element to
Use

Choosing Several of Many
Options

Choosing One from Many
Options

Implementing a Combo
Box

Check Boxes

Pop-Up Lists

System Supplied Behavior

Look and Feel

Breaking the Rules

Push Buttons

System Supplied Behavior

Breaking the Rules

Selector Triggers

System Supplied Behavior

Look and Feel

Breaking the Rules

Sliders

System Supplied Behavior

Look and Feel

This chapter describes user interface elements that allow the user to select discrete options or
values. These elements are:

 Check Boxes

 Pop-Up Lists

 Push Buttons

 Selector Triggers

 Sliders

The first section tells you how to choose which of the elements listed above is best for your
application. The rest of the chapter describes behavior and appearance guidelines for each
element.

Choosing Which Element to Use
Table 5.1 provides some general tips on user interface element selection. More details are
provided after the table.

Table 5.1 Choosing an element to present
options

Desired Action UI Choices

Choose several from
many

Check Boxes

Choose one from small
number of options

Push Buttons
Pop-Up Lists

Choose one from
moderate number of
options

Pop-Up Lists

Choose one from large
number of options

Selector Triggers

Choose from a range Sliders

Toggle state Check Boxes
Can be simulated with
Command Buttons if
desired

Choosing Several of Many Options

Check boxes (see Figure 5.1) are the only user interface element that allow the user to select
several options at the same time. The other elements allow only one of the options to be
selected. Therefore, if you have several options that are not mutually exclusive, check boxes
are the element to use.

Figure 5.1 Check boxes

http://www.palm.com/
http://www.palmos.com/index.html
http://www.palmos.com/dev/
http://www.palmos.com/dev/support
http://www.palmos.com/dev/support/docs

Choosing One from Many Options

If you want the user to choose only one from a set of options, there are several user interface
elements you can use: push buttons, pop-up lists, selector triggers, or sliders (see Figure 5.2).
Pop-up lists and sliders are very similar to their counterparts in desktop computers. Push
buttons are analogous to radio buttons on a desktop computer, but they have a different look.
Selector triggers are unique to Palm OS. A selector trigger looks like text surrounded by a
dotted rectangle. The text displays the current selection. When the user taps the selector
trigger, it displays a modal form that allows the user to change the selection.

Figure 5.2 Controls to choose one of many

The following sections discuss the pros and cons of each element.

Push Buttons

 In general, push buttons are the easiest of these elements to understand because they present
all options on the screen at one time. Sliders can be equally easy to understand, but the use of
sliders is limited to a few specific instances.

Push buttons are not easy to understand when there are only two choices (see Figure 5.3).
Some users think that the highlighted (dark) button is the option that is not selected. They
only realize which is the selected button when there are at least two deselected buttons to
compare it with.

Figure 5.3 Two-choice push button

 In general, push buttons are the easiest element for a user to use when compared to pop-up
lists and selector triggers.

 Use push buttons if there are between three and seven options that have short names. If there
are more options or the names become long, push buttons become hard to read.

 Don't use push buttons if your application is going to be localized or if there's a possibility you'll
add another push button in a future version of the application.

Because of the severe space limitations, push buttons don't scale well. If you can't leave
room for button growth due to localization or a new feature, then it is best to use a pop-up
list.

 Use push buttons to select among application views. See Figure 5.4.

Figure 5.4 Push buttons that select view

Pop-Up Lists

 Use pop-up lists when there are too many choices to display in a series of push buttons or you
simply don't have room for push buttons.

 Use pop-up lists if the application is going to be localized or if there might be more options
added in future versions.

 The more options a pop-up list presents, the more difficult and confusing it becomes to
navigate. Try to limit yourself to one screenful of items in the pop-up list. Avoid creating pop-up
lists that require the user to scroll more than one or two times. When users must scroll more than
a couple of times, they tend to forget where they are in the list.

Sliders

 Use a slider to select one value from a continuous range of possible values. Sliders are best
used when the setting is non-specific. For example, when setting the brightness or contrast on a
screen, users do not know the specific value they want. They only know that they want the
screen brighter or darker. Volume settings are also a good fit for sliders. Users do not know the
numeric value of the decibel level they want; they only know that they want the sound louder or
quieter.

 Sliders are only supported on Palm OS® 3.5 and later. If you want to support older versions of
Palm OS, do not use sliders. An alternative if you're using a slider for numeric data is to create a
spin box style of interface element. Use repeating buttons to increment or decrement the numeric
value. The Date Book Preferences dialog uses such an element (see Figure 5.5).

Figure 5.5 An alternative to sliders

Selector Triggers

 Use a selector trigger and a modal form when you have so many options that a pop-up list
would be too cumbersome.

For example, there are well over fifty possible time zones, which would make a very large
pop-up list, so the Preferences application uses a selector trigger for the time zone setting.
Tapping the trigger displays a modal form containing a list of time zones. Tapping OK on the
form changes the time zone shown in the selector trigger to the time zone selected in the
form's list.

 Use selector triggers when you want to limit user input to a particular format. Setting a date or
a time of day, for example, requires a set format.

 Use selector triggers when the data has multiple elements that must be set at the same time.
A date has a month, a day, and a year. A time has the hours, minutes, and an AM or PM
designation.

Check Boxes

 Don't use check boxes to choose one of many items. Constructor for Palm OS allows you to
create a group of check boxes that behave like push buttons, where selecting one check box
deselects another, but such an interface is strongly discouraged. Users expect to be able to select
more than one check box in a series.

Implementing a Combo Box

Desktop interfaces often support combo box elements, where the user can either select from
an existing list of options or type in a new one. Combo boxes on the desktop often look like a
pop-up list combined with a text field. Palm OS does not have a combo box element, but it
supports several ways of implementing similar behavior.

It's usually best to use a selector trigger where you might use a combo box on a desktop
application. Tapping the selector trigger displays a modal form that presents both the list and a
text field. To fill in the text field, the user can either select from the list or write Graffiti®
characters (see Figure 5.6).

Figure 5.6 Selector trigger as combo box

The selector trigger is a good choice when the following are true:

 Users do not access the form containing the selector trigger often.

 Users are more likely or just as likely to choose an option from the list of available choices than
to write in a new one.

If you expect the form to be used frequently and you believe users will want to write in a new
choice often, the selector trigger is not the best solution. The selector trigger implementation
makes writing a new choice less convenient than a simple text field would. For example,
consider implementing the expense type in the Expense application with a selector trigger and
modal dialog. When users enter expenses, they often enter several in a row. If they have to
tap a selector trigger, navigate a list, and tap OK to enter each expense, using the application
can become tedious.

Another option is to use a command button in combination with a text field as shown in Figure
5.7. This style of user interface allows the user to enter text in the text field just as easily as
selecting from the list.

Figure 5.7 Command button as combo box

The command button implementation of a combo box is a good choice when the list of
available options is potentially quite large. In Figure 5.7, the To command button does phone
lookup, and there may be hundreds of phone numbers from which to choose.

A third choice for implementing a combo box element is to use a pop-up list. Using a pop-up
list element is a good idea when the following are true:

 The form is used so frequently that the extra taps required by the selector trigger make its use
tedious.

 The available choices are far fewer than with the phone lookup example shown in Figure 5.7.

To allow the user to enter new items for the list, include an Edit command in the list, in the
same way that the Categories pop-up list includes an Edit Categories command. See the
section "Pop-Up Lists" for more information on implementing pop-up lists.

A pop-up list allows the user to select from the list more conveniently than a selector trigger
does. Entering text is still slightly inconvenient. If you anticipate that users will want to add
new items to the list often, you also may want to add a command to your interface that would
display a modal dialog in which the user could add several items to the list at once.

Check Boxes
Check boxes (see Figure 5.8) display an on/off setting. Tapping a check box or its text content
toggles the setting.

Use check boxes for two-state data or options, that is, for values that are either on or off,
enabled or disabled.

Figure 5.8 Check box dimensions

Table 5.2 Check box details

Dimension Value

Width System determined

Height 12 pixels minimum
Height determines tappable area
Height does not affect size of box or
text

Top Varies

Left Varies

Border None

Content Text describing option. Can be
lengthy. Use title capitalization and
bold font.

Most check boxes have bold text to the right that describes the option. (This book refers to this
text as the check box's text or text content.) The text should describe the "positive" state of
the check box, that is, what happens when the check box is checked. The text content is part
of the active area of the check box. The user can tap the text to toggle the check box.

Check boxes are not required to have text content. For example, the check boxes in each To
Do List record do not.

Notice that some check boxes omit the text content to the right of the check box in favor of a
label to the left. For example, the Memo Pad Details form in Figure 5.9 has a checkbox that
sets whether the record is private. The label for this check box is to the left of the box to make
it match the only other user interface element on this form. Placing the check box on the left is
done at a cost: the check box's label is no longer part of the check box's tappable area. For
this reason, it's unwise to arbitrarily choose to place check box labels to the left. Do so only if
there is good reason.

Figure 5.9 A check box with a label to the left

Pop-Up Lists
A pop-up list allows a user to select one item from a series of items. It displays the currently
selected item. A pop-up list is actually made of two user interface elements: a pop-up trigger
(see Figure 5.10) and a list (see Figure 5.11).

Both push buttons and pop-up lists allow a user to select one item from a series of items. Pop-
up lists are a little more difficult for users to navigate than push buttons, but they are often
ideal for situations where there are several possible options from which the user can choose.

Figure 5.10 Pop-up triggers

Table 5.3 Pop-up trigger details

Dimension Value

Width System determined

Height 12
or font height + 3

Top Varies

Left Varies
Use 160 to align trigger with right
edge of screen if it resizes to the left

Border None

Content Current list selection

Figure 5.11 List dimensions

Table 5.4 Pop-up list details

Dimension Value

Width 5 + width of longest item
12 + width of longest item if list is
scrollable

Height 13 items
or number of items in the list if < 13
items
Use 0 for the Categories list. Its
height is determined at run time.

Left trigger left if trigger is left-aligned
trigger left - list width if trigger is
right-aligned

Top trigger top (Palm OS repositions if
necessary)

Border 1 pixel square rectangle

System Supplied Behavior

The pop-up list displays the current selection. If the user taps a pop-up list's arrow or its
content, the list is displayed.

Pen Interaction

Tapping a list item unhighlights the current selection and highlights the item under the pen.
Dragging the pen through the list highlights the item under the pen. Dragging the pen above or
below the list causes the list to scroll if it contains more choices than are visible. If the pen is
otherwise dragged outside the list, the selection is unchanged.

Scrollable Pop-Up Lists

If there are more choices than can be displayed, the system draws small arrows (scroll
indicators) in the right margin next to the first and last visible choice. When the pen comes
down and up on a scroll indicator, the list is scrolled. When the user scrolls down, the last
visible item becomes the first visible item if there are enough items to fill the list. If not, the
list is scrolled so that the last item of the list appears at the bottom of the list. The reverse is
true for scrolling up. The scrolling hard keys on the handheld perform the same behavior.
Scrolling doesn't change the current selection.

Look and Feel

Follow these guidelines for the behavior and appearance of a pop-up list.

Show Selection When List Pops Up

When the user taps the pop-up trigger, the list should display in such a way that the current
selection is visible. If the list is large, try to adjust the scrolling so that the selection is in the
center of the display. This way, the user has to do a minimum amount of scrolling to change
the selection.

Present Items in a Logical Order

Position list items so that the most useful items are near the top. For example, if you are
presenting a list of times of day, start the list with the most active part of the day, such as
8:00 AM. Do not start with midnight. If you enable incremental searching, as described below,
present list items in alphabetical order.

Lists Do Not Execute Commands

On some desktop systems, pop-up lists can present a list of commands to the user. Such an
interface is not allowed on Palm OS. Use command buttons or menus to execute commands.

Lists Are Not Hierarchical

Do not create a hierarchical pop-up list. Palm OS has no concept of a hierarchical structure for
pop-up lists or menus because of the lack of screen space.

Use Incremental Search for Large Lists

Pop-up lists have an incremental search feature that the programmer can enable. This feature
allows the user to select an item by writing Graffiti characters matching the first few characters
in that item. Particularly if your list is large, consider enabling this feature; however, it is not
widely known, so you should not rely on your users knowing about it. Enabling this feature
requires the list to be presented in alphabetical order.

First List Item Is Default Selection

The initial selection for the list by default is the first item in the list. You can display a non-
selection in the trigger, if applicable. For example, the Expense application defines no default
expense type. Before an expense type is selected, the words "-Expense Type-" appear in the
pop-up trigger. Use dashes in the default trigger to show that the item is a pop-up list. For
example, the default trigger content might be "-Select-".

Provide a Label if Necessary

You can provide a label for the pop-up list if necessary, but doing so is not required. The
content of the list trigger usually provides enough context for the user to understand the list's
purpose.

Breaking the Rules

This section points out a few of the applications that break pop-up list guidelines and tells you
if doing so is appropriate.

Commands in a Pop-Up List

In general, a list should not execute commands, but this rule can be broken if you want the
user to edit the list (see Figure 5.12). For example, the Categories pop-up list often includes an
Edit Categories item to allow the user to delete or add categories. If you want to present a
series of command choices to the user, use command buttons or a menu.

Figure 5.12 Command in a pop-up list

Pop-Up Lists with No Trigger Arrow

In some cases, you may wish to forgo drawing the pop-up trigger's arrow. The Expense
application does not display a pop-up trigger for its pop-up list (see Figure 5.13), and the To
Do List application does not display a trigger for its priority list. They do not use the pop-up
trigger arrow for the following reasons:

 The list sets a data field in the record, as opposed to setting a display option.

 The data field is set once for each record and rarely changed.

 The trigger detracts from the display of data.

 The pop-up list is a power-user feature. Each application uses the Details dialog as an
alternate, more obvious way to set the field so that new users can find it.

If you want to omit the trigger arrow because it detracts from your data display, you may do
so. You must provide an obvious method of setting the field for new users.

Figure 5.13 Pop-up trigger without arrow

Nonstandard Pop-Up Triggers

The section "Implementing a Combo Box" described three possible choices for implementing a
combo box style element: a selector trigger with a modal form, a command button with a text
field, and a pop-up list containing an Edit command.

To make it easy to add items to a pop-up list used as a combo box style element, some
application designers have combined text fields with pop-up triggers that have nonstandard
content. There are two competing styles of pop-up trigger used in this manner. Each style has
its champions, but both have such deep design flaws that they are best avoided entirely.

Some designers use a pop-up trigger with no content (see Figure 5.14). If the user selects
from the list that the trigger displays, the selection is copied into the text field appearing
immediately to the right. If the user enters text in the field that does not match an item in the
list, a new item is added to the list.

Figure 5.14 Pop-up list with no label

The advantage to this implementation is that it looks like a desktop combo box and it makes it
easy to add a new item to the list. However, this design has two problems:

 Only the trigger is tappable. In a standard pop-up list, the user can tap either the trigger or its
contents to see the list. Many users find the trigger alone too small to tap accurately.

 The only visual difference to indicate that the combo box element's usage differs from the
standard pop-up list is the use of the dotted underline in the editable text field. Some users may
find this difference too subtle and may wonder why tapping the text field does not display the pop-
up list.

Other application designers use the text field's label as part of the pop-up list. For example, in
Figure 5.15, the user can tap either the trigger to the left of the "Service" label or the "Service"
label itself to select the network service displayed in the text field.

Figure 5.15 Pop-up list with static label

This implementation is not a good choice because many users expect the pop-up list to behave
the same way the pop-up lists in the Address Book Edit form do; they expect the list to modify
the word "Service," not the text field next to it.

Because both of these styles of combo box have usability problems, they are best avoided. For
the particular form shown in Figure 5.14 and Figure 5.15, the selector trigger is the best fit
because this form is used infrequently. If you have a form where the element is going to be
used so frequently that you'd like to use a pop-up list instead, follow the recommendations in
"Implementing a Combo Box": use a standard pop-up list. Include an Edit command in the pop-
up list to allow the user to add items. To make it easy for users to add several items at once,
include an extra command in your interface that displays a modal form where the user can
freely edit the list items.

Push Buttons
Push buttons (see Figure 5.16) are analogous to radio buttons in a desktop application. They
are designed to take less space than radio buttons-they do not need room for both the round
button and the label next to it.

Both push buttons and pop-up lists allow a user to select one item from a series of items. Push
buttons are easier to understand because they present all options on the screen at one time. A
pop-up list hides all but the current selection. It is also easier to tap a push button than it is to
navigate through a pop-up list.

Figure 5.16 Example push buttons

Table 5.5 Push button details

Dimension Value

Width content width + 2 minimum
All push buttons in group should
have same width

Height 12
All push button in group should
have same height

Top Varies
All push buttons in group should
have same top (if horizontal
row)

First Button Left Varies

Button(n) Left button(n-1) left + button(n-1)
width + 1

Border 1 pixel square rectangle

Content Text label or graphic. As small as
possible.

Label Provide label if purpose of
buttons not immediately
apparent

System Supplied Behavior

As long as you assign all of the push buttons the same group ID, the system ensures that the
user can select only one button. If the user taps one button in the group, that button is
highlighted, and the previously selected button is unhighlighted. Unlike a command button, a
push button is not unhighlighted when the user releases the pen; a push button remains
highlighted until another button in its group is selected.

Breaking the Rules

It's possible to create push buttons that aren't mutually exclusive by leaving the group ID
unassigned. In fact, it's a common programming mistake. Because it is such a common
mistake, such an interface is likely to look more like a bug than a feature to your users.

The Week view in Date Book's Change Repeat dialog uses non-exclusive push buttons to
present the days of the week (see Figure 5.17). It's easy to see why this user interface
element was chosen: it takes up far less screen space than a list of check boxes would.
However, users expect items that look like push buttons to behave like push buttons. Many
users will look at the dialog shown in Figure 5.17 with no days selected and believe that they
cannot choose more than one day.

Figure 5.17 Non-exclusive push buttons

Selector Triggers
A selector trigger (see Figure 5.18) provides a value for a single field or option. Tapping it
displays a modal form in which the user can change the value. When the form is dismissed, the
selector trigger updates to show the newly selected value.

Figure 5.18 Selector triggers

Table 5.6 Selector trigger details

Dimension Value

Width System determined

Height 13 pixels
or odd number so that the corner
pixels are black

Top Varies

Left Varies

Border 1 pixel square dotted rectangle

Content Text providing current value

Label Usually requires separate bold label
to describe the value

System Supplied Behavior

The user taps the trigger once with the pen. When the user does so, Palm OS highlights the
trigger momentarily while it is being pressed. Palm OS ensures that the trigger is not selected
if the user drags the pen outside of the bounds of the trigger before releasing it.

Look and Feel

Follow these guidelines for the behavior and appearance of selector triggers.

Selector Triggers Display a Modal Form

Your application must ensure that the selector trigger displays a modal form and that upon
return, the trigger's content changes to the value set using that modal form.

Do not use a selector trigger as a toggle button that toggles between states. Depending on the
situation, a command button or a check box is more appropriate for this purpose.

Include a Label if Appropriate

It's usually appropriate to include a bold label that indicates what value the selector trigger
sets. This label can be omitted if the selector trigger's placement or its setting make the
trigger's purpose clear. The selector trigger in the Address Edit form's title bar is not labeled,
for example, because its position and setting make it clear that it displays the category.

Breaking the Rules

This section points out a few of the applications that break selector trigger guidelines and tells
you if doing so is appropriate.

Selector Triggers That Don't Update

The only triggers that are allowed not to update when the user has selected a value are
triggers for password fields (see Figure 5.19). Password fields update from "Unassigned" to
"Assigned" when the password is set the first time. From that point on, the selector trigger
remains "Assigned" when the user changes the password.

Figure 5.19 Selector trigger for passwords

All other selector triggers must update to show the current selection or give some indication
that the selection has changed. You can consider the password selector trigger's changing from
"Unassigned" to "Assigned" as updating to show the current value at a much lower resolution
than a normal selector trigger would. This is acceptable if you want the selector trigger to
change some value that should remain hidden from view. If you want to create a trigger that
doesn't update at all, consider using a command button instead.

Selector Triggers with No Modal Form

Some selector triggers do not display a modal form when tapped. The Address Edit and Memo
Edit forms each use a selector trigger to display that record's category (see Figure 5.20). If you
tap the selector trigger, the Category list is displayed rather than a modal form.

Figure 5.20 Selector trigger displaying a list

These two forms use a selector trigger for the category rather than a pop-up list to convey that
the control performs a different function than the Category pop-up list the user sees on other
forms. On other forms, the Category pop-up list simply filters the display of records. In
contrast, the Category selector trigger on these forms changes the category in which the
current record is filed, but does not change which record is displayed.

Why doesn't this Category selector trigger display a modal form that changes the record's
category? Doing so would allow it to conform to the selector trigger interface guidelines, but it
would increase the number of taps for this task from two taps to four. The application
designers believe that minimizing the number of taps outweighs conforming to the guidelines in
this instance. Keep in mind that novice users are more likely to set the record's category using
the Details dialog.

That being said, the Category selector trigger on these two forms is widely considered to be an
imperfect solution at best. Some users expect this control to be placed where it is and
immediately understand its purpose. Other users confuse it with the Category pop-up list that
controls the display on the main form.

Sliders
A slider (see Figure 5.21) represents a value that falls within a particular range. For example, a
slider might represent a value that can be between zero and ten.

Figure 5.21 Slider

Table 5.7 Slider details

Dimension Value

Width Varies
The default background bitmap looks
best at these widths: 72, 93, 114,
135, or 156

Height 15
or height of thumb bitmap

Top Varies

Left Varies

Border None

Content N/A

System Supplied Behavior

The slider has four attributes that determine its behavior. You set these when you create the
slider:

 The minimum value the slider can represent

 The maximum value the slider can represent

 The initial value

 The page jump value, or the amount by which the value is increased or decreased when the
user clicks to the left or right of the slider thumb

Palm OS updates both the slider appearance and slider value. When the user drags the thumb,
the slider value updates accordingly. When the user taps the slider background to the left of
the thumb, the slider value decreases by the page jump value and the thumb moves to the left
the same amount. When the user taps to the right of the thumb, the slider value increases by
the page jump value and the thumb moves to the right.

Palm OS supports two types of sliders: regular and feedback sliders. The difference between
the two is entirely behavioral. If the user drags the thumb or holds down the pen within the
slider bounds, the feedback slider continually updates the slider value and sends events as this
happens. The regular slider waits until the user lifts the pen and then updates the slider value.

In most cases, a regular slider suffices. You only need a feedback slider if you want to provide
further visual feedback to the user apart from the slider thumb moving. For example, if you
have a field that shows the current value of the slider, you probably want to use a feedback
slider (see Figure 5.22).

Figure 5.22 Feedback slider

Look and Feel

Sliders are drawn using two bitmaps: one for the slider background, and the other for the
thumb. If you use the default bitmaps, you should make the slider 15 pixels tall to allow room
for the thumb, and you can make it as wide as you want.

The default bitmaps work well if the slider sets a numeric value. If your slider sets a more
visual value, use a different background bitmap to show the user what dragging the thumb
does. The brightness and contrast adjust forms each use a non-default bitmap (see Figure
5.23). If possible, make the bitmap as wide as it will display on the screen.

Figure 5.23 Non-default slider bitmap

©2001 Palm, Inc. All rights reserved. Training | Knowledge Base | Palm OS Platform | Legal Notices

http://www.palmos.com/dev/support/classes/
http://www.palmos.com/dev/tech/kb/
http://www.palmos.com/

 < Home < Developers < Development Support < Documentation

6 Displaying Data
 Table of Contents | < Previous | Next > | Index

Title -
Palm OS® User
Interface Guidelines

6 Displaying Data

Choosing Which Element to
Use

Fields

System Supplied Behavior

Look and Feel

Breaking the Rules

Lists

System Supplied Behavior

Look and Feel

Breaking the Rules

Tables

System Supplied Behavior

Look and Feel

This chapter describes user interface elements that display data. They often comprise the bulk
of a user interface. These elements are:

 Fields

 Lists

 Tables

The first section tells you how to choose which of the elements listed above is best for your
application. The rest of the chapter describes behavior and appearance guidelines for each
element.

Choosing Which Element to Use
To display data, you can use fields, tables, or lists. Fields are good for allowing free-form entry
of text and for displaying large documents. Tables and lists display columnar lists of data.

Text fields can display long documents or a single line of text. The Memo Pad Edit form shown
in Figure 6.1 is a good example of using a field to display and edit a document.

Figure 6.1 Multi-line text field

The Address Book Edit form uses single-line fields for each part of a contact' s information (see
Figure 6.2).

Figure 6.2 Single line text fields

Use a table to display a list of items if those items represent the primary data of your
application. Tables can show either a single column of text or multiple columns containing text
and other user interface elements (see Figure 6.3).

Figure 6.3 Table

http://www.palm.com/
http://www.palmos.com/index.html
http://www.palmos.com/dev/
http://www.palmos.com/dev/support
http://www.palmos.com/dev/support/docs

A list user interface element is a box that generally displays a textual single-column list (see
Figure 6.4) although it can be modified to display multiple columns or graphics. The user
cannot directly edit the items presented in the list.

Figure 6.4 List

Use a list for information that is secondary in nature and that is primarily static. Some
examples of places where a list element is appropriate are:

 The Edit Categories dialog uses a list to display categories because they are a secondary form
of information.

 An application that shows the time of day in various cities could show the possible cities in a
list element because the primary data of the application are the times of day.

 A document reader application could show the titles of available documents in a list element
because the primary data are the contents of the documents themselves, not the list of titles.

For more information on choosing between a table and a list, see "Choosing Lists Over Tables".

Fields
Fields (see Figure 6.5) can display one or more lines of text. Fields can be either editable or
non-editable.

Figure 6.5 Multi-line text field

Table 6.1 Field details

Dimension Value

Width Varies
Make as wide as possible

Height 11
or font height + 2 (single line)
Make multi-line fields as tall as
possible. Use a multiple of the line
height (font height + 2).

Top Varies

Left Varies

Border None. Dotted underline denotes
editable field.

Label Usually requires label to tell user
what to write in the field

System Supplied Behavior

Palm OS® provides the following support for fields:

 Insertion point positioning. When the user taps in an editable text field, Palm OS displays a
blinking cursor at that location.

 Text selection. The user can drag the stylus to select a range of text. On Palm OS 3.5 and
later, the user can also double-tap a word to select that word or triple-tap to select the entire
line.

If the field is scrollable, the user can drag the stylus past the edge of the field, and the
system scrolls the field in direction indicated.

 Display of text using a single font. You cannot, for example, display three words of text and
have the second word be bold.

 Word wrapping for multi-line text fields.

 Maximum character limit. You can set a maximum number of characters for an editable text
field. If the user enters more than the maximum number of characters, the field stops accepting
input.

NOTE: The maximum characters attribute is actually the maximum number of bytes that
the user can enter. In some encodings, characters are larger than one byte. Consider
this when setting your field's maximum characters.

Palm OS does not support overstrike input mode (that is, overwriting text to the right of the
cursor), horizontal scrolling, or numeric formatting for text fields.

Look and Feel

Follow these guidelines for the behavior and appearance of fields.

Editable Fields Have Dotted Underline, Are Left Justified

Fields that are editable should use a dotted underline to indicate that the field can be edited.
Do not use a solid underline.

Virtually all editable fields should left-justify the text contained in them. Constructor for Palm
OS allows right-justified fields, but you should only use right justification for numeric fields or
for non-editable text fields that you use as labels.

You can place an editable field anywhere on a form except in the title bar area.

Edit Menu Required

Any form containing an editable text field must contain an Edit menu. See the section "Edit
Menu Required for Text Fields" for more information.

Graffiti Shift Indicator Required

Any form containing an editable text field must contain a Graffiti Shift Indicator. Most modeless
forms have the Graffiti Shift Indicator positioned as shown in Figure 6.6.

Figure 6.6 Graffiti Shift Indicator placement (modeless form)

This placement leaves space for the scroll buttons if the form uses them. Even modeless forms
that use a scroll bar instead of scroll buttons place the Graffiti Shift Indicator at this location. If
you have so many controls at the bottom of the form that the Graffiti Shift Indicator cannot be
placed 17 pixels in from the right, leave 4 pixels of white space between the Graffiti Shift
Indicator and the control to its left.

On modal forms, place the Graffiti Shift Indicator as shown in Figure 6.7. It's rare for modal
forms to have both a Graffiti Shift Indicator and scroll buttons, but if yours does, place the
Graffiti Shift Indicator 4 pixels to the left of the scroll buttons.

Figure 6.7 Graffiti Shift Indicator placement (modal form)

Table 6.2 Graffiti Shift Indicator details

Dimension Value

Width 9 pixels

Height 9 pixels

Left 135 (modeless form)
142 (modal form)

Top 150 (modeless form)
form height - 13 (modal form)

If you place a Graffiti Shift Indicator on your form, Palm OS correctly displays all of the Graffiti
shift states (punctuation, symbol, uppercase shift, and uppercase lock). For Japanese systems,
the Graffiti Shift Indicator also indicates whether the front end processor is on or off and
whether it converts to Hiragana or Katakana characters.

Enable Auto-Shifting for Most Text Fields

Turn on the auto-shift attribute for all editable text fields unless the field should not accept any
uppercase letters. The auto-shift attribute is a convenience for your users that automatically
capitalizes the first word in the field and the first word after a sentence. Do not enable auto-
shifting if the field contains information that is not routinely capitalized, such as an email
address.

Note that the auto-shifting rules are language-specific, since capitalization differs depending on
the region. These rules depend on the Palm OS version, the market into which the device is
being sold, and so on.

Set the Focus When the Form Is Displayed

When a form containing a text field is displayed, set the focus in the text field so that it shows
the blinking cursor. Users can then start writing immediately without having to tap the text
field first. If the form has more than one text field, set the focus in the first field. For example,
the Address Book Edit form places the focus in the Last Name field (see Figure 6.8).

Figure 6.8 Field with focus

Decide if Single-Line Fields Should Grow

Wherever possible, you should make the text field wide enough to display its maximum
number of characters. If it's not possible, consider growing the field as needed. For example,
the User Name field in the Network Preferences panel grows if the user enters a very long
name (see Figure 6.9). All other controls on the form are adjusted downward.

Figure 6.9 Field that resizes as text grows

If you absolutely cannot allow the user to enter more than a single line of information, turn on
the single line attribute. If this attribute is not set, the user can accidentally enter a carriage
return in the field and keep writing. If the field does not resize with the carriage return, the
user may not know that they've entered extra information in the field.

Add a Scroll Bar to Multi-Line Text Fields

If you have a multi-line text field that accepts a large number of characters, add a scroll bar to
support scrolling the text field. See Chapter 7, "Scrolling," for guidelines on scrolling.

Limit the Amount of Required Data Entry

When designing your form, remember that most users only have the Graffiti power writing
software and onscreen keyboard available to enter data. For this reason, you should try to limit
the amount of data you require users to enter in a text field. Wherever possible, consider
helping the user by providing pop-up lists instead of text fields, by auto-completing text the
user enters in the field, and so on.

Support Graffiti Navigation and Tabbing between Fields

Support the Graffiti navigation characters on forms containing several text fields that the user
might fill out in succession. Although most users do not take the time to learn the Graffiti
navigation characters, power users know them and appreciate interfaces that allow them. See
Table 6.3 for a list of the Graffiti navigation characters.

Table 6.3 Graffiti navigation keystrokes

Action Stroke

Next field

Previous field

Move cursor left one character

Move cursor right one character

Also consider that users may fill out your form using an external or built-in keyboard. These

users expect that pressing the tab key will move the cursor to the next field and that pressing
the shift and tab keys will move to the previous field. Support this functionality where possible.

Validate After Text Is Entered

If your application needs to perform data validation on text entered into a field, provide a Done
command button and validate all text fields when the user taps the button. It's tempting to
perform validation as soon as the text is entered; however, doing so is a poor design decision
for Palm OS.

Suppose the user receives a phone call in the middle of entering data and needs to schedule an
appointment with the caller. If the user has made a mistake entering data in the current field
and you do not allow the user to exit your form until the mistake is corrected, the user could
become extremely frustrated. It's better to preserve the data as the user has entered it and
allow the user to exit immediately. When your application is relaunched, display the data entry
form with the partially entered data. Validate only when the Done button is tapped.

Breaking the Rules

Text fields normally do not belong in the command button area, but you can place a field in
this area if it allows the user to navigate the view. The Address Book application's main form
uses such a text field (see Figure 6.10).

Figure 6.10 Text field in command button area

Lists
A list (see Figure 6.11) provides a box with a list of choices to the user. The list is scrollable if
the choices don't all fit in the box.

In Palm OS, a list element associated with a pop-up trigger is called a pop-up list. This section
describes lists that don't pop up. See "Pop-Up Lists" for guidelines for pop-up lists.

Figure 6.11 List

Table 6.4 List details

Dimension Value

Width Width of longest item + 5
or width of longest item + 12 to
allow scrolling

Height 11 items tall for a full screen list
(modeless form)
10 items tall for a full screen list
(modal form)

Left Varies

Top 18 for a full screen list

Border 1 pixel solid rectangle

Label Usually not necessary

System Supplied Behavior

Palm OS supplies the following behavior for every list.

Pen Interaction

Tapping a list item unhighlights the current selection and highlights the item under the pen.
Dragging the pen through the list highlights the item under the pen. Dragging the pen above or
below the list causes the list to scroll if it contains more choices than are visible. If the pen is
otherwise dragged outside the list, the selection is unchanged.

Scrollable Lists

If there are more choices than can be displayed, the system draws small arrows (scroll
indicators) in the right margin next to the first and last visible choice. When the pen comes
down and up on a scroll indicator, the list is scrolled. When the user scrolls down, the last
visible item becomes the first visible item if there are enough items to fill the list. If not, the
list is scrolled so that the last item of the list appears at the bottom of the list. The reverse is
true for scrolling up. The scrolling hard keys on the handheld perform the same behavior.
Scrolling doesn't change the current selection.

Look and Feel

Follow these guidelines for the behavior and appearance of lists.

Always Show Current Selection

The list should always show the current selection when the form containing it is first opened.
Suppose the user opens a form containing a list with twenty items, scrolls the list to the
bottom, selects item fifteen, and dismisses the form. The next time the user opens the form,
the list should still be scrolled to the bottom and item fifteen should be selected.

Present Items in a Logical Order

Position list items so that the most useful items are near the top. For example, if you are
presenting a list of times of day, start the list with the most active part of the day, such as
8:00 AM. Do not start with midnight.

Use a Scroll Bar for Large Lists

Although lists come with their own scroll indicators and handle scrolling automatically, you can
suppress the display of these indicators programmatically and attach a scroll bar to the list
instead (see Figure 6.12). You should consider doing so if the list is the main element on your
form and it contains a large number of items. The scroll bar is preferred for large lists because
the scroll bar provides an indicator of location. See Chapter 7, "Scrolling," for more
information.

Figure 6.12 List with scroll bar

Breaking the Rules

This section points out a few applications that break the list guidelines and tells you if doing so
was appropriate.

Choosing Lists Over Tables

Lists and tables are not interchangeable. A list always displays a box around its contents. This
box conveys that the information inside of it is secondary to some other type of data in the
application.

Many application developers shy away from using tables because of the degree of
programming difficulty involved. Instead, they use a list element because lists are easier to

work with programmatically (see Figure 6.13).

Figure 6.13 Improper use of a list

The form shown in Figure 6.13 is an early design of the main form of the Books application
described in Chapter 1, "Palm OS Application Design." This application's primary purpose to
catalog the books that a person owns. The book titles displayed in the form are thus the main
data of the application and should be displayed in a table.

There are ways to programmatically suppress the drawing of the box around the list. As long
as your application suppresses the list's border and scroll buttons so that it looks and feels
exactly like a table element would, then you may use a list element instead. Note that you can
use lists to simulate multi-column tables as well as single-column tables.

Tall Lists

If you use as much of the data area of a form as possible to display a list, the list can show
eleven items maximum. This can be problematic if you have a list with twelve items. You hate
to make your users scroll just to reach the last item in the list.

The Set Time dialog shown in Figure 6.14 has this problem. The minutes list has exactly twelve
items. To show all twelve items, the list has encroached on the command button area of the
form. The list containing the hours was resized to match. To make room for these lists, two
command buttons were moved from this area to the left side of the form.

Figure 6.14 List in command button area

Another possible approach to this problem would have been to have each of the two lists show
only eight items because it's likely that a user is scheduling appointments during an eight-hour
work day. This would have made room for all four buttons at the bottom of the form.

The designers of this form weighed the two possible approaches and decided that it is easier
for the user if he or she can see all possible choices for the minutes field at once. This usability
factor outweighed any other considerations on control placement guidelines.

You'll probably not run into a similar situation when designing your interface. If you do, avoid
mimicking this interface without clearly considering the trade offs involved. Grow the list into
the command button area only if you believe the possible user benefits of doing so clearly
outweigh any other design considerations.

Tables
Tables (see Figure 6.15) are a convenient way to display a set of data and organize that data
into one or more columns.

Figure 6.15 Table

Table 6.5 Table details

Dimension Value

Width 160 (modeless form)
148 (modal form)

Height 120 pixels (modeless form)
108 pixels (modal form)

Row height 12 pixels (single-line rows)

Top 18

Left 0 for modeless form
4 for modal form

Border None.

System Supplied Behavior

Tables are highly configurable objects. The system supplied behavior depends heavily on the
type of table you create. Palm OS supports the use of certain user interface elements in the
table, namely editable text fields, check boxes, and pop-up lists. Palm OS ensures that these
elements work exactly as they do when they appear outside of a table.

If the table displays non-editable text, Palm OS ensures that the text is highlighted when the
pen is down in the bounds of the table item and unhighlighted when the pen is released. Note
that only a single item is selected. Palm OS does not support the selection of an entire table
row.

Look and Feel

Tables do not have borders or column headings because the short-term clarity is not worth the
long-term loss of space. From a user interface standpoint, there are two types of tables: tables
that allow direct editing and tables that don't.

The To Do List main form (see Figure 6.16) is an example of a table that allows direct editing.
To create a new item in the list, you tap the New command button. From there, you can
directly enter the text of the task, assign its priority and due date, and check the box when the
task is done.

Figure 6.16 Table with direct editing

The Address Book list view (see Figure 6.17) is an example of a table that doesn't allow direct
editing. In such a table, you must decide what happens when the user taps an item. In most
cases, the application should display a form that edits the data in that item.

Figure 6.17 Table without direct editing

As stated previously, Palm OS only allows selection of a single table item at a time. Your
application must be designed so that each item selection has a different and unique purpose.

Consider the table in the Address Book list view. This table has two columns, but they might
not be the columns you think they are. The first column displays both the contact name and
phone number or email address. The second column is a very narrow column that displays the
note icon if a contact has a note attached to it. Tapping an item in the first column displays
more information about the selected contact. Tapping an item in the second column (even if
the item is blank) displays the Note form, in which users can enter a free-form note about the
contact.

If you have a similar display, you'll probably be tempted to show the contact name in one
column, the phone number in a second column, and the note icon in a third column. Such an
interface is appropriate only if tapping the phone number performs a different function than
tapping the contact name. If tapping either the name or the phone number takes the user to
the same form, both the name and the number should highlight at the same time.

©2001 Palm, Inc. All rights reserved. Training | Knowledge Base | Palm OS Platform | Legal Notices

http://www.palmos.com/dev/support/classes/
http://www.palmos.com/dev/tech/kb/
http://www.palmos.com/

 < Home < Developers < Development Support < Documentation

7 Scrolling
 Table of Contents | < Previous | Next > | Index

Title -
Palm OS® User
Interface Guidelines

7 Scrolling

Choosing between Scroll
Bars and Scroll Buttons

Scroll Bars

System Supplied Behavior

Look and Feel

Breaking the Rules

Scroll Buttons

System Supplied Behavior

Look and Feel

Breaking the Rules

Palm OS® provides two controls that can scroll other controls:

 Scroll Bars

 Scroll Buttons

The first section tells you how to choose which of the elements listed above is best for your
application. The rest of the chapter describes behavior and appearance guidelines for each
element.

Choosing between Scroll Bars and Scroll Buttons
To scroll form content, such as tables, lists, fields, or bitmaps, you have your choice of scroll
bars or scroll buttons. Scroll bars appear on the right side of the screen (see Figure 7.1).

Figure 7.1 Scroll bars

Scroll buttons are arrows that appear at the bottom of the form (see Figure 7.2).

Figure 7.2 Scroll buttons

When choosing between scroll bars and scroll buttons, consider the following:

 Will users want to scroll a line at a time?

Scroll bars support scrolling both a line at a time and a page at a time. Scroll buttons scroll a
page (one screenful of information) at a time.

For most multi-line editable text fields, most users want both modes of scrolling available, so
multi-line text fields should always use a scroll bar. For other user interface elements, either
scroll bars or scroll buttons will do if scrolling a page at a time is sufficient.

 Do you need an indicator of location?

http://www.palm.com/
http://www.palmos.com/index.html
http://www.palmos.com/dev/
http://www.palmos.com/dev/support
http://www.palmos.com/dev/support/docs

Scroll bars provide a good indicator of the location of the data within the database (that is,
whether the user is viewing the beginning, end, or middle of the data). Although scroll
buttons show when the user is at the beginning or end of the data, they give no indication of
how far until the beginning or end when the display is somewhere in the middle.

Because scroll bars are the better indicator of location, you should use scroll bars as long as
you can sacrifice seven horizontal pixels of your data. If there already is a fairly clear
indicator of location and you can't sacrifice the space, use scroll buttons. For example, the
Address Book list view is sorted alphabetically, so users typically know where they are within
their own data. Address Book uses scroll buttons so that it can display more of the contact's
phone number or email address (see Figure 7.3).

Figure 7.3 Showing location

 Will your target audience be able to navigate using a scroll bar?

Scroll bars are tiny targets for the pen, making them difficult to use in certain situations.
Your target audience may have difficulty using scroll bars if they use your application while
in a car, on a train, or if they are older. Because scroll bars are on the right side of the
screen, left-handed users often can't see how far they've scrolled. They become annoyed
with applications that rely entirely on scroll bars.

If a significant percentage of your target audience is mobile or older, you may decide that
they are better supported by scroll buttons. However, users are often satisfied as long as
they can use the scrolling hard keys on the handheld. If you want to use scroll bars, just be
sure to support the scrolling hard keys as well.

 Do you display any right-justified data?

If you display any controls on the right edge of the screen, you probably are better off using
scroll buttons. Otherwise, a user who aims for the scroll bar and misses might mistakenly
tap your control.

For example, the rightmost column of the Address Book list view is a control. The user can
tap this column to enter a note about the current contact. If the Address Book were to have
a scroll bar immediately to the right of this column, the user might mistakenly tap the note
column when aiming for the scroll bar.

Scroll Bars
A scroll bar scrolls the display of another user interface item (see Figure 7.4). Scroll bars can
be attached to multi-line text fields, tables, lists, or forms.

Figure 7.4 Scroll bar

Table 7.1 Scroll bar details

Dimension Value

Width 7

Height Height of element that the scroll bar
scrolls

Top Align with top of element to be
scrolled

Left 153

Border None

System Supplied Behavior

A scroll bar has four values that determine its behavior:

 The minimum value, which is typically 0.

 The maximum value, which is often not set until run time. This value is the number of lines it
should take to scroll to the end of the element, which is computed with the formula:

number of lines of text - page size + overlap

where number of lines of text is the total number of lines or rows needed to display the
entire object, page size is the number of lines or rows that can be displayed on the screen at
one time, and overlap is the number of lines or rows from the bottom of one page to be
visible at the top of the next page.

 The initial value, which is usually the same as the minimum.

 The page jump value, or the amount by which the value is increased or decreased when the
user scrolls. This should be at least one less than the number of lines that can be displayed at one
time to provide context. That is, if the field can display ten lines of text, the page jump value
should be nine.

Palm OS ensures that the scroll bar does not appear until there is more than a screenful of
information to be presented. It also ensures the behavior described in Table 7.2.

Table 7.2 Default behavior of scroll bars

When... Then...

User drags scroll car Scroll car moves in
the direction
indicated

User taps scroll arrow Scroll car moves up
or down an amount
that indicates a
single line

User taps in gray area
immediately above or
below scroll car

Scroll car moves up
or down by an
amount that
indicates a page

User drags in a text field
beyond the edge of the text
field

Scroll car moves up
or down along with
the text

The system does not scroll the user interface element to which the scroll bar is attached. Your
application's code must do that.

Look and Feel

Follow these guidelines for implementing a scroll bar.

Vertical Scroll Bars Only

Palm OS only provides support for scrolling vertically. Horizontal scrolling is not supported.

Support Immediate Mode Scrolling

There are two scrolling modes possible: immediate mode and non- immediate mode. In
immediate mode scrolling, the scrolling happens as the user drags the pen. This is preferred
because it allows the user to see how far the field is moving. Non-immediate-mode scrolling
waits until the user lifts the pen before scrolling the display.

Support the Scrolling Hard Keys

You should always allow the scrolling hard keys on the handheld itself to scroll any user
interface element. They should have the same effect as tapping the gray area above and below
the scroll car. That is, they should scroll up and down a page at a time.

Breaking the Rules

Because Palm OS does not support horizontal scrolling, you should avoid creating a user
interface that requires it. In most cases, users do not expect to have to scroll a display
horizontally. Web browsers, however, often must support horizontal scrolling to support Web
pages with large graphics or large tables.

Scroll Buttons
The scroll buttons are two arrows that appear at the bottom of the screen (see Figure 7.5). If
the user taps the arrow with the pen, the form scrolls in the direction indicated. If the user
holds the pen down on an arrow, the form repeatedly scrolls in the direction indicated.

Figure 7.5 Scroll buttons

Table 7.3 Scroll button details

Dimension Value

Width 13 pixels

Height 8 pixels per button

Top 144 for up button
152 for down button

Left 147

Font Symbol 7

Contents 0x01 for up button
0x02 for down button

Border None

System Supplied Behavior

Palm OS ensures the following:

 The button highlights while it is being pressed.

 The scroll buttons don't appear until there's more than a screenful of information to display.

 The up arrow is grayed out when the first screenful is displayed.

 The down arrow is grayed out when the last screenful is displayed.

The system does not know what user interface element is to be scrolled; therefore, your code
must inform the system when there is more than a screenful of information to display, when
the top of the data is displayed, and when the bottom of the data is displayed. If your
application informs the system of these conditions appropriately, you'll see the behavior
described above.

Also note that your application's code is responsible for actually scrolling the display.

Look and Feel

Follow these guidelines when implementing scroll buttons.

Always Show a Screenful of Information

Screen space is so limited that you should always show users as much of their data as you
possibly can. For this reason, you should always adjust the scrolling so that a full screenful of
information is displayed.

Suppose your form has a table containing ten rows and there are fourteen items to be
displayed. If the user taps the down button to scroll down ten items, the next screen only has
four items to be displayed (see Figure 7.6). Instead of displaying just those four items, scroll
backward enough to display the previous six items as well.

Figure 7.6 Form at end of data

Support the Scrolling Hard Keys

Users expect to be able to use the scrolling hard keys in all applications that support scrolling.
The up hard key should perform the same function as the up scroll button, and the down hard
key should perform the same function as the down scroll button.

Breaking the Rules

Never rely solely on the scrolling hard keys to scroll your interface. Always include either the
scroll buttons or a scroll bar to indicate that scrolling is possible.

Some applications omit both the scroll buttons and the scroll bar in favor of another indication
that there is more information to display. Often, this takes the form of a label or graphic that
specifies the percentage of data that has already been displayed (see Figure 7.7). A percentage
is not a clear enough sign that you can scroll to see more information. For this reason, you
must always have some form of scrolling user interface element in your display.

Figure 7.7 Scrolling with no buttons

©2001 Palm, Inc. All rights reserved. Training | Knowledge Base | Palm OS Platform | Legal Notices

http://www.palmos.com/dev/support/classes/
http://www.palmos.com/dev/tech/kb/
http://www.palmos.com/

 < Home < Developers < Development Support < Documentation

8 Color and Graphics
 Table of Contents | < Previous | Next > | Index

Title -
Palm OS® User
Interface Guidelines

8 Color and Graphics

Palm OS Color Support

Colors of User Interface
Elements

Graphics

This chapter provides guidelines for the use of color in a Palm OS® application.

Palm OS Color Support
Palm OS supports handhelds with the system palettes shown in Table 8.1.

Table 8.1 Supported system palettes

Palette Colors

Monochrome

2-bit
grayscale

4-bit
grayscale

8-bit color

In addition, some handhelds can display application icons and other graphics with 16-bit color.
On these devices, 16-bit color is used for graphics only; buttons and other user interface
elements continue to be displayed with 8-bit color.

Colors of User Interface Elements
Palm OS uses the same color scheme for user interface elements on monochrome and
grayscale screens. The scheme for color screens is different.

In general, monochrome and grayscale screens use black text on a white background.
Highlighted or selected text or objects show white text on a black background. (see Figure
8.1).

Figure 8.1 User interface colors on monochrome/grayscale

http://www.palm.com/
http://www.palmos.com/index.html
http://www.palmos.com/dev/
http://www.palmos.com/dev/support
http://www.palmos.com/dev/support/docs

On color screens, selected objects show white text on a blue background. Selected text is black
with a yellow background (see Figure 8.2).

Figure 8.2 User interface colors on color screen

Respect the system color scheme. Do not change it arbitrarily. Consider that there may be a
third party application that allows users to select their own color schemes. If you set your
application to use a custom color scheme, you violate those users' preferences.

If you do change the colors for user interface elements for your application, the system will
change them back when the user switches applications. You'll need to set the colors again
when control returns to your application.

Do not rely solely on color to convey a meaning in your application. Many Palm PoweredTM
handheld users have monochrome or grayscale devices and won't see your color changes. Even
on color devices, realize that some users have color-vision deficiencies and will miss your visual
cue. Always use color in conjunction with some other visual cue so that those with color-vision
problems also understand the meaning.

Graphics
When designing graphics, use color and grayscale prudently to help the graphic convey its
meaning.

For the best possible appearance, you should provide a version of your graphic for each of the
supported palettes: monochrome, 2-bit gray, 4-bit gray, 8-bit color, and 16-bit color. This
means for the application icon, you'll provide up to ten different versions of the icon: one large
icon and one small icon for each palette.

If you don't provide a graphic for all supported palettes, Palm OS uses the bit depth
representation closest to the bit depth of the screen. For example, if you provide only a
monochrome graphic and an 8-bit color graphic, handhelds that run in 2-bit grayscale and 4-bit
grayscale will choose the 1-bit graphic. All color handhelds will use the 8-bit graphic.

Keep in mind that screens with different resolutions are available, and your graphic may look
quite different at the different resolutions. A 160 dpi high-resolution screen is capable of
displaying a much finer granularity than an 80 dpi screen. If you have previously designed a
low-resolution 8-bit color icon, you may find you need to add detail to its high-resolution
counterpart.

For example, Figure 8.3 shows different variations of the icon for the Mail application. The icon
on the left is the 80 dpi 8-bit color version of the icon. If this icon were simply translated into
high-resolution color by smoothing the rough edges, it would look like that shown in the
middle. This icon design is somewhat flat. The icon on the right shows more detail. It adds
some depth to the envelope and includes a postmark and more detail in the stamp.

Figure 8.3 Mail application icon at different resolutions

At the time of this writing, the high-resolution version of the Mail icon has not yet been
decided. Figure 8.3 shows only a possible design for the Mail icon to give you some ideas of the
types of changes you might need to make to your own icons.

©2001 Palm, Inc. All rights reserved. Training | Knowledge Base | Palm OS Platform | Legal Notices

http://www.palmos.com/dev/support/classes/
http://www.palmos.com/dev/tech/kb/
http://www.palmos.com/

 < Home < Developers < Development Support < Documentation

A Ten Things to Remember
 Table of Contents | < Previous | Next > | Index

Title -
Palm OS® User
Interface Guidelines

A Ten Things to
Remember

This appendix summarizes ten design guidelines for Palm OS® applications that developers
often forget or ignore. It then tells you which sections in the book explain these guidelines in
more detail.

1. Consider the user.

The most common mistake handheld application designers make is the most common mistake
made by all application designers everywhere: they fail to learn about the user before
designing the application and thus fail to provide an application that solves the user's
problems.

"The Design Process" describes a process that helps you to create an application with the user
in mind at all times.

2. Don't overcrowd the screen.

A user must be able to learn your application quickly and navigate through the display quickly.
If you clutter the screen with too many controls, you slow the user down. See "Fast and
Simple" for more information.

3. Don't provide an Exit command button or an Exit menu item.

Palm Powered handheld users do not exit applications. They simply move to another
application. See "Don't Provide Save or Exit Commands."

For a description of when breaking this guideline is allowed, see "Including an Exit Command."

4. Let the user leave your application.

You must allow the user to exit the application at any time. If you're displaying a modal form
or an alert dialog, you must provide a default button. When the user exits your form, the
system simulates the default button tap. See the following sections:

 "Exiting the Application"

 "The User Can Exit at Any Time"

 "The User Still Can Exit at Any Time"

"Modal Forms that Don't Exit" describes the one allowed exception to the rule.

5. Launch quickly.

Applications should not display a splash screen when launching unless this is the first use of
the application. Most applications should return to the last form that was being displayed
before the user exited the application rather than always displaying a main screen at launch.
See "Launching the Application."

6. Use modal forms sparingly.

In general, modal forms should be used for a single specific task only. Modeless forms are
greatly preferred over modal forms. See "Choosing between Types of Forms" for further
discussion of when to use modeless and modal forms.

7. Don't duplicate commands.

There's usually not a good reason to provide both a command button and a menu item for the
same command. See "Don't Duplicate Commands" and "Duplicating Menu Items".

8. Remember the Graffiti® Shift Indicator and Edit menu.

All forms with editable text fields must include a Graffiti Shift Indicator and an Edit menu. Even
modal forms require the Edit menu to be present. See the following for further discussions:

 "Edit Menu Required"

 "Graffiti Shift Indicator Required"

http://www.palm.com/
http://www.palmos.com/index.html
http://www.palmos.com/dev/
http://www.palmos.com/dev/support
http://www.palmos.com/dev/support/docs

 "Enable Auto-Shifting for Most Text Fields"

9. Set the field focus.

In almost all cases if you have an editable field on a form, the field should have the focus when
the form is first displayed. This must be set programmatically. See "Set the Focus When the
Form Is Displayed."

10. Leave room for the border of an object.

For all user interface elements, the border is drawn outside of the bounds of the object. The
guidelines state that all objects should begin at the left edge of the screen. If, for example, you
place a command button on the screen, it should actually start at pixel 1 to allow for the 1-
pixel button border.

See "Left-Align Buttons at the Bottom of the Form" for further discussion.

©2001 Palm, Inc. All rights reserved. Training | Knowledge Base | Palm OS Platform | Legal Notices

http://www.palmos.com/dev/support/classes/
http://www.palmos.com/dev/tech/kb/
http://www.palmos.com/

 < Home < Developers < Development Support < Documentation

Index
 Table of Contents | < Previous | Next > | Index

Title -
Palm OS® User Interface
Guidelines

80-20 rule 1, 2

about dialogs 1, 2
command buttons 1
displaying 1
guidelines 1

About menu item 1

active form 1

Address Book
category selector trigger 1
Delete command 1
Edit form 1, 2, 3, 4
exiting 1
fields in 1
forms in 1
initial form 1
minimize taps 1
navigation 1
notes 1, 2
optimize frequent tasks 1
power user features 1, 2
Record menu 1
scrolling 1, 2
startup screen 1
tables 1
title bars 1

alarms 1

alert dialogs 1, 2
command buttons 1
controls on 1
default button 1
Delete confirmation 1, 2
disabled buttons 1
exiting 1, 2
guidelines 1
message 1
reminders 1, 2
title bar 1
types 1

alpha development 1

application design
data entry 1
principles 1, 2

application exit. See exiting the application1

application icons 1, 2

application launch guidelines 1, 2

Application Launcher. See Launcher1

application version number 1

application views 1

arrangement of controls on form 1

Attention Manager dialog 1, 2, 3

auto-completion 1

auto-shifting 1

http://www.palm.com/
http://www.palmos.com/index.html
http://www.palmos.com/dev/
http://www.palmos.com/dev/support
http://www.palmos.com/dev/support/docs

background of slider 1

BarBeamBitmap 1

BarCopyBitmap 1

BarCutBitmap 1

BarDeleteBitmap 1

BarInfoBitmap 1

BarPasteBitmap 1

BarSecureBitmap 1

BarUndoBitmap 1

basic design principles 1, 2

batteries 1, 2

beaming 1, 2

behavior guidelines 1, 2

bitmaps. See graphics1

Books sample application 1, 2
initial design concept 1
lists and tables 1
proposed implementation 1
user assessment 1
user scenarios 1

borders of controls 1, 2

built-in applications 1, 2

button toolbars 1

buttons. See command buttons, push buttons, repeating buttons, scroll buttons1

Calculator 1

Cancel button 1, 2
about dialogs 1

categories 1, 2, 3
Launcher application 1
pop-up list 1, 2, 3
selector trigger 1
Unfiled 1

check boxes 1, 2, 3
contents 1
guidelines 1
labels 1
when not to use 1

color 1, 2, 3
16-bit 1
use of 1
user interface elements 1

combo box simulation 1, 2
command buttons 1
pop-up lists 1

command buttons 1, 2
See also under specific button name1
about dialogs 1, 2
alert dialogs 1
alignment 1, 2
centering 1
choosing number on a form 1, 2
combo box simulation 1, 2
default button on dialogs 1, 2, 3
disabled 1
double taps 1
graphics in 1, 2
guidelines 1
i button 1
menus, compared with 1, 2
menus, duplicating 1, 2
modal dialogs 1
names 1
placement 1, 2

progress dialogs 1, 2
repeating 1
system supplied behavior 1
toggle buttons 1

command toolbar. See shortcuts, toolbar1

commands 1, 2
destructive 1
duplicating 1, 2, 3
Exit 1, 2, 3, 4
novice user commands 1
pop-up lists 1
Save 1

common names of command buttons 1

compatibility worldwide 1

completing the design 1

conduits 1, 2, 3

confirmation alert dialog 1, 2

consistency 1, 2

Constructor for Palm OS 1, 2

controls
See also under specific control name1
on alert dialogs 1
borders of controls 1, 2
custom 1
graphical 1, 2
placement guidelines 1
right edge of screen 1
table of 1
in title bar 1

copyright notices 1

cursor 1

data
columnar 1
display 1, 2
entry 1, 2, 3, 4
right-justified 1
secondary 1
validation 1, 2

Date Book
alarm dialog 1, 2
appointment reminders 1, 2
command duplication in 1
Go To Date form 1
hard key remapping 1
initial form 1
minimize taps 1, 2
new record 1
optimize frequent tasks 1
power user features 1
Preferences dialog 1
push buttons in Change Repeat dialog 1
Record menu 1
title bar 1, 2
user scenarios 1

dates 1, 2

days of the week 1

default application category 1

default button on modal forms 1

Delete button 1, 2
ellipsis 1

Delete confirmation 1, 2, 3

design completion 1

design concept 1, 2

design goals 1, 2

design principles 1, 2

design process 1, 2

Details button 1

Details dialog 1
and categories 1, 2
novice user controls 1

dialogs. See about dialogs, alert dialogs, modal dialogs, progress dialogs, tips dialogs1

digitizer 1

disabled buttons 1

disabled menu items 1

displaying data 1, 2

divider lines in menus 1

document reader 1, 2, 3

Done button 1, 2, 3

double taps 1, 2

duplicating commands 1, 2

Edit button 1

Edit Categories command 1

Edit Categories dialog 1

Edit command in pop-up list 1

Edit menu 1, 2
modal dialogs 1
omitting 1

editable fields 1

editing in place in tables 1

ellipsis guidelines 1, 2, 3

error alert dialog 1

executing commands 1

exit command 1, 2, 3, 4

exiting the application 1, 2, 3, 4
alert dialogs 1
modal dialogs 1, 2

Expense 1

feedback sliders 1

fields 1, 2
auto-completion 1
auto-shifting 1
data entry 1
editable 1
features not supported 1
guidelines 1
insertion point 1, 2
keyboard considerations 1, 2
maximum character limit 1
multi-line 1, 2
placement 1, 2
scroll bars 1
scrolling 1, 2
shifting 1
single-line 1
system supplied behavior 1

Find facility 1

find, incremental 1

finger navigation 1

focus in field 1

fonts 1
and text fields 1

forms 1, 2, 3
active 1
base form 1
guidelines 1

initial form 1, 2, 3
menus 1, 2
modal. See modal dialogs1
modeless vs modal 1, 2
navigation 1, 2, 3
Please Wait form 1
scrollable 1
size of 1
system supplied behavior 1
title bar 1, 2, 3
views on a form 1

gadgets 1

games 1, 2

global Find facility 1

goals 1, 2

Graffiti area 1
collapsible 1
icons 1, 2
placement of controls near 1, 2, 3

Graffiti command stroke 1

Graffiti power writing software 1, 2, 3
navigation characters 1

Graffiti Shift Indicator 1, 2
modal dialog 1
omitting 1

Graffiti shortcuts, See shortcuts1

graphical controls 1, 2

graphics 1, 2
application icons 1, 2
in controls 1, 2
palettes 1
scrolling 1
sliders 1

grayscale displays 1

HandEra 330 1

handheld users 1, 2
See also users1

hard keys 1
exiting application with 1
powering on device with 1
remapping 1
scrolling 1, 2, 3

hardware controls 1

help 1

high-resolution screen considerations 1

horizontal scroll bars 1, 2

HotSync operations 1, 2

i button on modal dialogs 1

icons
application 1, 2
Graffiti area 1, 2

implementation, proposed 1, 2

incremental search 1

indicator of location 1, 2

information alert dialog 1

initial design concept 1, 2

initial form 1, 2
DateBook example 1

insertion point 1, 2, 3

IR communications 1

keyboard shortcuts, See shortcuts1

keyboards
dialog 1
external 1, 2
lack of 1

labels 1
check boxes 1
compared to contents terminology 1
pop-up lists 1
selector trigger 1

launch guidelines 1, 2

Launcher 1, 2
form 1
icons in 1
Info dialog 1
Please Wait form 1

lists 1, 2, 3
See also pop-up lists1
box, suppressing drawing of 1
guidelines 1
maximum number of elements 1
scroll bars 1
scrolling 1, 2
system supplied behavior 1
tables, compared with 1, 2, 3

localization guidelines 1
pop-up lists 1
push buttons 1

location indicator 1, 2

low-battery warnings 1

Mail
icon 1
title bar 1

maximizing battery life 1

Memo Pad
category selector trigger 1
Details form 1
Edit form 1
ellipsis 1
exiting during data entry 1
fields in 1
menus and buttons 1
scrolling 1

menus 1, 2, 3
boundaries 1
command buttons, compared with 1, 2
command buttons, duplicating 1, 2
disabled menu items 1
displaying previous menu item 1
divider lines 1
Edit 1, 2, 3
ellipsis guidelines 1
guidelines 1
names of menus and items 1
New menu item 1
Options 1, 2
Record 1, 2
shortcuts, See shortcuts1
submenus 1
system supplied behavior 1

messages 1
alarms 1
low-battery warnings 1
synchronization 1
system 1

minimize taps 1, 2, 3

modal dialogs 1, 2

See also about dialogs, alert dialogs, progress dialogs, tips dialogs1
alignment 1
command buttons 1, 2
default button 1, 2
exiting 1, 2
guidelines 1
height 1
selector triggers, displayed by 1, 2
system supplied behavior 1
title bar 1
when to use 1, 2, 3

modal forms. See modal dialogs1

modeless forms. See forms1

monochrome displays 1

names of command buttons 1

navigation
between forms 1, 2, 3
finger 1
Graffiti navigation 1
scroll bars 1

New button 1, 2

New menu item 1

No button 1

Note button 1

Note view title bar 1

novice users 1
pop-up lists 1

numbers 1

OK button 1, 2
about dialogs 1
alert dialogs 1
excluding 1

online help 1

options 1
one of many 1
several of many 1

Options menu 1, 2

orienting users 1

palettes supported 1

Palm VII handhelds 1

passwords 1

perceived speed 1

phone lookup 1

Please Wait form 1

pop-up lists 1, 2, 3
combo box simulation 1, 2
commands in 1, 2
Edit command in 1
guidelines 1
hierarchical 1
incremental search 1
nonstandard triggers 1
push buttons, compared with 1
scrolling 1, 2
selector triggers, compared with 1
system supplied behavior 1
triggers 1
upper limit 1
when to use 1

pop-up triggers 1
nonstandard 1
omitting arrow 1

power user features 1, 2

preferences 1

Preferences menu item 1, 2

private records 1

process for user interface design 1, 2

processor 1

progress dialogs 1, 2
command buttons 1
guidelines 1
purpose 1
title bar 1

proposed implementation 1, 2

push buttons 1, 2, 3
guidelines 1
not mutually exclusive 1
pop-up lists, compared with 1
selector triggers, compared with 1
system supplied behavior 1
two choices 1
when to use 1, 2

quitting. See exiting the application1

Record menu 1, 2

reducing battery usage 1

registration information 1

reminders 1, 2

repeating buttons 1

save command 1

scenarios 1, 2

screen navigation 1, 2, 3

screens 1
color 1
grayscale 1
monochrome 1
resolutions 1
sizes and resolutions 1

scroll bars 1, 2, 3
fields 1
guidelines 1
horizontal 1, 2
lists 1
scroll buttons, compared with 1, 2, 3
system supplied behavior 1

scroll buttons 1, 2, 3
guidelines 1
scroll bars, compared with 1, 2
system supplied behavior 1

scrolling 1, 2
fields 1
forms 1
horizontal 1
line by line 1
lists 1
page by page 1
pop-up lists 1, 2
tables 1

scrolling hard keys 1, 2, 3

search, incremental 1

selecting text 1

selector triggers 1, 2, 3
categories 1
combo box simulation 1, 2
guidelines 1
label 1
modal dialogs 1, 2

pop-up lists, compared with 1
system supplied behavior 1
updating 1, 2
when to use 1

serial communications 1

Set Time dialog 1

shifting 1

shortcuts 1, 2
common 1
duplicating commands for 1
Edit menu 1
enabling in modal dialogs 1
toolbar 1, 2, 3

single-line fields 1

sliders 1, 2, 3
compatibility considerations 1
guidelines 1
system supplied behavior 1
types 1
when to use 1

SMS Messenger 1

Sony Clie 1

speed 1

splash screens 1

startup guidelines 1

startup screen, See initial form1

submenus 1

synchronization 1, 2
messages 1

system messages 1

system palettes supported 1

table of controls 1

tables 1, 2, 3
borders 1
column headings 1
columns, choosing number of 1
direct editing 1
guidelines 1
lists, compared with 1, 2, 3
programming difficulty 1
scrolling 1, 2
selection 1
system supplied behavior 1

taps
double 1, 2
minimize 1, 2, 3
triple 1

text fields. See fields1

text selection 1

thumb of slider 1

time 1, 2

time zones 1

tips dialogs 1, 2

title bars 1, 2, 3
about dialogs 1
alert dialogs 1
controls in 1
games 1
i button 1
modal dialogs 1
nonstandard 1
Note view 1
omitting 1

progress dialogs 1
purpose 1

To Do List
and Attention Manager 1
command buttons 1
minimize taps 1
pop-up lists 1
tables 1

toggle buttons 1

toolbars 1
shortcut toolbar 1, 2, 3

triple taps 1

types of alert dialogs 1

typical user session 1

typical users 1, 2

Undo command 1

usability testing 1

user input 1, 2, 3

user interface design
goals 1, 2
process 1, 2

user scenarios 1, 2

users 1, 2
color-vision problems 1
interaction 1, 2
mobile 1
neglecting 1
novice users 1, 2
older 1
orienting 1
power users 1
preferences 1
usability testing 1
user scenarios 1, 2

validation 1, 2

version numbers 1, 2

vertical market applications 1, 2

views 1

warning alert dialog 1

web browsers 1

Welcome application 1

word wrapping 1

worldwide compatibility 1

Yes button 1

©2001 Palm, Inc. All rights reserved. Training | Knowledge Base | Palm OS Platform | Legal Notices

http://www.palmos.com/dev/support/classes/
http://www.palmos.com/dev/tech/kb/
http://www.palmos.com/

	Local Disk
	Table of Contents
	Palm OS® User Interface Guidelines
	About This Document
	Palm OS Application Design
	Fitting In
	Forms
	Executing Commands
	Presenting Options
	Displaying Data
	Scrolling
	Color and Graphics
	Ten Things to Remember
	Index

