Patrick J. Lynch patricklynch.net <u>VisualLogic</u> Design column

Sarah Horton Dartmouth Curricular Computing Dartmouth Didactic Web

Search this site:

Detailed search page

Buy the book on-line Amazon

Buy our book online through Amazon: Web Style Guide: Basic Design Principles for Creating Web Sites.

Philosophy

Introduction Purpose of the site Design strategies

Interface Design

Introduction Basic interface design for the Web Information access issues Navigation Links & navigation

Site Design

Introduction Site structure Site elements I Site elements II Intranet design factors Site Covers

Page Design

Introduction Graphic design 100 Balanced pages & menus Design grids for pages Graphic safe areas for Web pages Page headers & footers Typography I Typography II Typefaces Consistency Basic tables Page length Cross platform issues Editorial style Frames Advanced tables

Web Graphics

NEW!!

At patricklynch.net

visualLogic

Column on Web design

April 26 Web and enterprise identity, part 2

Web design bibliography

Introduction Color display primer Graphic file formats Interlaced GIFs Transparent GIFs JPEG graphics Summary, file formats Illustrations Optimizing graphics I Optimizing graphics II Height & width tags Colored backgrounds Image maps

Web Multimedia and Animation

Introduction Design and audiovisual elements Digital video Digital audio GIF animation

Appendices

<u>Literature cited</u> <u>Multimedia bibliography</u> <u>Graphic user interface bibliography</u> <u>User interface glossary</u>

Colophon & Tools

Copyright notice

About the Authors

© Lynch and Horton, 1997. All rights reserved.

info.med.yale.edu/caim/manual/contents.html April 26, 2000 (PL)

Contents

Philosophy

Introduction

Purpose of your site

Design strategies

This style manual developed as an outgrowth of our own World Wide Web (Web) development projects. It reflects our attempts to apply some of the lessons we've learned in twelve years of multimedia software design, graphic interface design, and book design to the new medium of Web pages and site design. There are fine existing Web sites and books that emphasize Hypertext Markup Language (HTML), and others that emphasize commercial and art-oriented Web graphic design. However, few existing resources have attempted to approach Web page and site design as a challenge that combines traditional editorial approaches to documents with graphic design, user interface design, information design, and the technical authoring skills required to optimize the HTML code, graphics, and text within Web pages.

What this manual is not

Our approach to both the HTML language and the general problem of information design in World Wide Web systems is not grounded in the philosophy that drives the development of structured information publishing tools like HTML's parent language, SGML (Standard Generalized Markup Language). The advice here is aimed at the practical concerns of bending and adapting a relatively primitive authoring and layout tool (HTML) to purposes it was never really intended to serve (graphic page design). If you are interested in the larger questions of publishing in highly structured systems that are independent of browser software, operating systems, or typographic restrictions you might want to begin with the World Wide Web Consortium's (W3C) Web site, which lists many technical and historic references related to the development of structured text, and material on the history of the Web.

A note about web browsers

Most of the design advice and technical information contained here on optimizing graphics in Web pages is tailored to recent versions (2.0 or later) of both Netscape Navigator and Microsoft's Internet Explorer. There is little here of benefit to users of text-based Web browsers, as the primary focus of this manual is on graphic page design.

References

HTML Authoring Resources <u>Microsoft Internet Explorer</u> <u>Netscape Navigator</u> World Wide Web Consortium (W3C)

Contents

Philosophy

Introduction

Purpose of your site

Design strategies

The first step in designing a Web site is to make sure you have defined a set of goals — know what it is you want to accomplish with your Web site. Without a clear statement of purpose and objectives the project will begin to wander off course and bog down, or may go on past the point of diminishing returns. Careful planning and a clear sense of purpose are the keys to success in building Web sites, particularly if you will be working as part of a team to build the site. Before beginning to build your Web site you should:

- Identify your target audience
- Have a statement of purpose
- Know your main objectives
- Have a concise outline of the information your site will contain.

You should also begin to identify all of the content information and graphic resources you will need to collect or create to achieve the goals you have set for your Web site.

What are your ultimate objectives?

A clear, short statement of objectives should form the foundation of your site design. This is where you expand on the goals in your statement of purpose, and will be the tool you will use to analyze the success of your Web site. For example:

"We expect the association's Web site to accomplish these goals over the next twelve months:

The Web site will reduce the demands on the central office for routine information on association activities, deadlines, dues and fees, and information on association meetings. We expect that the Web site will also allow us to save a significant amount on postage and processing of routine member correspondence. The Web site will carry all of the content that currently goes into our association's quarterly newsletter, but will also carry more timely information as events warrant. After a year we will poll the membership on the success of the Web site newsletter, and explore the possibility of dropping publication of the paper newsletter."

The statement should go on to list a few more specific financial and other organizational goals the Web site is designed to fulfill, how long the evaluation period will be, and how the success of the site will be evaluated.

Building a Web site is usually an ongoing process, not a one-time project with static data. Long term editorial management and technical maintenance must be covered in your plans for the site. Without this longer perspective your electronic publication will suffer the same fate as many newsletters — an enthusiastic start, but no lasting accomplishments.

Know your audience

The next step in the design process is to identify the potential users of your Web site, so that you can structure the site design to meet their needs and expectations. The knowledge, background, interests, and needs of users will vary from tentative novices who need a careful structured introduction to expert "power users" who may chafe at anything that seems to patronize them or delay their access to information. A well-designed system should be able to accommodate a range of user skills and interests. For example, if the goal of your Web site is to deliver internal corporate information, human resources documents, or other information that used to be published in paper manuals your site will be used by people who will visit many Less than 10% of

Web readers ever

scroll beyond the

top of Web pages.

times every day, and also by people who only occasionally refer to the site.

Web surfers

Home pages aimed at browsers should be analogous to magazine covers. The objective is to entice the casual browser with strong graphics and bold statements of content. All the links on your home page should point inward, toward pages within your site. Provide a very clear and concise statement of what is in the site that might interest the reader.

Novice and occasional users

These users depend on clear structure and easy access to overviews that illustrate how information is arranged within your Web site. Novices tend to be intimidated by complex text menus and may be tentative about delving deep into the site if the home page is not graphically attractive and clearly arranged. According to Sun Microsystems Jakob Nielsen, less than 10% of Web readers ever scroll beyond the top of Web pages. Infrequent users benefit from overview pages, hierarchical maps, and design graphics and icons that help trigger memory about where information is stored within your site. A glossary of technical terms, acronyms, abbreviations, and a listing of "frequently asked questions" can be helpful to first-time or infrequent users of your site.

Expert and frequent users

These users depend on your site to obtain information quickly and accurately. Expert users are very impatient with multiple low-density graphic menus that only offer two to six choices at time. Power users crave stripped-down, fast-loading text menus. Graphic fru-fru drives them nuts. Expert and frequent users generally have very specific goals in mind, and will appreciate detailed text menus, site structure outlines, or comprehensive site indexes that allow fast search and retrieval.

International users

Remember that you are designing for the World Wide Web. Your readers could be the people down the street, or people in Australia or Poland. To reach the maximum number of users in other countries you may need to provide translations, at least of your key menu pages. Avoid idiosyncratic local jargon or obscure technical acronyms in your introductory or explanatory pages. Don't assume that every reader follows your local date and time conventions. For example, don't abbreviate dates on your Web pages. To an American, "3/4/97" reads as "March 4, 1997," but users in most other countries would read the abbreviated date as "April 3, 1997."

References

December, J., and N. Randall. 1995. *The World Wide Web unleashed*. Indianapolis: Sams Publishing.

Contents

Philosophy

Introduction

Purpose of your site

Design strategies

All presentations of information are governed by a few parameters determined by your objectives, the practical logistics of the medium you chose, and by the nature of your audience. The graphic below plots four major themes for intranet information delivery against two fundamental variables: how linear the structure of your presentation will be, and how long the typical user contact time will be:

Browsers

In the larger World Wide Web browsers ("Web surfers") are the unmotivated readers who may blow through your home page without an urgent mission or purpose in mind. Techniques for drawing these potential customers into a sales or entertainment site are beyond the scope of this manual, but you may find some guidance from these sources. The following categories of Web use are more typical of corporate and educational "intranet" sites where the users arrive with a more defined purpose.

Training

Web-based training applications tend to be very linear in design, and present few opportunities to digress from the central flow of the presentation. Don't confuse users or confound your own expectations by offering many links away from the central message. Restricting the links to "Next" and "Previous" paging functions guarantees that everyone sees the same presentation, and allows you to make more accurate predictions of user contact time. Most training presentations assume a contact time of less than one hour, or are broken up into sessions of an hour or less. Inform your users about how long the session will last, and warn them not to digress away from the required material if they are to get credit for the training. Training applications typically require a user log-in, and often present forms-based quiz questions in true/false or multiple-choice formats. User log information and scores are typically stored in a database linked to the Web site.

Teaching

Good teaching applications are also built around a strong central narrative, but typically offer more opportunities for students to pursue interesting digressions from the main themes of the Web site. The information presented is usually more sophisticated and in-depth than in training applications. Links are the most powerful aspect of the Web, but they can also be a distraction that may prevent your students getting through the basic presentation. If you want to provide students with links to other Web-based resources beyond your local site you might consider grouping the links on a page separate away from the main body of the material. Often users will want to print the material from the Web and read it later from paper. Make this easy for them by providing a "printing" version that consolidates many separate pages into one long page.

Education

The audiences for heuristic, self-directed learning will chafe at design strategies that are too restrictive and linear. Often the typical user is already highly educated. Flexible, interactive, non-linear design structures are ideal for these users, because it is so difficult to predict exactly what topics will most interest an experienced professional or graduate student. The design must allow fast access to a wide range of topics, and is typically very dense with links to related material within the local Web site and beyond on the World Wide Web. Text-based lists of links work well here for tables of contents and indexes because they load fast and are dense with information, but this audience is also easily bored and needs the frequent stimulation of well-designed graphics and illustrations to stay involved with the material. Contact times are unpredictable, but will often be shorter than for training or education sites because the users are usually under time pressure. Easy printing options are also a must for this audience.

Reference

The best-designed reference Web sites allow users to quickly pop into the site, find what they want, and then easily print or download what they find. Typically there is no "story" to tell, so the usage patterns are totally non-linear. Content and menu structure must be carefully organized to support fast search and retrieval, easy downloading of files, and convenient printing options. Keep the graphics minimal to speed download times, and you may want to investigate search software instead of relying exclusively on index-like lists of links. Contact time is typically brief, the shorter the better.

References

Mok, C. 1996. *Designing business: multiple media, multiple disciplines.* San Jose: Adobe Press.

Netscape Authoring Resources (get authoring resources URL)

Siegel, D. 1996. *Creating killer web sites*. Indianapolis: Hayden Books. <u>www.killersites.com</u>

Studio Archetype

Contents

Interface Design

Introduction
Basic interface design

Access issues

<u>Navigation</u>

Links & navigation

Users of Web documents don't just look at information, they interact with it in novel ways that have no precedents in paper document design. The graphic user interface (GUI) of a computer system includes the interaction metaphors, images and concepts used to convey function and meaning on the computer screen, the detailed visual characteristics of every component of the graphic interface, and functional sequence of interactions over time that produce the characteristic "look and feel" of Web pages and hypertext linked relationships. Graphic design and visual "signature" graphics are not just used to "jazz up" Web pages — graphics are an integral part of the user's experience with your site. In interactive documents it is impossible to fully separate graphic design from issues of interface design.

Web pages versus conventional document design

Most of our current concepts about structuring information stem from the organization of printed books and periodicals, and the library indexing and catalog systems that developed around printed information. The "interface standards" of books in the English-speaking world are well established and widely agreed-upon, and detailed instructions for creating books may be found in guides like *The Chicago Manual of Style*. Every feature of a book, from the table of contents to the index and footnotes has evolved over the centuries, and readers of early books faced some of the same organizational problems facing the users of hypermedia documents today. Gutenberg's bible of 1456 is often cited as the first modern book, yet even after the explosive growth of publishing that followed Gutenberg it took more than 100 years for page numbering, indexes, tables of contents, and even title pages to become routine features of books. Web documents will undergo a similar evolution and standardization of the way information is organized and made available in electronic form.

Design precedents in print

Although networked interactive hypermedia documents do pose novel challenges to information designers, most of the guidance you need to design, create, assemble, edit, and organize multiple forms of media is not radically different from current practice in print media. Most Web documents can be made to conform to *The Chicago Manual of Style* conventions for editorial style and text organization. Most of what an organization needs to know about creating clear, comprehensive, and consistent internal publishing standards is already available in guides like the *Xerox Publishing Standards: A Manual of Style and Design*. Don't get so lost in the novelty of Web pages that basic standards of editorial and graphic design get tossed aside.

Make your Web pages free-standing

World Wide Web pages are different from books and other documents in one crucial respect: hypertext links allow users to access a single Web page with no preamble. Thus Web pages need to be more independent than pages in a conventional book. This usually means that the headers and footers of Web pages are more informative and elaborate than printed pages. It would be absurd to repeat the copyright, author, and date of a book at the bottom of every page, but individual Web pages often need such information because a single Web page may be the only part of your site some users ever see. This problem of making documents free-standing is not unique to Web pages. Professional journals, magazines, and most newspapers repeat the date, volume, and issue numbers at the top or bottom of each printed page because they know that their readers often rip out newspaper articles or photocopy pages from journals and need that citation information to trace the original source of the article. Given these potential difficulties in creating Web sites that are both easy to use and full of complex content, the best design strategy is to consistently apply a few basic document design principles in every Web page you create. The basic elements of a document aren't complicated, and have almost nothing to do with Internet technology. It's just like high school journalism class: who, what, when, and where.

Who

Who is speaking? This question is so basic, and the information is so often taken for granted that Web authors often overlook the most fundamental piece of information a reader needs to assess the provenance of a document: who is saying this to me? Whether the page is from an individual author or an institution, always tell your reader who created the Web page. The flood of Web sites propagating incorrect or actively misleading material on the TWA Flight 800 crash offer a vivid example of how "information" of no known origin or authenticity can quickly come to dominate legitimate inquiry and discussion.

What

All documents need clear titles to capture the reader's attention, but for several reasons peculiar to the Web this basic editorial element is especially crucial. The document title is often the first thing browsers of World Wide Web documents see as the page comes up. In pages with lots of graphics the title may be the only thing the users sees for several seconds as the graphics download onto the page. Additionally, the page title will become the text of a browser "bookmark" if the user chooses to add your page to their list of URLs. A misleading or ambiguous title, or a title that contains more technical gibberish than English, will not help the user remember why they bookmarked your page.

When

Timeliness is an important element in evaluating the worth of a document. We take information about the age of most paper documents for granted: newspapers, magazines, and virtually all office correspondence is dated. So date every Web page, and change the date whenever the document is updated. This is especially important in long or complex online documents that are updated regularly, but that may not look different enough to signal a change in content to occasional readers. Corporate information, personnel manuals, product information, and other technical documents delivered as Web pages should always have revision dates.

Where

The Web is an odd "place" that has huge informational dimensions but few explicit cues to the physical location where a document originates. Click on a Web link, and you could be connected to a Web server in Sydney, Australia, Chicago, USA, or almost anywhere else with Internet connections. Unless you are well versed in parsing URLs it can be difficult to tell where a page originates. This is the World Wide Web after all, and the question of where a document came from is sometimes inseparable from who the document came from. Always tell the reader where you are from, with (if it is relevant) your corporate or institutional affiliations.

Incorporating the "home" URL on at least the main pages in your site is an easy means of maintaining the connection to where a page originated. Once the reader has saved the page as a text file or printed the page onto paper this connection may be lost. Although recent versions of the major Web browsers now allow you to automatically include the URL in anything you print, many people never take advantage of these optional features. Too many of us now have mountains of printed Web pages laying around and no easy way of re-finding the Web locations where those documents originated.

Consistently state the title, the author, the author's institutional affiliations, the revision date, and provide at least one link to a local home

page in every WEB page in your system. Put the "home page" URL on a few major pages in your site. Include these basic elements and you will have gone 90% of the way toward providing your readers with an understandable Web user interface.

References

Lemay, L. 1996. *Teach yourself Web publishing in a week, 2nd ed.* Indianapolis: Sams Publishing.

December, J., and N. Randall. 1995. *The World Wide Web unleashed*. Indianapolis: Sams Publishing.

University of Chicago Press. 1982. *Chicago manual of style*. 13th Ed. Chicago: University of Chicago Press.

Xerox Corporation. 1988. *Xerox publishing standards*. New York: Watson-Guptill Publications.

C/AIM

Web Style Guide	<u>4</u>)
	Search using a keyword
<u>Contents</u>	With this form you can search the manual site for keywords. See the help button below for additional search options. Note: <i>This service can only be used from a forms-capable browser</i> .
Search	Enter keyword(s):
	Select an index to search:

© Lynch and Horton , 1997. All rights reserved. info.med.yale.edu/caim/manual/ May 26, 1998 (PL)

Rev. 1/9

Contents

Interface Design

Introduction

Basic interface design

Access issues

<u>Navigation</u>

Links & navigation

User-centered design

Graphic user interfaces were designed to give people direct control over their personal computers. Users now expect a level of design sophistication from all graphic interfaces, including Web pages. The goal is to provide for the needs of all of your potential users, adapting Web technology to their expectations, and never requiring the reader to simply conform to an interface that puts unnecessary obstacles in their paths.

This is where your research on the needs and demographics of your target audience is crucial. It's impossible to design for an unknown person whose needs you don't understand. Create sample scenarios with different types of users seeking information from your site. Would an experienced user seeking a specific piece of information be helped or hindered by your home page design? Would a novice be intimidated by a complex text-based menu? Testing your designs and getting feedback from users is the best way to see whether your design ideas are giving users what they want from your site.

Build clear navigation aids

At the current state of web technology most user interactions with Web pages involve navigating hypertext links between documents. The main interface problem in Web sites is the lack of a sense of where you are within the local organization of information. Clear, consistent icons, graphic identity schemes, and graphic or text-based overview and summary screen can give the user confidence that they can find what they are looking for without wasting time.

First Web site

Users should always be able to easily return to your home page, and to other major navigation points in your local site. These basic links, that should be present on every page of your site, are often graphic buttons that both provide basic navigation links, and help create the graphic identity that signals the user that they are still within your site domain. For example, in the Netscape corporate site this bar of buttons appears at the foot of every page:

NETSCAPE	DOWNLOAD	CUSTOMER	TECHNICAL	SEARCH &	WEB SITE
HOME	SOFTWARE	SERVICE	SUPPORT	CONTENTS	ADVERTISING
~					

Graphic has been reduced from the original size. www.netscape.com

The button bar is useful (lots of choices in a small space), predictable (it is always there, at the bottom of every page), and provides a consistent graphic identity to every page in the Netscape site.

No dead-end pages

Every Web page should contain at least one link. "Dead-end" pages — pages with no links to any other local page in the site — are not only a

frustration to users, they are often a lost opportunity to bring browsers into other pages in your site.

Web pages often appear with no preamble: readers often make or follow links directly to subsection pages buried deep in the hierarchy of Web sites. Thus they may never see your Home Page or other introductory information in your site. If your subsection pages do not contain links back up the hierarchy, to the home page or to local menus pages, the reader is essentially locked out of access to the rest of your Web site:

DEAD END DOCUMENT

References

Apple Computer, Inc. 1992. *Macintosh human interface guidelines*. Reading, MA: Addison-Wesley.

Mullet, K., and D. Sano. 1995. *Designing visual interfaces*. Englewood Cliffs, NJ: SunSoft Press-Prentice Hall.

Netscape Home Page

Norman, D. A. 1988. *The psychology of everday things*. New York: Basic Books.

Contents

Interface Design

Introduction

Basic interface design

Access issues

<u>Navigation</u>

Links & navigation

Give users direct access

The goal here is to provide the user with the information they want in the fewest possible steps, and in the shortest time. This means you must design an efficient hierarchy of information, to minimize the number of steps through menu pages. Interface studies have shown that users prefer menus that present a minimum of five to seven links, and that users prefer a few very dense screens of choices over many layers of simplified menus.

In the table below note that you do not need many levels of menus to incorporate large numbers of choices:

	Nur	Number of menu items listed					
Number of nested menus	5	7	8	10			
1	5	7	8	10			
2	25	49	64	100			
3	125	343	512	1000			

Bandwidth and interaction

Users will not tolerate long delays. Human-factors research has shown that for most computing tasks the threshold of frustration is around 10 seconds. Web page designs that are not well "tuned" to the network access speed of your typical users will only frustrate them. If your users are primarily general public browsers "surfing" the Web via 28.8 kbps phone line connections it is foolish to put huge bitmap graphics on your pages — the average user will not be patient enough to wait endlessly while your graphics download over the phone line. However, if you are building a university or corporate Intranet site where most users will be accessing your Web server at Ethernet speeds or better you can be much more ambitious in your use of graphics and multimedia.

Simplicity and consistency

Users are not impressed with complexity that seems gratuitous, especially users who may be depending on your site for timely and accurate work-related information. Your interface metaphors should be simple, familiar and logical to the audience — if you want a metaphor for information design, choose a book or a library, not a spacecraft or a television set. The best information designs are the ones most users never notice.

Studio Archetype's work for the Adobe Corporation site is an excellent model of Web site design. The pages use graphics extensively as navigation aids, consistently applied across every one of the pages in the site. Once you know where the standard links are on the page header graphics, the interface becomes almost invisible and navigation is easy.

Graphic has been reduced from the original size. www.adobe.com

For maximum functionality and legibility your page and site design should be built on a consistent pattern of modular units, all sharing the same basic layout grids, graphic themes, editorial conventions, and hierarchies of organization. The goal is to be consistent and predictable, so that your users will feel comfortable exploring your site, and confident that they know how to find what they are looking for. The graphic identity of a series of pages in your Web site provides visual cues to the continuity of information. The header menu graphics present on every page of the Adobe site create a consistent user interface, and a consistent corporate identity:

Adobe			HOME	UP	N.A.P	INDEX	SEAR	CH	PURCHASE
WHAT'S NEW	PRODUCTS	SOLUTIONS	STUDIO		\$Ų8	PPORT & 54R	WICES	A801	T ADOBE

Graphic has been reduced from the original size. www.adobe.com

Even if your page uses no inlined graphics, a consistent approach to the layout of titles, subtitles, page footers, and navigation links to your home page or related pages will also reinforce the reader's sense of context within your site organization.

To preserve the effect of a "seamless" system of pages you may want to consider bringing important information into your local site and adapt it to your page layout scheme rather than using links to send the reader away from your site (if there are no copyright restrictions on copying the information into your local site).

Design stability

If you want to convince your users that what you have to offer is accurate and reliable you will have to design your Web site just as carefully as you would any other type of corporate communication, with the same high editorial and design standards. A site that looks sloppily-built, with poor visual design and low editorial standards will not inspire confidence in your users.

Functional stability in your Web design means keeping the interactive elements of your site working reliably. Functional stability has two components — getting things right the first time as you design your site, and then keeping things functioning smoothly over time. Good Web sites are inherently interactive, with lots of links to local pages within the site, and links to other sites on the Web. As you create your design you will need to constantly check to be sure that all of your links work properly. things change quickly on the Web, both in your site and everyone else's. You will need to periodically check to be sure that your links are still working properly, and that the content they supply is still relevant to your needs.

Feedback and dialog

Your Web design should offer constant visual and functional confirmation of the user's whereabouts and options, via graphic design, navigation buttons, or uniformly-placed hypertext links.

Feedback also means being prepared to respond to your user's inquiries and comments. Well-designed Web sites should always provide direct links to the site's editor or the "webmaster" responsible for running the site. Planning for this kind of on-going relationship with the users of your site is vital to the long-term success of the enterprise.

Design for the disabled

Not every user of your site will be able to take advantage of the graphics you offer on your pages, and a number of users may be visually impaired. One of the beauties of the Web and HTML is the ability to build in "alternate" messages ("ALT" tags in HTML) so that users without graphics capabilities can still understand the function of graphics on your pages. Using specially designed software, blind users can hear (via synthesized speech) the alternate messages you supply along with your graphics, and so will not completely miss the content of your pictures and graphic navigation buttons. If you will be using graphic menu systems for navigation, these text-based alternate menus will be an especially important aid to users without the ability to see your graphics.

References

Adobe Corporation. www.adobe.com

Apple Computer, Inc. 1992. *Macintosh human interface guidelines*. Reading, MA: Addison-Wesley.

Microsoft Corporation. 1995. The windows interface guidelines for software design. Redmond, WA: Microsoft Press.

Shneiderman, B. 1992. *Designing the user interface: Effective strategies for effective human-computer interaction. 2nd ed.*, Reading, Mass.: Addison-Wesley.

Studio Archetype

Contents

Interface Design

Introduction Basic interface design Access issues Navigation Links & navigation Providing a rich set of graphic navigation and interactivity links within your Web pages will pull the user's attention down the page, weaning them away from the general-purpose browser links, and drawing them further into your content. By providing your own consistent and predictable set of navigation buttons you also help give the user a sense of your site's organization, and makes the logic and order of your site visually explicit. Here the rich graphics and many links offered by the PBS home page immediately draw the reader into the site:

Graphic has been reduced from the original size. www.pbs.org

Provide context or lose the reader

Readers need a sense of context, of their place within an organization of information. In paper documents this sense of "where you are" is a mixture of graphic and editorial organizational cues supplied by the graphic design of the book, the organization of the text, and the physical sensation of the book as an object. Electronic documents provide none of the physical cues we take for granted in assessing information. When we see a Web hypertext link on the page we have few cues to where we will be led, how much information is at the other end of the link, and exactly how the linked information relates to the current page. Even the view of individual Web pages is restricted for most users. Most Web pages don't fit completely on an standard office 14-inch or 15-inch display monitor, and thus there is always part of the page that the user cannot see.

Web pages need to give the user explicit cues to the context and organization of information, because only a small portion of your site (less than a page) is visible at one time:

As the Web page designer it is up to you to provide these functional and

Horton, W. K. 1994. Designing and writing online documentation, 2nd edition. New York: Wiley.

Rev.

PBS Online. Public Broadcasting Corporation Web site.

© Lynch and Horton, 1997. All rights reserved.

http://info.med.yale.edu/caim/manual/interface/navigation.html (2 sur 2) [31/05/2000 16:26:02]

Contents

Interface Design

Introduction

Basic interface design

Access issues

Navigation

Links & navigation

"Going back" and going to the previous page

All hypertext systems share a common problem that has no direct precedent in print media: going "back" through a series of links you have previously visited is not the same as paging "back" through the preceding pages of an ordered sequence of pages. When users click on a hypertext link in a Web document they often are transported from one Web site to another, perhaps even from one country to another. Once made the hypertext link is bi-directional; you can "go back" to the Web site you just left by clicking on the "Back" button of the viewer. Having hit the "Back" button, the "Forward" button lets you move to the new Web site again.

Why button bars are useful

For the information designer hypertext links are a mixed blessing. The radical shifts in context that links create can easily confuse Web users, who need organized cues and interface elements if they are to follow and understand hypertext links from one Web page to another. This is particularly true when you want users to be able to follow (or at least recognize) an ordered sequence of documents. Notice in the diagram above that although the user has entered the second Web site at page 6, the site is an ordered sequence of pages.

By augmenting the standard Web viewer "Back" and "Forward" buttons with "Next Page" and "Previous Page" buttons built into the page itself the user then has interface tools to navigate through the information in your site in the sequence you intended. Button bars can also display location information, much the way running chapter headers do in printed books:

Cranial Nerve Menu	VII Facial Nerve		
--------------------	------------------	--	--

Fixed versus relative links

Unlike the "Back" and "Forward" buttons in Web viewers like Netscape and Mosaic, whose only functions are relative to the pages you have seen most recently, "Next Page" and "Previous Page" buttons in a document are fixed links you provide to other associated documents. By providing the user with paging buttons and links to local home pages and tables of contents you give your users the tools to understand how you have organized your Web site information, even if they have not entered your web of pages through a home page or table of contents page. The buttons don't prevent you from reading the information in whatever order you choose, but they do allow your reader to follow the sequence of pages you have laid out:

Button bars are also the most logical place to put links back to your home page, or to other menu pages related to the current page. A button bar can be built with text (like ours at C/AIM, below), or a series of individual button graphics at the top or bottom of the page:

Copyright 1996, Yale CARL All rights reserved. Revised September, 1996.

References

Apple Computer, Inc. 1992. *Macintosh human interface guidelines*. Reading, MA: Addison-Wesley.

Center for Advanced Instructional Media (C/AIM), Yale University.

Horton, W. K. 1994. *Designing and writing online documentation, 2nd edition.* New York: Wiley.

Microsoft Corporation. 1992. *The Windows interface: An application design guide*. Redmond, WA: Microsoft Press.

Shneiderman, B. 1992. *Designing the user interface: Effective strategies for effective human-computer interaction. 2nd ed.*, Reading, Mass.: Addison-Wesley.

University of Chicago Press. 1982. *The Chicago manual of style. 13th ed.*, Chicago: University of Chicago Press.

Wilson, A. 1974. *The design of books*. Salt Lake City: Peregrine Smith, Inc.

Xerox Corporation. 1988. *Xerox publishing standards*. New York: Watson-Guptill Publications.

Rev. 1/97

Contents

Site Design

Introduction Site structure Site elements I Site elements II

- Intranet design
- Site Covers

There are fundamental rhetorical and organizational reasons for subdividing any large body of information, whether it is delivered on the printed page or in a World Wide Web site. Underlying all organizational schemes are the limitations of the human brain in holding and remembering information. Cognitive psychologists have known for decades that most people can only hold about four to seven discrete chunks of information in short-term memory. The goal of most organizational schemes is to keep the number of local variables the reader must keep in short-term memory to a minimum, using combination of graphic design and layout conventions along with editorial division of information into discrete units. The way people seek out and use information also suggests that smaller, discrete

Most Web sites contain reference information that people seek in small units. Users rarely read long contiguous passages of text from computer screens, and most people who are seeking a specific piece of information will be annoyed to have to scan long blocks of text to find what they are after. Small chunks of related information are also easier to organize into modular units of information that all share a consistent organization scheme that can form the basis for hypertext links within your Web site. "Small" can only be determined in the context of your presentation and what you expect of the audience. In this style manual our expectation is that most people will print these pages and read them from paper "off-line," so we have tried to divide the manual into Web pages that will print as logical units.

units of information are more functional and easier to navigate through than

Steps in organizing information

long, undifferentiated units.

Day-to-day professional and social life rarely demands that we create detailed hierarchies of what we know and how those bits relate to each other, but without a solid and logical organizational backbone your Web site will not function well even if your basic content is accurate and well-written. The four basic steps in organizing your information are to divide it into logical units, establish a hierarchy of importance and generality, use the hierarchy to structure relationships among chunks, then analyze the functional and aesthetic success of your system.

Chunking information

Most information on the World Wide Web consists of short reference documents that are read non-sequentially. This is particularly true of educational, corporate, government, and organizational web sites used to distribute information that might have been printed on paper a few years ago. Writers of technical documents discovered long before the Web was invented that users appreciate short "chunks" of information that can be scanned and located quickly. Short, uniformly-organized chunks of information particularly lend them to Web presentation, because:

- Few Web users spend time reading long passages of text on-screen. Most users will save long documents to disk, or print them, rather than read extensive material online.
- Discrete chunks of information lend themselves to Web links. The user of a link usually expects to find a specific unit of related information, not a whole book's worth of information to filter through. But don't subdivide your information too much, or you will frustrate your readers. One to three (printed) pages of information seems about right for a discrete chunk of information on the Web. A link that produces only a small paragraph of information would be silly in most situations.

- A uniform format for organizing and presenting your information allows users to apply their past experience with your site to future searches and explorations, and allows users to predict how an unfamiliar section of your Web site will be organized.
- Concise chunks of information are better suited to the computer screen, which provides a only limited view of long documents. Very long Web pages tend to be disorienting, because they require the user to scroll long distances, and to remember the organization of things that have scrolled off-screen.

The concept of a chunk of information must be flexible, and consistent with common sense, logical organization, and the convenience of the Web site user. Let the nature of the content suggest the best ways to subdivide and organize your information. There will be times when it makes sense to provide long documents in single Web pages, as integrated units of information. Although chunks of information in online documents should usually be kept short, it makes little sense to arbitrarily divide up a long document. This is particularly true when you want users to be able to print or save the document in one step.

Hierarchy

Any organization needs a hierarchy of importance, if only to determine basic navigation structures for the user. Most "chunks" of information can and should ranked in importance, and organized by the degree of interrelationship among units. Once you have determined a logical set of priorities, you can build a hierarchy from the most important or most general concepts, down to the most specific or optional topics. Hierarchical organizations are virtually a necessity on the Web, because most home page-and-link schemes depend on hierarchies, moving from the most general overview of your site (your home page), down through submenus and content pages that become increasingly more specific.

Relationships

When confronted with a new and complex information system users begin to build mental models, and then use these models to assess relationships among topics, and to make guesses about where to find things they haven't seen before. The success of your Web site as an organization of information will largely be determined by how well your actual organization system matches your user's expectations. A logical site organization allows users to make successful predictions about where to find things. Consistent methods of grouping, ordering, labeling, and graphically arranging information allow users to extend their knowledge from pages they have visited to pages they are unfamiliar with. If you mislead users with a structure that is not logical (or have no comprehensible structure at all), users will be constantly frustrated by the difficulties of find their way around. You don't want your user's mental model of your site to look like this:

Function

After you have created your site, you should analyze its aesthetics, and the practicality and efficiency of your organizational scheme. No matter what organizational structure you choose for your Web site, proper World Web site design is largely a matter of balancing the structure and relationship of menu or "home" pages and individual content pages or other linked graphics and documents. The goal is to build a hierarchy of menus and pages that feels natural to the user, and doesn't interfere with their use of the Web site or mislead them.

Web sites tend to grow almost organically, and often overwhelm what was originally a reasonable menu scheme. WWW sites with too shallow a link hierarchy depend on massive menu pages that over time devolve into confusing "laundry lists" of unrelated information, listed in no particular order:

Menu schemes can also be too deep, burying information beneath too many layers of menus:

Gopher sites are the classic example of the disadvantages of nested menus, where you sometimes have to open many folders before you hit any content documents. Menus lose their value if they don't carry at least four or five links; text or list-based menu pages can easily carry a dozen links without overwhelming the user or forcing users to scroll through long lists. Having to navigate through many layers of nested menus before you reach any real content is infuriating and unnecessary.

If your Web site is actively growing, the proper balance of menus and pages is a moving target. User feedback (and analyzing your own use of your Web site) can help you decide if your menu scheme has outlived its usefulness or has poorly designed areas. Complex document structures require deep menu hierarchies, but users should never be forced into page after page of menus if direct access is possible. The goal is to produce a well-balanced hierarchical tree that facilitates quick access to information and helps users understand how you have organized things.

References

December, J., and N. Randall. 1995. *The World Wide Web unleashed*. Indianapolis: Sams Publishing.

Horton, W. K. 1994. *Designing and writing online documentation, 2nd edition.* New York: Wiley.

Pay 1/97

Contents

Site Design

Introduction Site structure

Site elements I

Site elements II

Intranet design

Site Covers

If you are interested in the World Wide Web you can hardly escape references to hypertext and hypermedia. These days the computer press is full of very fuzzy thinking about how Web-based information can somehow "link everything to everything." The implication is that with the Web you can probably dispense with one of the most challenging aspects of presenting information — how to put it into logical order and create an interesting and understandable resource for the user. Nothing could be further from the truth. If you have only a hazy idea how one section of your site relates to other areas, if you have no comprehensive narrative or clear sense of organization, your readers will know it soon enough, and most of them will leave in pursuit of better organized material.

Sequence

The simplest way to organize information is in a sequence, where you present a linear narrative. Information that naturally flows as a narrative, time line, or in logical order is ideal for sequential treatment. Sequential ordering may be chronological, a logical series of topics progressing from the general to the specific, or even alphabetically sequenced, as in indexes, encyclopedias, and glossaries. However, simple sequential organization usually only works for smaller sites (or structured lists like indexes), as long narrative sequences often become more complex, and thus require more structure to remain understandable.

More complex Web sites may still be organized as a sequence, but each page in the main sequence may have one or more pages of digressions, parenthetic information, or links to information in other Web sites.

Grid

Many procedural manuals, lists of university courses, or medical case descriptions are best organized as a grid. Grids are a good way to correlate variables, such as a time line versus historical information in a number of standard categories such as "events," "technology," "culture," etc. To be successful, the individual units in a grid must share a *highly* uniform structure of topics and subtopics. The topics often have no particular hierarchy of importance. For example, "tuberculosis" is not more or less important a diagnosis than "hilar adenopathy," but ideally both case descriptions would share a uniform structure of subtopics. Thus the user could follow the grid "down," reading about tuberculosis, or cut "across" the grid perhaps by comparing the "diagnostic imaging" sections of both hilar adenopathy and tuberculosis. Unfortunately, grids can be difficult to understand unless the user recognizes the interrelationships between categories of information, and so are probably best for experienced audiences who already have a basic understanding of the topic and its organization. Graphic overview maps are very useful in grid-like Web sites.

Hierarchy

Information hierarchies are one of the best ways to organize complex bodies of information. Hierarchical organization schemes are particularly well-suited to Web sites, because Web sites should always be organized as off-shoots of a single home page. Most users are familiar with hierarchical diagrams, and find the metaphor easy to understand as a navigational aid. A hierarchical organization also imposes a useful discipline on your own analytical approach to your content, as hierarchies only work well when you have thoroughly organized your material. Since hierarchical diagrams are so familiar in corporate and institutional life, users find it easy to build mental models of the site:

Web

Web-like organizational structures pose few restrictions on the pattern of information use. The goal is often to mimic associative thought and free flow of ideas, where users follow their interests in a heuristic, idiosyncratic pattern unique to each person who visits the site. This organizational pattern develops in Web sites with very dense links both to other information within the site, and information on other World Wide Web sites. The goal is to fully exploit the Web's power of linkage and association, but web-like organization structures can just as easily propagate confusion and fuzzy thinking about the interrelationships of your information chunks. Ironically, organizational webs are often the most impractical structure for Web sites, because they are so hard for the user to understand and predict. Webs work best for small sites dominated by lists of links, aimed at highly educated or experienced users looking for further education or enrichment, not for a basic understanding of your topic.

Summary

Most complex Web sites share aspects of all four types of information structures. Except in sites that rigorously enforce a sequence of pages, your users are likely to use any Web site in a free-form "web-like" manner, just as most non-fiction or reference books are used. But the nonlinear usage patterns typical of Web surfers do not absolve you of the need to organize your thinking and present it within a clear, consistent structure that complements your design goals for the site. The chart below summarizes the four basic organization patterns against the "linearity" of your narrative, and the complexity of your content.

© Lynch and Horton, 1997. All rights reserved.

Contents

Site Design

Introduction

Site structure

Site elements I

Site elements II

Intranet design

Site Covers

Web sites can vary enormously in their style, content, organization, and purpose, but all Web sites that are primarily designed to act as information resources share some basic characteristics.

Home pages

All Web sites are organized around a "home page," that acts as a point of entry into the complex of Web pages in your site. In hierarchical organizations, your home page sits at the top of the chart, and all pages in your Web site should contain a direct link back to that home page. The World Wide Web URL for your home page is the Web "address" you will use to point users to your Web site, and the address of your home page could become every bit as important as your street address or department address in the years to come. The top of your home page will be the first thing Web users see when accessing your site (or your whole company, in the case of corporate Web sites), so the proper design of home pages is crucial to the success of your site. Design strategies for home pages vary, based on the function and needs of typical users of the site, the esthetic and design goals for the site, and on the nature and complexity of the organization of the Web site as a whole.

Graphic or text menus

The most basic layout decision you will make about your home page concerns how heavily you will use graphics on the page. Most corporate, institutional, and education home pages display at least a small graphic banner across the top of the home page, and in commercial sites the trend is rapidly moving toward menus constructed from complex, full-page graphics that emulate the look and functions of CD-ROM multimedia title pages. While strong graphics can be effective at grabbing a browser's attention, large graphic menus impose long loading times for pages, especially for users linking to the Internet via modems or slower network connections. Even if the user is accessing your Web site at Ethernet speeds (10 Mbits/sec) graphic menus may still load ten times slower than text-based lists of links.

Who is the audience for the home page?

This dichotomy between slow-loading but attractive graphics-based home pages and fast-loading but prosaic text-based home pages also reflects the need to address different audiences, with different expectations. The goals for most Web sites are the transmission of internal information (to students, employees, and existing clients) and communicating with potential clients and the general Web-browsing public. Kodak has opted for graphic home page design, but the layout is carefully designed not to exceed the dimensions of the average office monitor. By keeping the graphic moderate in size the page loads reasonably quickly for a graphic menu.

Graphic has been reduced from the original size. www.kodak.com

The relatively plain, mostly text-based home page for the W3C offers a very efficient ratio of links per kilobyte of page size, but at some cost in pure visual appeal. The page is fast-loading and well designed for its audience of Web specialists, but would not attract the average browser through presentation alone:

Realizing the Full Potential of the Web...

Announcing First Public Release of Amaya

"The Amaya client, like the Jigsaw server, is a tool for experimenting to find out what is possible and demonstrate what can be done. Experiments, tests and demonstrations of developments in HTML, CSS, HTTP are examples of the way Amaya has already been used to great effect. Amaya provides focus for the community to come to consensus on implementable, practical standards." -- Tim Berners-Lee, WSC Director

 Tired of Waidag? HTTP 1.1, CSSI and PNG Can Make the Web As Much As 2-8 Times Paster

Graphic has been reduced from the original size. www.w3.org/pub/WWW/

Don't choose — have it both ways

The best way to meet the needs of both casual browsers and highly targeted frequent users is to offer alternative views of your Web site. One approach is to make a visually attractive main home page aimed at the general audience of Web browsers, but also offer a more text-oriented alternate home page that emphasizes rapid access to information via detailed text menus. Another approach is to use a graphic banner up at the top of the home page, followed by a dense set of text-based links. The Library of Congress's Congressional information Web site "Thomas" reflects this dual approach, with a moderate graphic topping a dense but well-organized set of text links:

User Interface

HTML Style Sheets Graphics and 3D Internationalization Fonts Amarya Arean

Technology and Society

Accessibility Distant Signature Industry Electronic Commerce PICS Intellectual Property

Graphic has been reduced from the original size. thomas.loc.gov/

References

Eastman Kodak

Thomas (U.S. Library of Congress Web site)

World Wide Web Consortium (W3C)

Contents

Site Design

- Introduction
- Site structure
- Site elements I
- Site elements II
- Intranet design

Site Covers

Managing time

Many Web sites must be frequently updated so the information doesn't get stale. But the presence of the new information may not be obvious to readers of your Web site unless you make a systematic effort to let them know about it. If items listed the on the menus on your home page are updated you could just put a "NEW" graphic next to each updated item. You should also date every one of your Web pages, and update that as information changes so that users can be sure that they have the latest version of things. However, if your site is complex, with many levels of information spread over dozens (or hundreds) of pages you might be better off making a "What's New" page that is specifically designed to inform users that information in your site has been updated. You may also want to use a "What's New" page as a university or institutional newsletter, emphasizing timely information in your organization.

Menus, submenus, and home pages

Unless your site is very small you will probably need a number of submenu pages that the user enters from general category listing on your home page. In complex sites with dozens of topic areas it is not practical to load up the home page of a Web site with dozens of links — the page gets too long to load in a timely manner, and the sheer complexity of long pages may be off-putting to many users.

Each major submenu in effect becomes a mini-home page for that section of your Web site. For specialized, detailed menus you may encourage frequent users to link directly to a submenu in your Web site. Thus the submenus could become alternate home pages oriented to specific groups of users. Just make sure to include a basic set of links to other sections of your site on each submenus, and most important of all, always include a link to a menu or home page on every Web page in your site.

"Other related sites" catalogues

The World Wide web is growing so rapidly that even the large commercial Web index services like Yahoo are only partial listings of the information that is accessible from the Web. Often the first sets of links Web users make when they begin to build their own Web sites are collections of favorite links to sites related to their professions, industries, or personal interests. In a corporate or institutional site a well-edited, well-maintained "other sites" page may be the most valuable and heavily-used resource in your Web site.

Bibliographies, indexes, appendices

The concept of "documents" in electronic environments like the Web pages is often flexible, and the economics and logistics of digital publishing make it possible to provide more information to your site users without the costs associated with paper documents. To make a report available to colleagues on paper you would have to print a copy for each person. Costs and practicality dictate that paper reports be very concise, and without much supporting material or appendices — thus your audience is often left without access to the information upon which the writers based their conclusions for no reason other than the high cost of printing on paper. Aside from the main body of reports, you may wish to include lists of resources that would not normally be included in corporate reports because of space and cost considerations, but which could be made available in a Web site. Bibliographies, glossaries, appendices of information that might be too bulky to load into a task force report or committee recommendations document could be placed in a Web site instead, making the information available to other researchers without over-stuffing reports with material of interest to only a few readers.

Frequently asked questions — FAQ pages

The web and other Internet-based media have evolved a unique institution, the FAQ, or "Frequently Asked Questions" page where the most commonly asked questions from users are listed along with answers. FAQ Web pages are ideal for Web sites designed to provide support and information to a working group within an institution, or to a professional or trade group that maintains a central office staff. Office staff and public relations personnel know that most questions new users ask have been asked and answered many times before. By making a well-designed FAQ page and referring users to it you could significantly improve the user's understanding of the information and services offered through your Web site or professional group. The FAQ page could also sharply reduce the time demands on your support staff who normally answer those routine, repetitive questions from users or clients.

References

December, J., and N. Randall. 1995. *The World Wide Web unleashed*. Indianapolis: Sams Publishing.

Lemay, L. 1996. *Teach yourself Web publishing in a week, 2nd ed.* Indianapolis: Sams Publishing.

Rev. 1/97

Contents

Site Design

Introduction

Site structure

Site elements I

Site elements II

Intranet design

Site Covers

Intranets: Get in, get what you want, and move on.

External sites

External sites are usually aimed at capturing an audience. The overall goal is to maximize contact time, drawing the reader deeper into the site and rewarding the reader's curiosity with interesting or entertaining information. In external Web sites the assumption is that the reader often has little motivation to stay, and must be constantly enticed and rewarded with rich graphics or compelling information to get them to linger within the site.

Intranet sites

Successful intranet sites assemble useful information, organize it into logical systems, and to deliver the information in an efficient manner. You don't want intranet users lingering over their Web browsers, either in frustration at not being able to find what they are looking for, or in idle "surfing" through the local intranet. Allow employees and students to get exactly what they need quickly, and then to move on.

Design standards

In most institutions the use of the World Wide Web has evolved over the last three years from an informal collection of personal or group home pages into a semi-organized collection of sites listed in one or more master "home pages" or "front door" sites. Ironically, universities and companies that adopted the Web early are often the least organized, as each department and group has over the years evolved its own idiosyncratic approach to graphic design, user interface design, and information architecture. But the Web and institutional intranets are no longer just a playground for the local "gearheads." Patchy, heterogenous design standards and a lack of cohesive central planning can cripple any attempt to realize productivity gains through an intranet.

Graphic has been reduced from the original size. www.sun.com

Navigation: time is money

Sun Microsystem's Internet and intranet sites are models of a consistent, in-depth approach to design for the Web. User surveys show the average Sun employee uses about 12 intranet pages per day, and about two new intranet sub-sites each week. Sun's user interface expert Jakob Nielsen estimates that his redesign of Sun's intranet user interface could save each employee as much as five minutes per week through consistent, company-wide application of design and navigation interface standards. The aggregate savings in Sun employee time may amount to as much as \$10 million dollars a year, through avoiding lost productivity and by increasing the efficiency with which employees use the company's intranet sites.

Design standards

All institutions deploying intranets have clear economic and social motivations to develop and propagate a consistent set of design standards for the development of local Web pages and internal information sources. But problems in implementing an institution-wide set of standards are also considerable. Groups and individuals feel they own the "right" to design and publish as they please, and often have more Web expertise and experience than does the senior management. Groups that have used the Web for years already have a considerable investment in their current designs, and will be reluctant to change. University administrations often lack the economic resources to develop institutional standards manuals, and to then motivate academic departments to adopt them. The lack of national or international consensus on what constitutes proper Web design only complicates the matter further.

User-centered design

The list of problems cited above will be familiar to every university or corporate webmaster, and to anyone who has had to sit on a Web or intranet committee. They are all great reasons for doing nothing, but they ignore the most important factor in any intranet—the user. Without reasonable, consistent design standards the average intranet user suffers in confusion, lost productivity, and lost opportunity to fully benefit from the promise of intranet technologies. If you adopt a user-centered approach to intranet design the advantages of consistent graphic design and user interface standards are immediately obvious, and clearly transcend the parochial interests of participating departments, groups, and individuals. If the typical user of an intranet sees more confusion than useful information, no one will benefit.

Without a clear set of design standards your local intranet will continue to evolve as a patchy, confusing set of pages — some well-designed, some disastrous, and all just parts of a dysfunctional system. The lack of design standards also limits intranet use by imposing complex design decisions on new users who would like to develop intranet sites, but face the daunting task of developing their own graphic design and interface conventions instead of being able to simply adopt an existing professionally-designed system of intranet standards.

References

Hildebrand, C. 1997. Face facts: Designing a corporate intranet. Webmaster 1(8): 34-42.

Nielsen, J. Alert Box columns

Sun Microsystems, Inc.

University of Chicago Press. 1982. *Chicago manual of style*. 13th Ed. Chicago: University of Chicago Press.

Xerox Corporation. 1988. *Xerox publishing standards*. New York: Watson-Guptill Publications.

Contents

Site Design

Introduction

- Site structure
- Site elements I

Site elements II

Intranet design

Site Covers

Site covers can serve a number of different purposes. Some function as "splash" screens that offer little information, but are intended to entice users into a site by using snazzy graphics or effects. Others are used to establish an overall "look-and-feel" for a site. Such covers often provide links to the major sections of the site, allowing visitors quick access to topics of interest while providing a general site overview. Other covers have few graphics, but provide detailed information and access to the content of the site. Which type of cover is most effective is dependent on the nature and purpose of the site.

We have found covers to be the most controversial of all site elements. For many readers, site covers are simply an additional and annoying mouse click between them and the content they are seeking. Such readers would like be presented with a site index at the start rather than pretty graphics or spiffy animations. The key is to assess your audience and then choose the entry that seems most appropriate.

Also, consider the function of your site. Is your typical visitor there for a single visit or will they visit often? An on-line tool like a calendar or search engine should not have a purely aesthetic site cover, as visitors will visit the site perhaps several times a day. An elegant but non-functional cover on such a site will quickly become tedious. Of course, visitors who do not want to enter through the front door can simply bookmark an internal page of your site, for example, the table of contents. But if you find yourself repeatedly making this argument*for* using a site cover, you may want to adapt or even remove your cover to better accommodate your audience.

Information

An informational site, such as an academic, corporate, or general interest site, should have a cover that establishes an overall visual design theme or metaphor for the site. It should also identify and give a brief explanation of the purpose of the site, and provide a site overview by presenting links to its major sections. This type of cover should answer the questions, Where am I? What is it like here? What do these people do? What kind of stuff will I find?

Graphic has been reduced from the original size. www.nytimes.com

Reference

A site that will be used as a reference should have its menu posted right on the front door. Visitors should be able to tell at a glance if the information they are seeking is inside, and, if so, exactly where to find it. A cover to a reference site should look more like a table of contents, with links to every page in the site. This type of cover can have graphic elements, but their role is secondary to the content and access links. Graphics should be modest, and should establish a site identity that is maintained throughout all pages. This type of cover should answer the questions, Do they have a page on wildebeests? How do I get there right now?

Graphic has been reduced from the original size. www.yahoo.com

All the rest

The third type of site cover is one that elicits questions that can be answered only by entering the site. These covers use animations, graphics, and/or multimedia to pique interest and draw visitors into the main body of the site. The success of these covers depends enormously on the expectation of the site visitor. If you visit a site about a poet, you will enter with a different expectation than when visiting a site about carpal tunnel syndrome. Visitors to a site about poetry may not simply be out Web foraging, but may instead be looking for an experience, for art, for entertainment. A mysterious, enigmatic, aesthetically-pleasing facade might just entice such visitors in.

www.jonesandjones.com

Choose wisely

With site covers, more than with any other aspect of Web site design, you must carefully gauge the needs and expectations of your audience. Too much splash on a reference site will exasperate, too little splash on an entertainment site will bore. And first impressions are what matters most, particularly when there are so many other fish in the sea.

References

Siegel, D. 1996. *Creating killer web sites*. Indianapolis: Hayden Books. <u>www.killersites.com</u>

New York Times

Yahoo

Jones & Jones

© Lynch and Horton, 1997. All rights reserved.

Rev. 1/97

Contents

Page Design

Introduction Graphic design 100

Balanced pages

Design grids for pages

Graphic safe areas

Page headers

<u>Typography I</u>

Typography II

<u>Typefaces</u>

Consistency

Basic Tables

Page length

Cross platform issues

Editorial style

Frames

Advanced tables

We seek clarity, order, and trustworthiness in information sources, whether they are traditional paper documents or Web pages. The spatial organization of graphics and text on the Web page can engage the user with graphic impact, direct the user's attention, prioritize information, and make the user's interactions with your Web site more enjoyable and more efficient.

"Man is the great pattern-maker and pattern perceiver. No matter how primitive his situation, no matter how tormented, he cannot live in a world of chaos." Edmund Carpenter

Design and visual logic

Graphic design creates visual logic, an optimal balance between visual sensation and graphic or text information. Without the visual impact of shape, color, and contrast pages are often graphically boring and will not motivate the viewer to investigate their contents. Dense text documents without the contrast and visual relief offered by graphics and careful page layout and typography are also more difficult to read, particularly on the relatively low-resolution screens of current personal computers. However, without the depth and complexity of text, highly graphic pages risk disappointing the user by offering a poor balance between visual sensation, text information, and interactive hypermedia links. In seeking this ideal balance, the primary graphic design constraints in Web pages are the vertical, list-oriented structure of HTML as seen in current Web browsers like Netscape and Internet Explorer, and the practical bandwidth limitations on user access rates that may currently range from 14.4 modems to Ethernet speeds or better.

Visual and functional continuity in your Web site organization, graphic design, and typography is essential to convince your audience that your Web site offers them timely, accurate, and useful information. A careful, systematic approach to page design can simplify navigation, reduce errors, and make it much easier for users to take full advantage of the information and features of your Web site.

Graphic Design and the Web

Hypertext Markup Language (HTML), the language of Web page design, is a hypertext system, emphasizing interactive linkages between graphic, text, or media documents. The ability to mix graphics or motion media with text in HTML is much more limited than in other forms of electronic document authoring, or in paper-based publishing. The graphic design vocabulary within HTML is constrained by the vertical list structure of HTML and the uncertainties of designing with device-independent physical and logical typographic controls. However, the ability to imbed hypertext links text and graphics that can take full advantage of the Internet offers unprecedented functional power and flexibility in designing interlinked, interactive information systems.

Efficient Use of the World Wide Web

Although the prospect of networked multimedia in Web pages is exciting, the highly graphic interface design now seen in consumer-oriented CD-ROM multimedia titles is a particularly poor model for current Web page designs. Such highly graphic designs require far more communications bandwidth than even Ethernet typically delivers to current personal computers. Purely graphic menu designs for Web pages that depend on one large imagemap graphic are fine for corporate or educational Intranet use, but are likely to try the patience of users accessing the web via modem.

Sites like FedEx's home page design (below) emulate the graphic menus seen in multimedia CD-ROMs. Highly graphic menu screens produce

visual impact (eventually), but they also impose long waits on users who do not have access to high-bandwidth Internet connections like ISDN or Ethernet. FedEx is betting that most users of their site are repeat viewers who have this large graphic in stored in their browser's cache, available for fast loading on return visits:

Graphic has been reduced from the original size. www.fedex.com

What excites most people about the Web is the promise of graphic communication, and graphic "splash screens" or home pages can be very successful as long as you fully understand the convenience trade-offs and performance compromises and do not alienate your target audience. Our C/AIM home page design is now a graphic menu that uses JavaScript to randomly choose one of 12 alternate designs to display each time the page is loaded. We chose graphic impact over the diversity of text links because our basic home page menu was short, our focus is multimedia communication, and our target audience is mostly fellow academics and physicians with high-bandwidth access to the Web.

Graphic has been reduced from the original size. www.med.yale.edu/caim/

Graphics and system responsiveness

As Web systems evolve from informal novelties into widespread organizational, educational, and corporate use the expectations for system performance are increasing. For a large organization using a Web intranet system as a management information tool the aggregate effect of the long delays caused by inappropriate use of over-large graphics or other inefficiencies in key menu areas may cripple the cost-effectiveness of the system. This is especially true when many users are accessing your Web site via modems, such as home-office telecommuters, distance-learning students, your sales force, or your field personnel. Most studies on user response to computing system delays suggest that waiting times longer than about 10 seconds are intolerable in routine, repetitive computing tasks. For the past few years the (very slow) Web has gotten a free pass due to its novelty, but it seems unlikely that users will be any more tolerant of Web systems than they are of any other networked service or computing task.

With or without graphics?

If you are currently using a large graphic menu on your site's home page, you should take a close look at the log of "hits" produced by your Web server software. (Your Web server administrator should be able to produce this log for you if you've never seen one.) The server log shows how many times your home page has been requested, or "hit," by readers looking at your page. Each GIF or JPEG graphic image used on your home page should also show a corresponding hit, as the graphics files are requested and downloaded to the reader. If the number of hits on your home page HTML file is significantly larger than the number of hits on the graphic files used on your home page then you know that many users are accessing your page with the graphics turned off in their Web browsers. If your readers are turning off the graphics because your site takes so long to download, then all of the information you have placed into your Web page graphics never reaches your readers.

References

FedEx, Inc.

Center for Advanced Instructional Media, Yale University

© Lynch and Horton, 1997. All rights reserved.

Understand the medium

Readers experience Web pages in two ways: as a direct medium where pages are read online, and as a delivery medium to access information that is later downloaded into text files or printed onto paper. Your expectations about how readers will typically use your site should govern your design decisions. Documents to be read online must be concise, with the amount of graphics carefully "tuned" to the bandwidth available to the mainstream of your audience. But don't patronize your readers or insult their intelligence. The common advice that the Web is dominated by semi-literate "screenagers" who won't read more than two sentences in a row is grossly exaggerated, and probably irrelevant to you and your audience anyway. You do not need to "dumb down" your content or shave it to a meaningless skeleton. Just be aware that readers will typically want to print longer pages or more complex presentations to read "offline" from paper.

Establish a visual hierarchy

The primary task of graphic design is to create a strong, consistent visual hierarchy, where important elements are emphasized, and content is organized logically and predictably.

Graphic design is visual information management using the tools of layout, typography, and illustration to lead the reader's eye through the page. Readers see pages first as large masses of shape and color (see below), with foreground elements contrasted against the background field. Only secondarily to they begin to pick out specific information, first from graphics if they are present, and only afterward do they start parsing the "harder" medium of text and begin to read individual words and phrases:

Yisual scanning and page structure

Thus the overall graphic balance and organization of the page is crucial to drawing the reader into your content. A dull page of solid text will repel the eye as a mass of undifferentiated gray, but a page dominated by poorly designed or overly bold graphics or type will also repel sophisticated users looking for substantive content. What you want is an appropriate balance that attracts the eye with visual contrast:

Contents

Page Design

Introduction

Graphic design 100

Balanced pages

Design grids for pages

Graphic safe areas

Page headers

<u>Typography I</u>

<u>Typography II</u> Typefaces

Consistency

Basic Tables

Page length

Cross platform issues

Editorial style

Frames

Advanced tables

Proportion and "appropriateness" are the keys to successful design decisions, but those things can only be determined within the context of your overall purpose in developing a Web site, by the nature of your content, and most importantly, by the expectations of your audience.

Direct the reader's eye

In the West readers of English read from left to right, and from the top of the page to the bottom. This fundamental visual axis dominates most design decisions, and is the basis for most conventional graphic design of print publications. In page layout the top of the page is always the most dominant location, but on Web pages the upper page is especially important, because the top four inches of the page is all that is visible on the typical 14 to 16 inch office computer monitor.

Subtle pastel shades of colors typically found in nature make the best choices for background or minor elements, especially if you are new to graphic design and color selection. Avoid bold, highly saturated primary colors except in regions of maximum emphasis, and even there use them cautiously. Type must always contrast sharply with any background color. If you have a dramatic or complex graphic scheme in mind, hire a professional graphic designer to execute it. If you are not a designer and must do things yourself, keep everything conservative, conventional, and simple.

Graphic distractions

Beware of graphic embellishments. Horizontal rules, graphic bullets, icons, and other visual markers have their occasional uses, but apply each sparingly (if at all) to avoid a patchy and confusing layout. The same applies for the larger sizes of type on Web pages. One reason professional graphic designers are so impatient with HTML is the grotesquely large type sizes displayed by most Web browsers when using the "H1" and "H2" header tags. The tools of graphic emphasis are powerful, and should be used only in small doses for maximum effect. Overuse of graphic emphasis leads to a "clown's pants" effect where everything is garish and nothing is really emphasized:

Be consistent

Establish a layout grid and a style for handling your text and graphics, then stick with it to build a consistent rhythm and unity across all the pages of your site. Repetition is not boring; it gives your site a consistent graphic identity that reinforces a distinct sense of "place," and that makes your site more memorable. A consistent approach to layout and navigation allows readers to quickly adapt to your design, and to confidently predict the location of information and navigation controls across the pages of your site.

If you choose a graphic theme, use it throughout your site. Metadesign's home page banner (below) sets the graphic theme for the site, and introduces distinctive typography and a set of navigation icons:

Graphic has been reduced from the original size. www.metadesign.com/

This is a banner at the top of an interior page in Metadesign's site. Note how the typography and icon theme is carried through to all interior banners. There is no confusion about whose site you are navigating through:

Graphic has been reduced from the original size. www.metadesign.com/

"Style"

Don't set out to develop a "style" for your site, and be very careful about simply importing the graphic elements of another Web site or print publication to "decorate" your pages. The graphic and editorial style of your Web site should evolve as a natural consequence of consistent and appropriate handling of your content and page layout.

References

Hurlburt, A. 1977. *Layout: The design of the printed page*. New York: Watson-Guptill.

Meggs, P. B. 1989. *Type and image: The language of graphic design*. New York: Van Nostrand Reinhold.

Metadesign.

Mok, C. 1996. *Designing business: multiple media, multiple disciplines.* San Jose: Adobe Press.

Spiekermann, E., and E. M. Ginger. 1993. *Stop stealing sheep & find out how type works*. Mountain View, CA: Adobe Press.

Tufte, E. R. 1990. Envisioning information. Cheshire, CT: Graphics Press.

White, J. V. 1988. *Graphic design for the electronic age*. New York: Watson-Guptil.

Wilson, A. 1974. *The design of books*. Salt Lake City: Peregrine Smith, Inc.

Contents

Page Design

Introduction Graphic design 100 Balanced pages

Design grids for pages

Graphic safe areas

Page headers

<u>Typography I</u> Typography II

Typefaces

Consistency

Basic Tables

Page length

Cross platform issues

Editorial style

Frames

Advanced tables

Web page design is largely a matter of balancing the power of hypermedia Internet linkages against the ability to imbed graphics and motion media within networked Web pages. Some home or menu pages function more like the covers of books or magazines. The idea is to draw the user into the material with a combination of text descriptions and interesting graphics related to the subjects:

Graphic has been reduced from the original size. www.apple.com

The most efficient designs for general (mostly modem-based) Internet audiences tend to use careful layouts of text and links with relatively small graphics. These pages load into viewers quickly, even when accessed from 28.8 kbps modems over SLIP or PPP lines, yet these pages still achieve a substantial graphic impact. This is razorfish's elegant but minimal layout design for the Pace-Wildenstein Gallery:

Graphic has been reduced from the original size. http://www.pacewildenstein.com/

The screen is smaller than a printed page

While Web pages and conventional documents share many graphic, functional, and editorial similarities, the computer screen is the primary delivery site for web-based information, and the computer screen is very unlike the printed page. Graphic designers often create page grids that look great on their extra-large monitors, forgetting that most users cannot display more than about half of the typical Web page at any one time, and only 10% of Web surfers ever scroll the page.

Width of page graphics

Computer screens are typically smaller than most books or magazines. A very common mistake in Web design is spreading the horizontal width of your page graphics beyond the area most viewers can fit on their 14-15 inches display screens.

Graphic dimensions for web pages

Web page graphics should not be more than 535 pixels wide or more than about 320 pixels high, or the graphic will be too wide to print on letter size or A4 paper. Even when your readers have large display screens, the typical Netscape or Internet Explorer window still defaults to a window width designed for smaller monitors. Microsoft's otherwise excellent home page is too wide for many standard office monitors:

Graphic has been reduced from the original size. www.microsoft.com

The following size recommendations are based on the typical dimension of a Web browser on a 14 inch or 15 inch Macintosh or Windows 95 screen:

Safe dimensions for Web page graphics

US Letter size page = 535 by 670 pixels safe area

Design grids for HTML pages

A Web page can be almost any length, but you've only got about 30 square inches at the top of your Web pages to capture the average reader, because that is all they will see as your page loads. If all you offer is a big, slow-to-load graphic, many casual readers will leave before they ever see the rest of your Web site.

We have designed a page background graphic that shows the safe areas for 640 by 480 pixels screens, and also shows approximate page boundaries for printing Web pages. Note that the boundaries are only approximate, as font sizes vary considerably across different computing platforms and operating systems.

Page with grid background

This page shows the same background graphic placed on the page, where you can copy it for your own use. Follow the procedures for your particular browser in copying images. Users of the Windows version of Netscape should click on the graphic with the right mouse button to get a menu of options for copying and saving the graphic. Mac users of Netscape 2.0 or later should click and hold down the mouse button until the pop-up menu appears.

Consistency and predictability are essential attributes of any well-designed information system, aiding users in identifying the origin and relationships of World Wide Web pages, providing consistent and predictable access to interface and page elements, and a consistent graphic design scheme. The design grids that underlie most well-designed paper publications are no less necessary in designing electronic documents and on-line publications, where the spatial relationships between on-screen elements is constantly shifting in response to user input and system activity.

Clown's pants

Current implementations of the Hypertext Markup Language (HTML) do not allow the flexibility or control that graphic designers routinely expect from page layout software or conventional multimedia authoring tools. However, the HTML markup language can be used to create complex and highly functional information systems if it is used carefully. When used inappropriately or inconsistently the typographic controls and inlined graphics of World Wide Web (Web) pages may result in a patchy, confusing jumble, without any apparent visual hierarchy of importance. This unfortunate "clown's pants" effect of haphazardly mixed graphics and text results in decreased usability and legibility, just as it does in paper pages. A carefully organized design grid that is consistently implemented across a range of pages will aid your users in quickly finding the information they want, and will increase the reader's confidence that they are using a thoughtfully organized collection of information:

References

Apple Computer, Inc.

Hurlbutt, A. 1978. The grid. New York: Watson-Guptill.

Microsoft Corporation

Pace-Wildenstein Gallery

<u>razorfish</u>

White, J. V. 1988. *Graphic design for the electronic age*. New York: Watson-Guptill.

© Lynch and Horton, 1997. All rights reserved.

Rev. 1/97

Page Design

Introduction Graphic design 100 **Balanced** pages Design grids for pages Graphic safe areas Page headers Typography I Typography II Typefaces Consistency **Basic Tables** Page length Cross platform issues Editorial style Frames Advanced tables

There is no single design grid system that is appropriate for all Web pages. The first consideration in a Web design project is to establish the basic layout grid for your pages. With this graphic "backbone" you establish how the major blocks of type and illustrations will regularly occur in your pages, and set the placement and style guidelines for major screen titles, subtitles, and navigation links or buttons. To start, gather representative examples of your text, along with some graphics, scans, or other illustration material, and experiment with various arrangements of the elements on the page. In larger projects it isn't possible to predict how every particular combination of text and graphics will interact on the screen, but examine your Web

layout "sketches" against both your most complex and least complex pages. The goal is to quickly establish a consistent, logical screen layout, one that allows you to quickly "plug in" text and graphics for each new page without having to stop and re-think your basic design approach for every new page. Without a firm underlying design grid, your project's page layout will be driven by the problems of the moment, and the overall design of your Web system will look patchy and visually confusing.

Analyzing page grids

When we designed this style manual we used a basic page grid that incorporates an image map menu at the top and bottom of every page incorporating paging buttons. A "scan column" along the left of the page does two jobs: it provides space for local links to related material, and also gives visual relief by narrowing the right text column to about 60 - 70 characters per line. This diagram shows the major repeating components of the style manual pages:

Here we show the "invisible" table (BORDER="0") that underlies the column structure of the page, and the critical page dimensions:

We chose 535 pixels as the maximum dimension for the page layout because that is the widest table that will print on standard letter size or A4 paper (although, given variations in Web broswers, fonts, and laserprinters, some slight cropping may occur.). With a few exceptions, all graphics for this manual were designed to fit within the 365 pixel "safe area" of the text column. If you view the source code for these style guide pages you will see that the table structure we finally ended up with is quite complex. The example page below shows a similar but highly simplified table-based layout with a scan column and a text colum. For illustrative purposes we set the table border to "1" so you can see the edges of the table:

Simple table-based page layout example.

© Lynch and Horton, 1997. All rights reserved.

To modify this example for your own use, click the link to open the page, then use your browser's "View source code" option to view and copy the HTML code.

Rev. 1/97

The "safe area" for Web page graphics is determined by two factors: the minimum screen size in common use today (640 by 480 pixels), and by the width of paper used to print Web pages. Contents Monitor size Most monitors used in academia and business are 13 to 15 inches (33 to 38 Page Design cm) in size, and these smaller monitors are often set to display a 640 x 480 Introduction pixel screen. Web page graphics that exceed the width dimension of these small monitors look amateurish, and will inconvenience many of your Graphic design 100 readers because they will have to scroll both horizontally and vertically to **Balanced** pages see your full page layout. It's bad enough to have to scroll in one (vertical) direction; having to scroll in two directions is intolerable. Design grids for pages Graphic safe areas **Printing considerations** Even on small monitors it is possible to display graphics that are too wide Page headers

to print well on common letter size, legal size, or A4 paper widths. However, in many Web pages printing is a secondary concern. Just be aware that your readers will lose the right 2 centimeters of your layout if they print wide pages. Pages with lots of text should *always* be designed to print properly, as the majority of readers will print those pages, and if the page is too wide they will lose several words from each line of text along the right margin of the page.

The following table and screen examples give the graphic safe area dimensions for printing layouts, and for page layouts designed to use the maximum width of a 640 by 480 pixel screen. The dimensions are good for current versions (3.x) of both Internet Explorer and Netscape Navigator, and for both MacOS and Windows95 operating systems.

Graphic "safe area" dimensions for layouts designed to print well:

Maximum width = 535 pixels Maximum height = 295 pixels

Graphic "safe area" dimensions for layouts designed to maximize screen usage:

Maximum width = 595 pixels Maximum height = 295 pixels

The following graphics are screen dumps from 640 x 480 screens showing the two major Web browsers on both platforms, in their default settings (button bar, location bar, etc.). The dimension data given in each example screen are identical. However, by viewing each example you can see that the "Start" bar and window title banners significantly compromise the safe vertical dimension on small Windows95 screens. Small Mac screens have a slightly narrower horizontal dimension than Windows versions of both browsers.

Netscape Navigator - Macintosh safe area example

Internet Explorer - Macintosh safe area example

Netscape Navigator - Windows95 safe area example

Internet Explorer - Windows95 safe area example

When designing new Web sites we sometimes do our sketching on screen dumps like the ones above. Just copy the one of the screens above, erase the dimension data in the "live area" of the browser window, and sketch in your Web graphics. That way you can be sure that your graphics will fit within the safe area of the browser window, and you can also see how the

Typography I

Typography II

Typefaces

Consistency

Basic Tables

Page length

Cross platform issues

Editorial style

Frames

Advanced tables

browser's interface graphics might effect the overall look of your page graphics. This is more realistic than designing Web graphics on a plain background.

© Lynch and Horton, 1997. All rights reserved.

Rev. 1/97

Contents

Page Design

Introduction Graphic design 100 **Balanced** pages Design grids for pages Graphic safe areas Page headers Typography I Typography II Typefaces Consistency **Basic Tables** Page length Cross platform issues Editorial style Frames Advanced tables

The best measure of home page efficiency

How many links are there in the top four inches of your menu page designs? The average computer display sold today is only about 14 to 16 inches in diagonal measurement, and shows a "desktop" of about 640 by 480 pixels. That should tell you that the top four inches of your Web home page is the most crucial area in your site — because that's the only area you can be sure most users will see when they hit your home page. Many sites surrender to the giddy thrills of large home page graphics, forgetting that the a Web page is not just a visual experience — it has to function efficiently to retain its appeal to the user. A complex home page graphic that takes forever to download, doesn't fit on the average reader's screen, and offers little or no functionality will repel most Web users.

Remember that Web pages must be downloaded to the user, and that the page only gradually builds its graphic impact. The best measure of the efficiency of a page design is the number of options available within the top four inches of your page. A big, bold graphic may tease the casual Web surfer, but if it takes the average reader a full minute to download the top of your page, and there are no links to be seen until the user scrolls down the page (causing even longer delays), then you may have lost a big part of your audience before you even get to offer them any links to the rest of your site.

Think in screens of information, not pages

Always base your page header design on what the average reader with the average display monitor will see within the first screen of information. The most effective Web page headers incorporate a combination of graphics and interactive links, most often in the form of an imagemap. The imagemap banners at the top of the pages in the Yale C/AIM Web site are designed to deliver graphic impact to the page while offering the user six links within the top one and a half inches of the page:

Graphic has been reduced from the original size. www.med.yale.edu/caim/

Consistent graphic identity

One of the major purposes of careful graphic design is to provide a unique visual identity to your Web site. A consistent "signature" graphic and page layout allows the reader to immediately know what the main point of the document is, and what (if any) relationship the page may have to other pages. Graphics used within headers can also signal the relatedness of a series of Web pages. Unlike print documents, designers of Web systems can never be sure what (if any) other pages the reader has seen before linking to the current page. Sun Microsystem's many corporate Web sites all include a signature header graphic that is also an imagemap with basic navigation links included:

Graphic has been reduced from the original size. www.sun.com

C/AIM

Even if you choose not to use graphics on your pages, the header area of a Web page should contain a prominent title at or very near the top of the page. Graphics placed above the title line should not be so large that they force the title and introductory text off the page on standard office-size monitors (640x480 pixels). In a related series of documents there may also be subtitles, section titles, or other text elements that convey the relationship of the currently visible document to others in the series. To be effective, these title elements must be carefully standardized across all of the pages in your site.

Page footers

Page footers should always carry basic information about the origin and age of the page. Every Web page needs to bear this basic information, but this repetitive and prosaic information often does not deserve the prominence of being placed at the top of the page. Most Web pages are bigger than the average display screen, so that by the time most readers have scrolled to the bottom of the Web page the navigation links you might have provided at the top of the page are no longer visible. Well-designed page footers usually offer the user a set of links to other pages.

The pages in Sun Microsystem's site all cary a distrinctive footer graphic that gives a consistent visual and functional identity:

© Lynch and Horton, 1997. All rights reserved.

Visual contrast and page design

<u>Contents</u>

Page Design

Introduction Graphic design 100 **Balanced** pages Design grids for pages Graphic safe areas Page headers Typography I Typography II Typefaces Consistency **Basic Tables** Page length Cross platform issues Editorial style Frames Advanced tables

Good typography depends on the visual contrast between one font and another, and the contrast between text blocks and the surrounding empty space. Nothing attracts the eye and brain of the viewer like strong contrast and distinctive patterns, and you only get those attributes by carefully designing them into your pages. If you make everything bold, then nothing stands out and you end up looking as if you are SHOUTING at your readers. If you cram every page with dense text, readers see a wall of gray and their brains will instinctively reject the lack of visual contrast. Just making things uniformly bigger doesn't help at all. Even boldface fonts become monotonous very quickly, because if everything is bold then nothing stands out "boldly."

Use the major HTML headings sparingly. One alternative to overly bold HTML headers is to use the physical style controls of HTML to make text bold or italic without increasing the font size. However, you should understand that there are some disadvantages to using physical styles to control the typography of your Web pages. The HTML heading tags (H1, H2, etc.) are designed to identify important titles and subtitles in your text, and are only incidentally meant to change the visual display of the titles. If you use the "FONT SIZE" tags in Netscape and use physical styles like "BOLD" then automatic indexing and text analysis programs will have a difficult time analyzing your web documents.

Visual logic versus structural logic

The framers of the original HTML standards were physical scientists who wanted a standard means to share documents with minimal markups aimed at revealing the logical structure of the information. Since they had little interest in the exact visual form of the document, no precise typography and page formatting is possible in current implementations of HTML. In focusing solely on the structural logic of the HTML document, the framers of the Web ignored the need for the visual logic of sophisticated graphic design and typography.

The standards organization responsible for codifying the HTML language is responding the widespread complaints of graphic designers that the heading tags in Web documents often produce clunky, over-large titles and subtitles. Through style sheets and new font control tags future versions of HTML will soon allow you to specify what size font each header level will produce in each Web page. Thus you will be able to produce more sophisticated typography without giving up the substantial advantages of using the conventional HTML header tags.

Type and legibility

We read primarily by recognizing the overall shape of words, not by parsing each letter and then assembling a recognizable word:

Avoid all-uppercase headlines — they are much harder to read, because words formed with capital letters are monotonous rectangles that offer few distinctive shapes to catch the reader's eye:

Legibility depends on the tops of words

Your choice of uppercase or lowercase letters can have a dramatic effect on legibility. In general, use downstyle (capitalize only the first word, and any proper nouns) for your headlines and subheads. Downstyle headlines are more legible, because we primarily scan the tops of words as we read:

Legibility depends on the tops of w

Notice how much harder it is to read the bottom half of the same sentence:

Legionity depends on the tops of w

If you use initial capital letters in your headlines you disrupt the reader's scanning of the word forms:

Initial Caps Cause Pointless Bumps

References

Bringhurst, R. 1992. *The elements of typographic style*. Washington: Hartley and Marks.

Siegel, D. 1996. Creating killer web sites. Indianapolis: Hayden Books.

www.killersites.com

Spiekermann, E., and E. M. Ginger. 1993. *Stop stealing sheep & find out how type works*. Mountain View, CA: Adobe Press.

typoGRAPHIC A concise, elegant essay on typography and letterforms from razorfish/bluedot.

© Lynch and Horton, 1997. All rights reserved.

Contents

Page Design

Introduction Graphic design 100

Balanced pages

Design grids for pages

Graphic safe areas

Page headers

Typography I

Typography II

Typefaces

Consistency

Basic Tables

Page length

Cross platform issues

Editorial style

Frames

Advanced tables

Pattern and page design

When your content is mostly text, typography is the tool you use to "paint" patterns of organization on the page. The first thing your reader sees is not the title or other details of the page, but the overall pattern and contrast of the page. The reader's eye scans the page first as a purely graphic pattern, then begins to track and decode type and page elements. The regular, repeating patterns established through carefully organized pages of text and graphics help the reader to quickly establish the location and organization of your information, and increase the overall legibility of your pages. Patchy, heterogeneous typography and text headers makes it difficult for the user to see major patterns quickly, and makes it almost impossible to for the user to quickly predict where information is likely to be in located in unfamiliar documents:

Too patchy, inconsistent

Settle on as few heading styles and subtitles as are necessary to organize your content, then use your chosen styles consistently. The fact that HTML provides six levels of headings doesn't mean that you should ever use six levels of headings in a single page. This whole manual of over 60 Web pages uses only two headers; an H2-level page title, and boldface subtitles.

Manipulating text blocks

Text on the computer screen is hard to read because of the low resolution of today's computer screens, but also because the layout of most Web pages violates one of the most basic rules in book and magazine typography: the lines of text in most Web pages are much too long to be easily read. Magazine and book columns are narrow for physiologic reasons: at normal reading distances the eye's span of movement is only about 8 cm (3 inches) wide, so designers try to keep dense passages of text in columns no wider than reader's comfortable eye span. Wider lines of text require the readers to move their heads slightly, or strain their eye muscles to track over the long lines of text. Unfortunately most Web pages are almost twice as wide as the viewer's eye span, so extra effort is required to scan through those long lines of text. If you want to encourage your Web site users to actually read a document online (as opposed to printing it out for later reading), consider using the "BLOCKQUOTE" or "PRE" HTML tags to shorten the line length of text blocks to about half the normal width of the Web page.

The pages in this manual are laid out using an invisible 2-column table (BORDER="0") to restrict the text line length to about 40 to 60 characters per line. The exact character count is difficult to predict because of the way

different browser software and different operating systems display type sizes. In conventional print layout columns of 30 to 40 characters per line are considered ideal, but this seems too sparse to our eyes for Web page layout.

References

White, J. V. 1988. *Graphic design for the electronic age*. New York: Watson-Guptil.

Wilson, A. 1974. *The design of books*. Salt Lake City: Peregrine Smith, Inc.

© Lynch and Horton, 1997. All rights reserved.

Rev. 1/97

Contents

Page Design

Introduction Graphic design 100

Balanced pages

Design grids for pages

Graphic safe areas

Page headers

Typography I

Typography II

Typefaces

Consistency

Basic Tables

Page length

Cross platform issues

Editorial style

Frames

Advanced tables

Until Netscape 3.0, site designers had to accept that their carefully formatted documents would be viewed in any and every typeface, from Times to Tekton. The font was determined by the user's designated browser preferences, and these preferences could not be controlled. However, the most recent version of Netscape has a new tag called . You can use this tag to set the font to a common typeface such as Palatino, and this tag will override the user preferences. This is useful not only because of aesthetic partiality, but because of the differing dimensions of typefaces. A table that is carefully designed on one face might not format correctly in another.

Table set in Palatino or Times New Roman

Lorem ipsum	Lorem ipsum dolor sit amet
Consectetuer	Consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.
Iriure dolor in	Iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat

Table set in New York or Century Schoolbook

Lorem ipsum	Lorem ipsum dolor sit amet
Consectetuer	Consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.
Iriure dolor in	Iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat

Cross-platform font sizes

The Macintosh and Windows operating systems display type differently, even when the same typefaces are involved. In general, type displayed on Windows Web browsers will look 2 to 3 points larger than the equivalent face on the Macintosh. This difference in font rendering can have a major impact on your page layouts. The table below shows the major Microsoft TrueType typefaces in their 12 point sizes, as displayed in both Windows and the Macintosh:

Relative sizes of TrueType font display

Windows95, 12 pt type	Macintosh, 12 pt type
Arial	Arial
Arial Black	Arial Black
Arial Narrow	Arial Narrow
Arial Rounded MT Bold	Arial Rounded MT Bold
Book Antiqua	Book Antiqua
Bookman Old Style	Bookman Old Style
Century Gothic	Century Gothic
Century Schoolbook	Century Schoolbook
Courier New	Courier New
Garamond	Garamond
MS LineDraw	MS LineDraw
Times New Roman	Times New Roman
Verdana	Verdana

Macintosh users can obtain the Mac TrueType versions of the major Windows TypeType fonts listed above by downloading and installing Microsoft's Internet Explorer 3.0.

Specifying particular typefaces

The recent addition of the "FACE" attribute of the "FONT" HTML tag allows you to specify what typeface the browser should use to render type on your Web pages. You can specify the name of any type font in the "FACE" attribute, but in practice you should stick to the most widely used typefaces for the Macintosh and Windows operating systems. If the typeface you specify is not available, the browser will switch to the default font (most often the default font will be "Times New Roman" or "Times").

Specifying typefaces

To increase the chances that you will get a typeface you are happy with, you can specify multiple fonts in the "FACE" attribute. The browser will check for the presence of each font (in the order given), so you can specify three or four alternate possibilities before the browser defaults to the standard Times Roman font.

Typefaces

The table below shows the fonts that come with Windows95 and the Macintosh operating system. If you are going to use the FACE attribute to specify type you should probably stick to the typefaces listed here, and always specify at least one typeface from each operating system (example: "Verdana, Geneva) to avoid having the browser render your pages in the default font:

Default fonts for Windows95 and the Macintosh OS

Windows95, 12 point type Arial Arial Black Arial Narrow Arial Rounded MT Bold Book Antigua Bookman Old Style Century Gothic Century Schoolbook Courier Courier New Garamond. MS Dialog MS Dialog Light MS LineDraw MS Serif MS Sans Serif MS SystemX Times New Roman Verdana

Macintosh, 12 point type

Chicago Courier Geneva Helvetica Monaco New York Palatino Times

Additional fonts for users with laserprinters

New Century Schoolbook Avant Garde Bookman

Note that although "Bookman" and "Bookman Old Style" are basically the same typeface, the exact name you specify in the FACE attribute matters. If you want both Macintosh and Windows95 users to see the typeface Bookman, then use both names in your FACE attribute tags:

Names matter

Watch out for tables

If you are using both tables and font tags in your document you should be warned that the combination can be a bit unpredictable. The <TABLE> tag is apparently not allowed inside of a tag, which means you will have to include the font settings in each of your <TD> tags. When you are developing your site, set your default proportional font to something obviously different from your intended font. That way you will see clearly whether or not your font settings are being applied to your document.

References

Microsoft Corporation (for Internet Explorer browser)

© Lynch and Horton, 1997. All rights reserved.

Contents

Page Design

Introduction Graphic design 100

Balanced pages

Design grids for pages

Graphic safe areas

Page headers

Typography I

Typography II

Typefaces

Consistency

Basic Tables

Page length

Cross platform issues

Editorial style

Frames

Advanced tables

Just as in traditional print publishing, high-quality web sites adhere to an established set of type style settings consistently throughout the site. Consistency gives polish to a site and encourages visitors to stay by establishing an expectation on the structure of a text. If this expectation is dashed by sloppy, inconsistent formatting, visitors will not have a comfortable experience and may not return.

Style-setting

You should decide on settings such as fonts, inter-paragraph spacing, the size of subheads, and so on, and then create a style sheet to help you maintain these settings throughout your site development. This is especially critical for large sites with numerous pages — for example, this style manual. At the start of this project we decided on certain type and layout settings and worked very diligently to maintain them during development.

Maintaining consistency is not as easy with the current web authoring tools as it is using page layout software like QuarkXpress or Pagemaker, but the considerations behind that functionality are applicable. It is equally important to have good, consistent layout on the screen as it is on the printed page.

Helpers

We use Bare Bone Software's BBEdit for our web site authoring. The custom selection in the "HTML Tools" palette is extremely useful for creating style settings. You can define custom settings, and then apply them to your pages. For example, you can define an em dash (-) to be a black square 14 pixels long and one pixel high with three pixels of vertical space, like so:

In the custom settings dialog box paste this tag and name it "em dash." Then every time you need to include an em dash in your text simply select "em dash" from the custom menu and this tag will be inserted.

References

Bringhurst, R. 1992. *The elements of typographic style*. Washington: Hartley and Marks.

Siegel, D. 1996. *Creating killer web sites*. Indianapolis: Hayden Books. <u>www.killersites.com</u>

© Lynch and Horton, 1997. All rights reserved.

Contents

Page Design

Introduction Graphic design 100

Balanced pages

Design grids for pages

Graphic safe areas

Page headers

Typography I

Typography II

Typefaces

Consistency

Basic Tables

Page length

Cross platform issues

Editorial style

Frames

Advanced tables

The content of this style manual is all contained in invisible tables to allow us control over the layout of the pages. Without tables, text and graphics are essentially poured onto the user's screen, with the actual layout of pages depending entirely on the width and height of the browser window. All of the issues of legibility, readability, and style that we have discussed in this manual rely on the ability to position words, images, and screen elements on the "page" in a way that adheres to established typographic conventions. Because of the limitations of HTML, the only layout tool for site designers at this time is tables.

Using tables for page layout

Tables are currently the only HTML option for page layout. If you simply place a chunk of text on a page, the length of the lines is determined by the dimensions of the viewer's browser window. When the user resizes their window, the text reflows to fill the new space. Though some may consider this a "feature," it actually hinders the user's experience with the content. The conventions of print give us a comfortable place to access content. Without some adherence to these standards you may discomfit and ultimately lose your readers.

To avoid this use tables to define the areas of your pages. Use table cells to create margins, put your text in table cells to limit the line length (ideally 10 to 12 words on a line), and use cells to position elements on the page.

Cell attributes and table dimensions

The behaviour of a table depends largely on how its cells are defined. For the purposes of page layout you should define cell widths with absolute values. Additionally, the cell should contain a single-pixel GIF equal to the width of the cell to make sure that the table dimensions do not change when the browser window is resized.

Page with table examples

No borders, please!

When we talk about tables we are not speaking of the beveled beauties that HTML offers for the presentation of tabular content. We are using tables to get around the limitations of HTML, and we are using them in ways in which they were not intended. These are invisible tables whose sole purpose is to give us control over page elements, so be sure to set BORDER="0".

While we're on the subject, table borders are ugly and unnecessary even in the context of the tabular materials they were intended for. It is much cleaner to use spacing, alignment, and indents to delimit tabular information.

Lorem ipsum	Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.
Duis autem	Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

- Lorem ipsum Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.
 - Duis autem Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

Gutters

In print the space between columns is referred to as a gutter. You can use tables to create gutters, either through 1) adding a cell that serves as the gutter, or 2) by using the cellpadding (space between cell contents and cell) or 3) cellspacing (space surrounding cell) attributes.

1 Table with cell gutter

2	Table with cellpadding = 8

3	Table with cellspacing $= 8$
,	

© Lynch and Horton , 1997. All rights reserved.

References

Siegel, D. 1996. *Creating killer web sites*. Indianapolis: Hayden Books. <u>www.killersites.com</u>

Page 1 /07

Determining the proper length for any particular World Wide Web (Web) page requires balancing four major factors: Contents The relationship between the page and screen size. The particular content of your documents. Page Design Whether the reader is expected to browse the content online, or to download the documents for later reading. Introduction The bandwidth available to your target audience. (e.g., how fast is Graphic design 100 their connection to the Web?) **Balanced** pages Relationships between the document length and the screen Design grids for pages Many human interface researchers and designers of graphic user interfaces Graphic safe areas have noted the disorienting effect of scrolling on computers screens. This loss of local context within scrolling computer screens is particularly Page headers troublesome when basic navigational elements like linkages to other local Typography I pages in the Web site disappear off-screen as the user moves through very Typography II long pages. This argues for navigational Web pages (home pages and menus in particular) that contain no more than about one to two 640x480 Typefaces

screens worth of information, and which feature local navigational links at both the beginning and end of the page layout. Long Web pages require the user to remember too much information that is currently scrolled off the screen; users easily lose a sense of context when the navigational buttons or major links are not visible:

In long Web pages the user must depend on the vertical scroll bar slider (the little box within the scroll bar) to navigate. In most graphic interfaces (Macintosh, Windows 3.1) the scroll bar slider is also fixed in size, and provides little indication of the document length relative to what's currently

Consistency

Basic Tables

Page length

Cross platform issues

Editorial style

Frames

Advanced tables

visible on the screen, so the user gets no visual cue to page length. In very long Web pages small movements of the scroll bar can completely change the contents of the screen, leaving no familiar landmarks to orient by. This gives the user no choice but to crawl downward with the scroll bar arrows, or risk missing sections of the page.

However, long Web pages are often easier for managers to organize, and for users to download. Web site managers don't have to maintain as many links and pages with longer documents, and users don't need to download multiple files to collect information on a topic. Long pages are particularly useful for providing information that you don't expect users to read online (realistically, that should include any document longer than two printed pages). If the Web pages get too long, or contain too many inline graphics, the pages can end up taking too long to download. Very large Web pages with lots of graphics can also overwhelm the RAM memory limitations of the Web browser.

Mirror the structure of your content

It makes sense to keep closely related information within the confines of a single Web page, particularly when you expect the user to print or save the text. Keeping the content all in one place makes printing or saving easier. However, once you get beyond about four screens worth of information the user must scroll so much that the utility of the online version of the page begin to deteriorate. Long pages often fail to take full advantage of the linkages available in the Web medium.

If you want to provide both a good online interface for pages and easy printing or saving of the content:

- Divide the page up into chunks of two to three printed pages worth of information, including inlined graphics or figures. Use the power of hypertext links to take full advantage of the Web medium.
- Provide a link to a separate file that contains the full-length text combined into one page, designed so the reader can print or save all the related information in just one step. Don't forget to include the URL of the online version within the text of that page so users can find updates and correctly cite the page source.

Modular design of online collections of pages

One of the primary advantages of online documents is that they can be rapidly updated. In practice the editor or "webmaster" of a large Web site is constantly swapping in new updated files for old ones. In a well-designed modular system pages covering particular topics can be updated quickly without needing to change large sections of information or re-format complex pages. The page length may increase in a modular system, but the URL of each topic page remains the same, regardless of how long the page grows. Thus modular systems are better when you want to give your readers a sense of stability (the URLs of major pages remain constant) , even while your Web site expands. The concept is essentially similar to the loose-leaf procedural manuals most organizations use to keep paper documents reasonably up to date by replacing old sections for new, except that Web systems offer much more flexible and economical means of keeping information current.

In general, you should favor shorter Web pages for:

- Home pages, and menu or navigation pages elsewhere in your site.
- Documents to be browsed and read online.
- Pages with very large graphics.

In general, longer documents are:

Easier to maintain (they are all in one piece, with fewer links).

- More like the structure of their paper counterparts (not chopped up).
- Much easier for users to download and print.

References

Horton, W. K. 1994. *Designing and writing online documentation, 2nd edition.* New York: Wiley.

Mullet, K., and D. Sano. 1995. *Designing visual interfaces*. Englewood Cliffs, NJ: SunSoft Press-Prentice Hall.

Norman, D. A. 1993. *Things that make us smart*. Reading, MA: Addison-Wesley.

Shneiderman, B. 1992. *Designing the user interface: Effective strategies for effective human-computer interaction. 2nd ed.*, Reading, Mass.: Addison-Wesley.

© Lynch and Horton, 1997. All rights reserved.

Contents

Page Design

Introduction Graphic design 100

Balanced pages

Design grids for pages

Graphic safe areas

Page headers

Typography I

Typography II

Typefaces

Consistency

Basic Tables

Page length

Cross platform issues

Editorial style

Frames

Advanced tables

Monitor gamma settings

In computer imaging and display screens "gamma" refers to the degree of contrast between the mid-level gray values of an image. The technical explanations of gamma are irrelevant here — the visual effect of changing gamma values is easy to see. If you have a copy of Adobe Photoshop, open an image with an average range of colors and contrasts and use the "Levels" control to change the gamma settings (see the Photoshop manual for details). Images will change noticeably with even minor changes in gamma settings. Gamma considerations are particularly important if you are displaying images with very long gray scales (like medical diagnostic images or fine black and white photography) or images with critical color values (like art history images or clinical medical photographs).

The default gamma settings for Macintosh (1.8 target gamma) and Windows monitors (2.2 target gamma) are quite different, and this can lead to unpleasant surprises when you first see your images displayed on "the other" platform. Mac users will see their images get much darker and more contrasty on Windows displays; Windows users will see their images as flat and washed out on Mac displays. Most Web designers opt for a middle-ground solution, lightening images slightly if they work on the Macintosh; darkening slightly and adding a little more contrast if they work in Microsoft Windows.

If you use Adobe Photoshop you can use the "Gamma" Control Panel that ships with Photoshop to experiment with your monitor gamma settings. To simulate the windows display on a Macintosh, set the target gamma to 2.2 and the gamma adjustment slider to "-43", then save those settings.

	Gam	ma 📃 📃	
		Gamma Version 2.0 © 1990 Thomas Knoll All rights reserved.	
Target Ga	Target Gamma : 0 1.0 0 1.4 0 1.8 0 2.2		
	Gamma Adjust	ment: -43	
	'		
Color Balance : 0 0 0			
Co	lor Balance :	0 0 0	
Co	lor Balance :	0 0 0	
Co	lor Balance:		
		0 0 0	

In the Windows version of Photoshop the gamma control only applies to images **within Photoshop windows**, not to the global display environment as it does on the Macintosh. The default gamma setting for the Windows version of Photoshop is 1.8 (same as the Mac). To see how your graphics may look once they are out of Photoshop and into your Windows Web browser, use the gamma control in Windows Photoshop to boost the Photoshop display gamma to 2.2 (to match the normal Windows operating system gamma).

Default text sizes

In general, screen type sizes in Windows (3.1, Win95, WinNT) appear about two sizes larger than the equivalent Macintosh versions. Thus a line of 12 point Times type on a Macintosh looks more like 14 points in Times New Roman on a windows machine. If you don't have ready access to a machine with "the other" operating system, use the "FONT SIZE" HTML tag at the top of your page to globally change the type size for a quick preview:

- Mac users should try
- Windows users should try

Browser variations

Every Web browser interprets HTML tags a little differently. Tables, forms, graphic positioning and alignment tags will all work a bit differently in each brand or version of Web browser. Normally these subtleties might pass unnoticed, but in very precise or complex Web page layouts they can lead to some nasty surprises. At this writing the two main Web browsers are Netscape Navigator 3.0 and Microsoft Internet Explorer 3.0 (2.0 on Macs). Both now support HTML 3.0, the original 1995 "Netscape extensions" to HTML, plus Javascript, Java, and share a (mostly) compatible plug-in architecture. But never trust the implementation of any of these advanced features until you have seen your Web pages displayed and working reliably in each brand of browser.

Graphics offset variations

Beware of trying to get a graphic imbedded on your page to line up precisely with a page background image. Offset variations make it a losing cause. The offset is the built-in margin that Web browsers automatically create between the edge of the browser window and the graphics you place on your page:

If the browser offset was fixed and consistent across browser brands and various hardware platforms the problem would be manageable, but unfortunately every browser seems to give a slightly different dimensions to the vertical and horizontal offsets. Thus even if you have perfectly lined up your foreground and background images in your particular brand and version of Web browser, you cannot count on the images lining up on someone else's screen. Even within one company the offset is inconsistent; the different platform versions of Netscape all give slightly different offsets.

Fortunately Microsoft recognized the problem and has added support for two new HTML tags to Microsoft Explorer 3.0. The "LEFTMARGIN" and "TOPMARGIN" tags allow direct control over margin offsets, and Netscape has apparently committed to support these tags in the 4.0 version of Netscape Navigator. See Siegel (1996) or Weinman (1996) for detailed discussions of these topics.

References

Apple Computer, Inc. 1992. *Macintosh human interface guidelines*. Reading, MA: Addison-Wesley.

Microsoft Corporation. 1992. *The Windows interface: An application design guide*. Redmond, WA: Microsoft Press.

Siegel, D. 1996. *Creating killer web sites*. Indianapolis: Hayden Books. <u>www.killersites.com</u>

Weinman, L. 1996. *Designing Web graphics*. Indianapolis: New Riders. www.lynda.com

Rev. 1/97
Contents

Page Design

Introduction Graphic design 100

Balanced pages

Design grids for pages

Graphic safe areas

Page headers

Typography I

Typography II

Typefaces

Consistency

Basic Tables

Page length

Cross platform issues

Editorial style

<u>Frames</u>

Advanced tables

Web pages share similarities to individual pages in print publications, but because Web pages may be accessed directly with no preamble, Web pages must be more independent than print pages. Too many Web pages end up as isolated fragments of information, divorced from the larger context of their parent Web sites through lack of essential links, and the simpler failure to properly inform the reader of their contents.

The best overall publication guide we know of is an information design classic, the *Xerox Publications Standards* manual. The Xerox manual has formed the basis for countless company and institutional publications standards manuals. We think the best writing guide is not Strunk and White, but William Zinsser's *On Writing Well*. Zinsser's book is better on all counts, and contains much more practical advice for writing in different publication formats and for different audiences.

Titles and subtitles

Forget icons, banner graphics, bullets, horizontal rules, and colored backgrounds. Editorial landmarks like titles and headers are the fundamental human interface issue in Web pages, just as they are in any print publication. A consistent approach to the titling, headlines, and subheads in your documents will aid your readers in navigating through a complex set of Web pages.

The text styles used in this manual follow suggestions from the *Xerox Publishing Standards*:

Headline style

- Bold, capitalizing the initial letters, for:
- Document titles
- Other web sites
- Titles of documents referred to within the text
- Proper names, product names, trade names

Downstyle

- Bold, capitalize first word only, for:
- Subheads
- References to other heading within the style manual
- Figure titles
- Lists

HTML and page titles

Web page titles are designated in the HTML document head section with the "TITLE" tag. the title is crucial, because the page title is often the first thing visible to users using slow Internet connections, and because the title becomes the text for any bookmarks the reader makes to your pages. The page title should:

- Incorporate the name of your company, organization, or Web site.
- Form a concise, plainly worded reminder of the page contents.

Always think of what your page title will look like in a long list of bookmarks. Will your page title remind the reader what was interesting about your pages?

Style for online documents

Documents to be read online must be concise and structured for fast scanning. The "inverted pyramid" style used in journalism works well on Web pages as well. Get the important facts up near the top of the first paragraph where users can find them quickly. Assume readers will print anything longer than half a page rather than read the text online.

- Be concise
- Use lists where possible
- Make printing easy

Longer documents

Many types of documents (like this manual) are not well suited for the telegraphic style that works well for documents designed to be read online. Web authors often cut so much out of Web presentations that what is left would barely fill a print pamphlet. Concise writing is always better, but don't "dumb down" what you have to say — there's enough dumb stuff on the Web already. Just understand that readers will want to print longer documents. Make printing easy for your readers and you can use the Web to deliver content without cutting the heart out of what you have to say.

Text for the Web

Some general points about text formatting specific to the Web:

- Excessive markup: Beware of too much markup in your paragraphs. <u>Too many links</u>, or too many *styles* of typeface destroy the homogeneous, even "type color" that <u>characterizes good typsetting</u>.
- Link colors: If you are using custom link colors, choose colors that closely match your text color. Reading from the screen is hard enough already without having to deal with screaming orange or bilious green links.
- Use the best tool: Write your text in a good word processing program with spell-checking and search features. Transfer text to HTML only after it has been proofread.
- Style sheets: Don't use the word processor style sheets to produce "All capitals" or other formatting effects. You will lose those special formats when you convert to plain ASCII text for HTML use.
- Special characters: Don't use the "smart quotes" feature. Avoid all special characters like bullets, ligatures, and typographer's "en" and "em" dashes not supported in standard HTML text. Consult a good HTML guide book for the listing of special and international characters supported through the HTML extended character formatting.
- No auto hyphens: Never use the automatic hyphenation feature of your word processor on text destined for the Web. This may add non-standard "optional hyphen"characters to your text that will not display properly in Web browsers.

Links and language

If you are new to the Web it can sometimes be awkward to figure out where to place links within sentences. Never construct a sentence around a link phrase such as "<u>click here</u> for more information." Write the sentence as you normally would, and place the link anchor on the most relevant word in the sentence.

- Poor: <u>Click here</u> for more information on placing links within your text.
- Better: Web links are powerful, but may also cause problems if they are placed carelessly.

Parenthetic links

Links are a distraction. It is pointless to write a paragraph and then fill it full of invitations to your reader to go elsewhere. Put only the most salient and interesting links within the main body of your text. Group all minor, illustrative, parenthetic, or footnote links at the bottom of the document where they are available but not distracting.

Web references

Several companies have made excellent style manuals or publications guidelines available on the Web, including:

Sun Microsystems, <u>Guide to Web Style</u>, by Rick Levine. The best of a good group; excellent, self-exemplifying advice for Web design.

Ameritech, Ameritech Web Page User Interface and Design Guidelines

Apple Computer, Apple Web Design Guide

Apple Computer, Apple Publications Style Guide

<u>Guide to good practices for WWW authors.</u> Margaret Issacs, University of Glasgow

Print references

Jordan, L. 1976. The New York Times manual of style and usage. New York: Times Books.

Strunk, W., and E. B. White. 1979. The elements of style, 3rd ed. New York: Macmillan.

University of Chicago Press. 1982. The Chicago manual of style. 13th ed. Chicago: University of Chicago Press.

Xerox Corporation. 1988. Xerox publishing standards: A manual of style and design. New York: Xerox Press-Watson Guptill.

Zinsser, W. K. 1990. On writing well., 4th ed. New York: Harper Collins.

© Lynch and Horton, 1997. All rights reserved.

Rev. 1/97

Contents

Page Design

Introduction Graphic design 100 **Balanced** pages Design grids for pages Graphic safe areas Page headers Typography I Typography II Typefaces Consistency **Basic Tables** Page length Cross platform issues Editorial style Frames Advanced tables

Frames allow you to display multiple HTML documents on a single page. There are quite a number of practical uses for this functionality. However, frames-based pages behave differently than regular pages because frame-based documents are not HTML documents, but rather *meta* documents which call and display HTML documents. A frame page contains no body HTML tags, only the parameters for the frames and the URLs of the HTML documents designated to fill them. Because of this frames can sometimes yield unexpected results, particularly when using the Back button. If you have been navigating within a frame and then press Back, you will go back within the frame instead of going back to the previous page. But despite their unpredictability and aesthetic limitations, frames provide a functionality that is appropriate for certain content, and that can greatly facilitate site maintenance.

Frames for flexibility

One type of site suited to frames is one whose contents are expected to change frequently. Because you can design a frame-based site to have one file for navigation, if you expect to add or remove pages you will only have to modify that one file. This site, for example, requires a number of files to be changed if a page is added or deleted because each page has a navigation column. If we had used frames we would have had a single file for the section menu, and when we needed to add a page only that file would have had to be changed to reflect the addition. As it is, when we add a page to a section we must edit each file in the section to add the new link to the navigation column.

Frames for functionality

Frames can provide a certain functional coherence to a targeted area of your site. Say your site contains, among other things, a collection of Frost poems. You could create a virtual "reading room" for his poetry using frames, with the left-most frame providing the navigation links and the main frame displaying the poems. Visitors would most likely go to this area and stay for a time, and do their navigation using the links you provide, so the quirky navigation of the Back button would not be too intrusive.

You can also use frames to provide additional interactivity to your page. Frames allow you to put a page up on the user's screen and change its contents without actually rewriting the entire screen. The frames can interact; clicking a link in one frame can change the contents of the other. For example, a text with annotations in one frame can be linked to a footer frame, and clicking on the text reference fills the footer frame with the corresponding note.

"Reading room" example

Frames for interactivity

Frames can also allow users to choose their content. This is particularly significant when working with large files. Say, for example, you have a movie file that you would like to put on your page with other elements such as text, but rather than force the user to download the file you want the download to be optional. If you simply include the HTML tag for the movie on the page with your other page elements, the movie will download automatically with the page. However, if your page is a frameset, you can designate an area of the page as the movie space and give the user a link to click if they wish to download the movie into that space.

"Viewing room" example

Aesthetics

Many page designers have not used frames because of their prescribed borders and limited flexibility. However, the current versions of browser software allow many more frame parameters to be defined. In fact, frame borders can now be set to zero. This allows you to design using the functionality of frames without requiring them to be visual and perhaps inharmonious elements on your page.

References

Siegel, D. 1996. *Creating killer web sites*. Indianapolis: Hayden Books. <u>www.killersites.com</u>

Milton Reading Room

The Viewing Room

Contents

Page Design

Introduction

Graphic design 100

Balanced pages

Design grids for pages

Graphic safe areas

Page headers

Typography I

Typography II

Typefaces

Consistency

Basic Tables

Page length

Cross platform issues

Editorial style

Frames

Advanced tables

You can use tables in creative ways to help achieve effects that you may want to incorporate into your web-publishing efforts. There are a number of design challenges for which tables provide the solution.

One thing you can do with tables is take a composite image and split it into pieces, then re-combine it in the cells of table. This is useful for creating wrap-around effects or image captions. The following example is shown with borders off and borders on to illustrate how the table is formatted.

It is possible to approximate wrapping text around a graphic by splitting the image into two parts and combining the images and text in a table.

Watch out for hard returns in your HTML code when using tables to mortice images. A hard return before a </TD> tag will add space between the table cells. You will also need to set cellpadding, cellspacing, and border to 0 in order for the image to mortice correctly. And finally, be sure to use the single-pixel GIF to keep the cells in your tables from collapsing.

Alignment

You can use tables to combine different text alignment specifications. In this example the text in the left column is right justified, and the text in the right is left justified.

- Lorem ipsum Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.
 - Duis autem Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim qui blandit praesent luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

References

Siegel, D. 1996. *Creating killer web sites*. Indianapolis: Hayden Books. <u>www.killersites.com</u>

© Lynch and Horton, 1997. All rights reserved.

1/07

cm	2		4		6		8		10		12		14		16		18	1		
2	535	pixe	ls in v	vidth	to fit	onar	8.5 x	11 ir	nch pr	inted	page									
														Griap 13-1 mon	ohic sa 15 inc itors.	afe are h disp	a for Tay			
4														350 pixels high						
-						7.45	/ h	1				11								
5	600	pixel	3 1 N W	/idth t	0 fit 1	5-15	INCh (displa	y mon	itors	tor tu	11-301	reen pa	ages.						
-																				
10																		$ _{-}$		
12																		¥		
14																				
16																				
18																				
20																				
															Safe page	area t for pr	for 8.5 rinting	5 × 11 J.		
22																	pixels			
22																				
								00-	puriah	+ 199	6 P L	inch S	(ale Un	iversi	tu Δ1	Iriabi	s ross	urwed		
								000	pgrigh	(199	0. P. L	gnon, i	are on	rver S1	cg. MI	right	I Test	i veu.		

(Scan column content)	(Text column content)	
		4

◀

Rev. 1/97

📫 File Edit View	Go Bookmarks Options Directory Window	2 🔜					
	Netscape: Yale Style Manual-Table of Contents						
		N					
Location: http://info.med.yale	e.edu/caim/manual]					
What's New? What's Cool?	Destinations Net Search People Software						
Yale C/AIM Web Style	Guide 🔶 📕	•					
•	Layout for print, maximum width = 535 pixels						
	Layout for screen, maximum width = 595 pixels	N					
Browser offset distance = 8 pixels	Graphic safe areas, 640 x 480 screens Dimensions account for both Netscape Navigator and Internet Explorer, on both MacOS and Windows95 platforms. Note that if you choose to maximize the width of your graphic layout, you may lose about 2cm off the right edge of your page when it is printed.	els					
©Lynch, Horton 1997. http://info.med.yale.edu/caim/manual							
) // ••		🛛 🖂 ? 🔮					

🥤 ᡩ File Edit Vieu	v Go Favorites Window	2 🔕
	Yale Style Manual-Table of Contents	
🛿 Back Forward Stop Re	😰 📅 🎑 🜮 😵 📧 🖍 🛣 📰 fresh Home Search Mail News Favorites Larger Smaller Preferences .med.yale.edu/caim/manual	
🖉 🔇 Best of the Web 🔇 🖉 I	foday's Links 🔌 Web Gallery 🦓 Product News 🍓 Microsoft	
Yale C/AIM Web Style	Guide 🚽 上	
4	Layout for print, maximum width = 535 pixels	
	535	
	Layout for screen, maximum width = 595 pixels	
Browser offset distance = 8 pixels	Graphic safe areas, 640 x 480 screens Dimensions account for both Netscape Navigator and Internet Explorer, on both MacOS and Windows95 platforms. Note that if you choose to maximize the width of your graphic layout, you may lose about 2cm off the right edge of your page when it is printed.	595 [*]
©Lynch,Horton 1997. htt	p://info.med.yale.edu/caim/manual	<u>4</u>
9		2

🔜 Netscape - [Center for Advanced Instructional Media]	_ 8 ×
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookmarks <u>O</u> ptions <u>D</u> irectory <u>W</u> indow <u>H</u> elp	
Back Forward Home Reload Images Open Print Find Stop	
Location: http://info.med.yale.edu/caim/	
What's New? What's Cool? Destinations Net Search People Software	
Yale C/AIM Web Style Guide 📃 📃 📕	
, Layout for print, maximum width = 535 pixels	
535	
Layout for screen, maximum width = 595 pixels	
	595
Graphic safe areas, 640 x 480 screens Dimensions account for both Netscape Navigator	
Browser offset distance = 8 pixels	
to maximize the width of your graphic layout,	els
you may lose about 2cm off the right edge of your page when it is printed.	
©Lynch, Horton 1997. http://info.med.yale.edu/caim/manual	-
Document: Done	
Start Netscape - [Center fo) 4:04 PM

Center for Advanced I	nstructional Media -	Microsoft Internel	t Explore	:r			_ 8 ×
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>G</u> o F <u>a</u> vo	orites <u>H</u> elp						
Back Forward Sto		Q	: Print	 Font	™ Mail	⊡ Edit	E
Address http://info.med.y	ale.edu/caim/manual						✓ ∐ Links
Yale C/AIM Web Style	Guide				4	•	
4	Layout for print, max	timum width = 535 p	ixels			_	
	Layout for screen, ma	ximum width = 595	pixels		5	35	
← Browser offset distance = 8 pixels	Graphic safe area Dimensions account f and Internet Explored Windows95 platform to maximize the widt you may lose about 20 your page when it is	or both Netscape Nav r, on both MacOS and s. Note that if you ch h of your graphic lay cm off the right edge	igator pose out,	Maximum :	safe height	: = 295 pixel	595 -
©Lynch, Horton 1997. htt	p://info.med.yale.edu/ca	im/manual	295				•
🙀 Start 🚺 Center for /	Advanced					 4:2 	12:05 PM

Resize your browser window and watch how it affects the behaviour of each table. Notice the only table that does not expand or collapse to accommodate the window dimensions is the one that uses absolute cell widths and an invisible GIF in each cell.

Table with no cell widths

No width specified No width specified

Table with relative cell widths

Width = 30% Width = 70%

Table with absolute cell widths

Width = 100 Width = 250

Table with absolute cell widths and single-pixel GIF

Width $= 100$	Width = 250
Width = 100	Width = 250

Web Graphics

Introduction Color display primer Graphic file formats Interlaced GIF Transparent GIF JPEG graphics Summary-File formats Illustrations Optimizing graphics I Optimizing graphics II Height & width tags Colored backgrounds Imagemaps This section contains techniques to optimize the look and efficiency of your Web page graphics. Although electronic publishing frees you from the cost and limitations of color reproduction on paper, you will still need to make some careful calculations (and a few compromises) if you want to optimize your graphics and photographs for various display monitors and current Internet access speeds.

Graphics and modems

Most of the present Web audience consists of people accessing Internet service providers via 28.8 kilobit per second (kbps) modems from their homes, offices, or remote work sites. At 28.8 kbps you only get about 3.6 kilobytes (KB) per second (remember it takes 8 bits to make each byte). This means a modest 36 KB graphic on your Web page could take 10 seconds or longer to load into the reader's Web viewer. Actual data transmission rates will vary, depending on the type of modem, the speed of your Web server, the type of Internet net connection used, and other factors, but the overall point is clear: the more graphics you use, the longer your reader will have to wait to see your page.

A full-screen graphic menu on your home page, plus background graphics could leave your modem-based readers twiddling their thumbs for a full minute or more, even if they have a state-of-the-art modem and good Internet connections. Look at your watch (or better yet, hold your breath) for a full minute, then figure out if that is the first thing you are willing to ask your users to do when they visit your Web site. A better interface strategy would be to gradually increase the graphics loading of your pages, drawing users into your site with reasonable download times. As users become more engaged with your content, they will be more willing to endure longer delays, especially if you give them notes on the size of graphics, or warnings that particular pages are full of graphics and will take longer to download.

Graphics and intranets

Luckily for graphic designers, many Web sites are created primarily for educational, organizational, or commercial users who access their local intranets and the larger World Wide Web at Ethernet speeds or greater. Graphics and page performance are also an issue for these users, but it makes little sense to arbitrarily restrict Web page graphics in the cause of "saving bandwidth." The bandwidth nazis and gearheads always miss this point: graphics are what drew most people to the Web in the first place. If you got the access speed, indulge!

Contents

Web Graphics

Introduction

Color display primer

Graphic file formats

Interlaced GIF

Transparent GIF

JPEG graphics

Summary-File formats

Illustrations

Optimizing graphics I

Optimizing graphics II

Height & width tags

Colored backgrounds

Imagemaps

The following is a brief overview of color computer displays that explains some of the basic terminology used in the Macintosh and Windows operating systems.

Current color monitors for desktop microcomputers are based on cathode ray tubes (CRT's). Because CRT's transmit light, CRT displays use the red-green-blue (RGB) additive color model. The RGB model is called "additive" because a combination of the three pure colors "adds up" to white light.

RGB color model for display monitors

The computer's operating system (Mac, Windows, etc.) organizes the display screen into a grid or x,y coordinates, like a checkerboard. Each little box on the screen is called a "pixel" (short for "picture element"). Current Macintosh and Windows displays are made up of these grids of pixels (see screen diagram below).

Pixels and color

To control the color of each pixel on the screen the operating system must dedicate a small amount of memory to each pixel. In aggregate this memory dedicated to the display screen is often referred to as "video RAM" or "VRAM". In the simplest form of black and white computer displays a single bit of memory is assigned to each pixel. Since each memory bit can only be positive or negative (0 or 1), a one-bit display system can only manage two colors (black or white) for each pixel on the screen:

If we dedicate more bits of memory to each pixel in the display, we can manage more colors. When eight bits of memory are dedicated to each pixel, each pixel could be one of 256 colors. (256 = 2 to the eighth power; in other words, 256 is the maximum number of unique combinations of 0's and 1's you can make with eight bits). This kind of computer display is called an "eight-bit" or "256-color" display, and is very common in current microcomputing, especially on lap-top computers and older desktop machines.

If still more memory is dedicated to each pixel, we can get nearly photographic color on the computer screen. "True-color" or "24-bit" color displays can show millions of unique colors simultaneously on the computer screen. True-color (24-bit) images are composed by dedicating 24 bits of memory to each pixel; eight each for the red, green, and blue components (8+8+8=24).

The amount of VRAM dedicated to each screen pixel in the display is commonly referred to as the "bit depth" of the monitor. Most Mac and Windows microcomputers sold in the last few years are capable of displaying bit depths greater than eight-bit, in thousands (16-bit) or millions (24 bit) of simultaneous colors.

To check your computer system for the range of bit depths available to you, use the "Display" control panel (Windows95) or the "Monitors" control panel (for Macintosh):

Bit depth and color graphics files

The terminology and memory schemes used in color displays are directly analogous those used to describe color depth in graphics files. In their uncompressed states, eight-bit or 256-color image files dedicate eight bits to each color pixel in the image. In eight-bit images the 256 colors that make up the image are referenced to a "palette" or "index" (also called a color lookup table, or CLUT). The main point for eight-bit images is that they can never contain more than 256 colors.

True-color or 24-bit images are typically much larger than eight-bit images in their uncompressed state, because each pixel in a 24-bit image has 24 bits of memory dedicated to it, typically in three monochrome layers: red, green and blue:

References

Rizzo, J., and K. D. Clark. 1996. *How Macs work*. Emeryville, CA: Ziff Davis Press.

Siegel, D. 1996. *Creating killer web sites*. Indianapolis: Hayden Books. www.killersites.com

Weinman, L. 1996. *Designing Web graphics*. Indianapolis: New Riders. www.lynda.com

Contents

Web Graphics

Introduction

Color display primer

Graphic file formats

Interlaced GIF

Transparent GIF

JPEG graphics

Summary-File formats

<u>Illustrations</u>

Optimizing graphics I

Optimizing graphics II

Height & width tags

Colored backgrounds

Imagemaps

GIF files

The Graphic Interchange Format (GIF) was popularized by the Compuserve Information Service in the 1980s as an efficient means to transmit images across data networks. In the early 1990s the original designers of the World Wide Web adopted the GIF format for its efficiency and widespread familiarity. Today the overwhelming majority of images on the Web are in GIF format. Virtually all Web browsers that support graphics support the GIF file format for inlined images. The GIF format incorporates a compression scheme to keep files sizes at a minimum, and GIF files are limited to 8-bit (256 or fewer colors) color palettes. There are now several slight variants of the basic GIF file format that add support for transparent color, and support for the interlaced GIF graphics popularized by the Netscape Navigator Web browser.

You may see references to the different GIF formats, such as "GIF87a," or "GIF89a." All forms of GIF images will work in Web browsers that support the basic GIF file format, so that you do not have to worry whether your readers will be able to see your GIF graphics, regardless of the GIF version that you use. Users whose browsers support the transparency and interlacing (such as Netscape Navigator and Microsoft Explorer) will see more sophisticated visual effects, but everyone will see your basic GIF images.

GIF File Compression

The GIF file format uses a relatively basic form of file compression (Lempel Zev Welch, or LZW) that squeezes out inefficiencies in the data storage without causing a loss of any data ("lossless compression") or distortion of the image. The LZW compression scheme is most efficient at compressing images with large fields of homogeneous color. It is not very good at squeezing complex pictures with lots of grainy texture. All variations of the GIF graphics file format incorporate LZW file compression. See Siegel (1996) for an excellent discussion on optimizing graphics for GIF compression.

References

Siegel, D. 1996. *Creating killer web sites*. Indianapolis: Hayden Books. www.killersites.com

Weinman, L. 1996. *Designing Web graphics*. Indianapolis: New Riders. <u>www.lynda.com</u>

Contents

Web Graphics

Introduction Color display primer Graphic file formats Interlaced GIF Transparent GIF JPEG graphics Summary-File formats Illustrations Optimizing graphics I Optimizing graphics II Height & width tags Colored backgrounds Imagemaps The conventional (non-interlaced) GIF graphic downloads one line of pixels at a time, and Web viewers like Netscape display each line of the image as it gradually builds on the screen. In interlaced GIF files the image data is stored in a format that allows Netscape (and other viewers that support interlaced GIFs) to begin to build a low-resolution version of the full-sized GIF picture on the screen while the file is still downloading. The "fuzzy-to-sharp" animated effect of interlacing is visually appealing, but the most important benefit of interlacing is that it gives the reader a quick preview of the full area of the picture. This preview effect can be misleading — interlaced graphics are **not** faster-loading than non-interlaced graphics, they just look as if they download faster because the rough preview comes up faster.

Note that the examples below only work well the **first time** you try them. After that your browser will probably cache the images locally, and subsequent loading will occur (very quickly) from your hard disk, not from the Web. Use your browser's "reload" button to repeat the loading of the graphics if they load too quickly to see the difference. Both example photographs are GIFs, identical except for interlacing.

Example of an interlaced GIF graphic.

Example of a noninterlaced GIF graphic.

References

Siegel, D. 1996. Creating killer web sites. Indianapolis: Hayden Books.

www.killersites.com

Weinman, L. 1996. *Designing Web graphics*. Indianapolis: New Riders. www.lynda.com

Contents

Web Graphics

Introduction

Color display primer

Graphic file formats

Interlaced GIF

Transparent GIF

JPEG graphics

Summary-File formats

<u>Illustrations</u>

Optimizing graphics I

Optimizing graphics II

Height & width tags

Colored backgrounds

Imagemaps

The GIF89a file format allows you to pick one color from the color lookup table of the GIF to be transparent. Using current image editing software like Adobe Photoshop (and many shareware utility programs) you can select one color to become invisible. Normally the color you select is a background color. In the example below, we chose the pink background color to become transparent:

We use transparent GIFs for the header and footer graphics at the top of each page in this manual. The transparent background allows the lettering of the "Yale C/AIM Web Style Guide" to cross over the gray background of the scan column to the white of the page background. The graphic below shows the transparent header graphic on top, and then shows what the same graphic would look like if it was not a transparent GIF:

Page header graphic (a transparent GIF)

Yale C/AIM Web Style Guide

What the GIF would look like without transparency:

Yale C/AIM Web Style Guide

Unfortunately, the transparent property is not selective; if you make a color transparent, then **every pixel** in the graphic that shares that same color will become invisible. This can sometimes have unexpected consequences when a color is used both in the background and in other places in the graphic:

(Gray background of Web page)

Plain GIF graphic

Adding transparency to a GIF graphic can also lead to disappointing results when the graphic contains antialiased edges with pixels of multiple colors. (Antialiasing visually "smooths" the shapes in graphics by inserting pixels of intermediate colors along boundary edges.) In the example below, when we change the background color from white to transparent (letting the gray Web page background show through), we get an ugly white halo around the graphic:

You can avoid some of the problems with antialiased graphics by creating the graphics on a background similar to the color you choose for your Web pages. In our case, we chose white as a background color for the pages in this style guide. The bird painting below is a rectangle (GIF graphics are always rectangles), but you can't see the edges because we painted the background in the GIF white, then set the white color of the GIF to be transparent. This assures us that bird will appear against a perfect white background every time, and the edges of the graphic will never show:

Watercolor paintings by Pat Lynch. Copyright 1997, all rights reserved.

Transparency works with simple diagrammatic graphics, and with complex shapes. The GIF graphic of the watercolor painting below can run across the scan column and into the white background because we made the white background transparent. We avoided potential problems with a light halo around the leaves in the gray scan column area by retouching the painting to remove the white antialiased "halo" from the leaf edges:

© Lynch and Horton, 1997. All rights reserved.

Rev. 1/97

Web Graphics

Introduction Color display primer Graphic file formats Interlaced GIF Transparent GIF JPEG graphics Summary-File formats Illustrations Optimizing graphics I Optimizing graphics II Height & width tags Colored backgrounds Imagemaps Another graphics file format commonly used on the Web is the Joint Photographic Experts Group (JPEG) compression scheme to minimize graphics file sizes. JPEG images are full-color images (24 bit, or "true color"), unlike GIFs that are limited to a maximum of 256 colors in an image. Thus there is a lot of interest in JPEG images among photographers, artists, graphic designers, medical imaging specialists, art historians, and other groups for whom image quality is paramount, and where color fidelity cannot be compromised.

JPEG uses a very sophisticated mathematical technique called a discrete cosine transformation to produce a sliding scale of graphics compression. Thus you can choose the degree of compression you wish to apply to an image in JPEG format, but in doing so you also are also choosing the image quality. The more you squeeze a picture with JPEG compression, the more you degrade its image quality. JPEG can achieve incredible compression ratios, squeezing graphics down to as much as 100 times smaller than the original file. This is possible because the JPEG algorithm discards "unnecessary" data as it compresses the image, and is thus called a "lossy" image technique. The results are easier to see than to explain. Notice the increasing degradation of the image as we increase the JPEG compression:

The figure above shows an original photograph (a), and three detail views at different levels of JPEG compression: "excellent" quality (b), "good" quality (c), and "poor" quality (d). Notice the boxy quality of the image in (d). The checkered pattern and the dark "noise" pixels in the green background are classic JPEG compression artifacts.

Below is another look at JPEG compression. The top image is an interlaced GIF. The middle is the same image as a JPEG file, compressed in Photoshop at "medium" quality. The bottom dolphin is also a JPEG image, compressed at "poor quality." Note the extensive compression noise and distortion present in the bottom dolphin — the savings in download time are not worth the cost of ruining your images.

Save your original uncompressed images!

Once you compress an image with JPEG, you have lost data and can never recover it again, so always save an uncompressed original file of your graphics.

A new form of JPEG file called "progressive JPEG" gives JPEG graphics the same gradually-built display seen in interlaced GIFs, but most image editors still do not yet support progressive JPEG files. (Debabilizer 1.6 for the Macintosh is one of the few). Like interlaced GIFs, progressive JPEG images usually take longer to load into onto the page than standard JPEGs, but do offer a quicker "preview" to the reader.

JPEG Image Artifacts

The JPEG algorithm was optimized for compressing conventional pictorial

photographs, and is also very good at handling complex realistic illustrations (which look like photographs). Photos and art with smooth color and tonal transitions, and few areas of harsh contrast or sharp edges are ideal for JPEG compression. However, most page design elements, diagrams, the typography within images, and many illustrations are composed of hard-edged graphics and bright colors that are seldom encountered in photographs (part a; b is a magnification of the diagram). JPEG compression can be quite poor at handling many computer-generated graphics, buttons, type in images, or any other hard-edged "artificial" colored object seen in artwork or diagrams. When compressed with JPEG, diagrammatic images show a "noise" pattern of compression garbage around the transition areas (c, below) — the JPEG algorithm "wants" to see smooth tonal transitions and cannot properly reproduce the harsh transitions at the edges of diagrammatic graphics:

References

Siegel, D. 1996. *Creating killer web sites*. Indianapolis: Hayden Books. www.killersites.com

Weinman, L. 1996. *Designing Web graphics*. Indianapolis: New Riders. www.lynda.com

Contents

Web Graphics

Introduction

Interlaced GIF Transparent GIF JPEG graphics

Illustrations

Imagemaps

Color display primer Graphic file formats

Summary-File formats

Optimizing graphics I

Optimizing graphics II

Height & width tags

Colored backgrounds

Uses for GIF and JPEG files

Now that Netscape and other browsers are supporting both GIF and JPEG graphics in inlined Web page images you could use either graphic format for the visual elements of your Web pages. However, in practice most Web developers will continue to favor the GIF format for most page design elements, and choose the JPEG format mostly for photographs, complex "photographic" illustrations, medical images, and other types of images where the compression artifacts of the JPEG process do not severely degrade image quality.

Advantages of GIF Files

The most widely supported graphics format on the Web

- All graphic Web viewers support the GIF format for inlined images.
- GIFs of diagrammatic images look better than JPEGs.
- GIF supports transparency and interlacing.

Advantages of JPEG Images

- Huge compression ratios are possible, for faster download speeds.
- Gives excellent results in most photographs and medical images.
- Supports full-color images (24-bit "true color" images).

© Lynch and Horton, 1997. All rights reserved.

Rev. 1/97

http://info.med.yale.edu/caim/manual/graphics/graphics_summary.html [31/05/2000 16:32:05]

Contents

Web Graphics

Introduction

- Color display primer
- Graphic file formats
- Interlaced GIF
- Transparent GIF
- JPEG graphics
- Summary-File formats
- Illustrations
- Optimizing graphics I
- Optimizing graphics II
- Height & width tags
- Colored backgrounds
- Imagemaps

The primary challenge in creating illustrations for Web pages is the relatively low resolution of the computer screen. But these days computer screens can also display thousands or millions of colors, and that wealth of color can often make the resolution limitations less noticeable.

Very complex graphics or color photographs often look surprisingly good on Web pages for two major reasons:

- True-color (24-bit) or high-color (16-bit) displays show enough colors to accurately reproduce photographs or complex art.
- The transmitted light from display monitors shows more dynamic range and color intensity than light reflected from printed pages.

Science and education users are just waking up to the fact that digital publishing is inherently color publishing — on the Web there is no economic penalty for publishing in color. Web pages may be the best current means to distribute color photography — it's a lot cheaper than color printing, and is also more consistent and reliable than all but the most expert (and costly) color printing:

The Web is also great for transmitting complex color artwork to students:

Processing complex illustrations or photographs

The anatomic graphic above was originally painted at much higher resolution in Adobe Photoshop (1000 by 2000 pixels, 24-bit RGB file). We then reduced a copy to the size above, and used the Photoshop "Unsharp Mask" filter (at 60%) to restore the sharpness of the graphic. Although this small version of the painting has lost some resolution and color detail, it still shows all the major anatomic landmarks. We think it is just as good as any equivalent graphic printed in a textbook.

We chose the JPEG file format for the anatomic painting because the artwork is relatively large for a Web graphic. It also does not contain any lettering or diagrammatic elements that reproduce poorly in highly compressed JPEG images. JPEG images can be used for paintings or photographs with labels if you choose the right compression setting. The painting above was compressed in Photoshop at "good" quality," which is the medium setting ("excellent, good, poor"). If you choose the "good" or "excellent" JPEG compression settings text labels may look acceptable, at least on 16-bit or 24-bit displays. Note that the text of the signature is clear and legible, even though close inspection shows there is JPEG noise around the characters. All other graphics on this page are in GIF format, either because they are smaller, or because they contain text or diagram elements.

Diagrams for the computer screen

Basic diagrams also work well on the computer screen if they are carefully designed to match the grid of pixels on the screen. Graphics built with orthogonal lines (straight horizontal or vertical lines) or diagonal lines at 45 degree angles work best for the screen, as this enlarged view illustrates:

Complex icons are hard to interpret, and look mushy and confusing on the screen. Keep your icons and navigation graphics as simple as possible:

Simple isometric perspective graphics also work well, because they depend on straight lines and 45 degree diagonals.

Graphics built carefully to match the pixel grid cannot be resized automatically in Photoshop — they must be re-drawn by hand to larger or smaller sizes to avoid a mushy, fuzzy look that destroys their effectiveness:

Always use the GIF graphic format for diagrams, navigation graphics, or any graphic that contains text.

Contents

Web Graphics

Introduction Color display primer Graphic file formats Interlaced GIF Transparent GIF JPEG graphics Summary-File formats Illustrations Optimizing graphics I Optimizing graphics II Height & width tags Colored backgrounds Imagemaps Color graphics are one of the defining characteristics of online publishing. Unlike the high cost and complexity of four-color printing on paper, with electronic documents there is no need to economize by avoiding color content. There are some potential performance drawbacks to stuffing your Web pages full of big, bright color images, but with proper planning you can optimize the graphics in your Web pages for faster downloading and more accurate color reproduction on your readers' screens.

Color and GIF graphics

The GIF graphic format was developed to optimize the transmission of image data over networks. To keep file sizes small, the designers of GIF limited the number of colors in a GIF image to 256. Images limited to 256 colors are also referred to as "8-bit images", and may also be called "indexed color" images. "8-bit" refers to the number of memory bits assigned to each pixel in the GIF image. Each digital bit can only be a "1" or a "0," so with eight bits of memory allocated to each pixel there can only be 256 (2 to the eighth power) possible unique combinations of "0's" and "1's." "Indexed color" refers to the 256-color index palette that each image draws its colors from. For example, the GIF image below contains 256 colors, shown on the color palette:

It might seem that 256 colors is more than enough to handle most images, but GIF graphics are quite limited in their ability to handle the almost infinite color range found in most photographs. When you convert a full-color 24-bit image (that typically contain millions of colors) to a 256-color GIF you lose some image detail. Through a process called dithering, image editing programs like Photoshop juxtapose pixels of different colors in a fine dot pattern, to make it seems as if a full range of intermediate colors are present in the image when it is seen at normal viewing distances.

Custom GIF palettes and system palette colors

Normally when you convert a full-color image into a GIF you allow the graphics program to choose the 256 colors that best fit that particular image. This results in the optimal GIF image quality, but it does have some drawbacks. The problem shows up when two or more custom-colored GIFs (that could make 512 different colors altogether) need to be on the screen at the same time on a computer display that can only show 256 colors simultaneously (an 8-bit display). If the viewer of your page only has a monitor that shows 256 colors at one time (like most SVGA and older Macintosh color displays), then the colors in your GIF images will look distorted.

Most Web viewers like Internet Explorer and Netscape Navigator "solve" the problems of too many picture colors by using the "system palette" of the Macintosh or Windows operating systems. When running on a 256-color screen, the browser forces the range of graphic colors on the Web page to conform to one of the colors in the standard system palette:

C/AIM

Unfortunately, the system palettes for the Mac and Windows are not the same — only 216 of the colors are identical in both system palettes. A palette incorporating the colors common to both the Mac and Windows is shown below:

Forcing a GIF made from custom palette colors (figure a, below) to display within the limited system palette colors often results in ugly distortions of the image. A Web browser running on an 8-bit display has no way of optimizing your particular custom GIF colors — it just uses simple logic to force the picture to display in the nearest equivalent colors in the system palette. The result is often color banding, or harsh distortions of the original colors (b, below):

Contents

Web Graphics

Introduction Color display primer Graphic file formats Interlaced GIF Transparent GIF JPEG graphics Summary-File formats Illustrations Optimizing graphics I Optimizing graphics II Height & width tags Colored backgrounds Imagemaps If you use a sophisticated image editing program like Debabilizer 1.6 for the Macintosh you can convert your images to conform to the Macintosh or Windows system palettes, or to a palette that incorporates the colors common to both. You will lose some resolution and color fidelity due to the dithering, but your images should display well on most 256 color displays. The GIF image below has a custom color palette:

This is the same image dithered to the Macintosh system palette. since all RGB system palettes share many common colors, this image will display fairly well on most computer systems. But notice in the detail image how color and image resolution have been lost due by forcing the image into the system palette — you don't just lose colors, you also lose resolution:

Another option — and a better one

You may choose to do what we do most of the time: Use GIF graphics with custom color look-up tables, or JPEG images. Most computer users now work on machines capable of more than 8-bit displays, so many image display problems like unwanted dithering are becoming moot — if the user's display is set to a bit depth more than 8 bits they see the original colors of your images. In applications like medical imaging, engineering, and art history (to name a few) image quality is paramount. Use GIF images with custom color look-up tables, or JPEG images, and just accept that some users will see dithered images. You might want to put a small note on your home page advising readers that the images are optimized for 16-bit or 24-bit "true-color" display monitors.

For example, most medical diagnostic images are in black and white. When converted to GIFs with a custom palette of 256 grays and displayed on a 16-bit or 24-bit color display a chest radiograph reproduces without distortion of the gray scale. "B" shows detail from the original uncompressed Photoshop file; "C" shows the same area from the GIF compressed version (e.g., there is no loss of image quality due to compression in GIF graphics):

Always save a copy of your original graphics files and photographs in their full-color state before you make new versions using the system palette. As "high-color" 16-bit and "true color" 24-bit computer displays become more common the issue of color distortion on Web pages will gradually go away, and you may want to replace your 8-bit images with full-color versions a few years from now. But you can only do that if you **saved the originals**.

For photographs or other larger illustrations on your Web pages you might wish to use the JPEG file format. The JPEG format allows more efficient compression of the files, speeding download times on large images. However, JPEG images are inherently full-color images (containing thousands or millions of colors), so JPEG images will also look distorted when viewed on standard 256-color SVGA or older Macintosh monitors. Netscape does a pretty good job of displaying JPEG images on 8-bit monitors, but only a 16-bit or 24-bit display will reproduce JPEG images accurately.

Contents

Web Graphics

Introduction Color display primer

Graphic file formats

Interlaced GIF

Transparent GIF

JPEG graphics

Summary-File formats

Illustrations

Optimizing graphics I

Optimizing graphics II

Height & width tags

Colored backgrounds

Imagemaps

If you put HEIGHT and WIDTH tags into your HTML image source tags, the information tells the browser how much page space to devote to the graphic. Thus the browser starts to lay out your Web page even before the graphics files have begun to download. This does not speed up the downloading of the graphics (nothing but a faster data connection can do that), but it does allow the user to see the basic page layout quickly. When you supply the HEIGHT and WIDTH of page graphics the browser will often fill out the text blocks first, then "pour" the graphics files into the spaces allotted. Thus the user can start to read your page while the graphics are downloading. All of the graphic references in this style manual include height and width tags.

The HEIGHT and WIDTH tags are additions to the basic image source tag:

For best performance, make sure all of your image source tags include height and width information (even for small button graphics).

Note that the examples below only work well the **first time** you try them. After that your browser will probably cache the images locally, and subsequent loading will occur (very quickly) from your hard disk, not from the Web. Both example photographs are interlaced GIFs (300 x 409 pixels).

Load an image without HEIGHT and WIDTH tags

Load an equivalent image with HEIGHT and WIDTH tags

Contents

Web Graphics

Introduction Color display primer Graphic file formats Interlaced GIF Transparent GIF JPEG graphics Summary-File formats Illustrations Optimizing graphics II Optimizing graphics II Height & width tags Colored backgrounds

Imagemaps

Web background colors offer a "zero-bandwidth" means to change the look of your pages without adding graphics. They also allow you to increase the legibility of your pages, tune the background color to complement foreground art, and to signal a broad change in context from one part of your site to another.

Background patterns and background images are the most controversial graphic elements on Web pages. Both features add graphic complexity to pages without increasing their legibility. Poor choice of background graphics has generated some of the ugliest pages on the Web. However, in the hands of experienced and knowledgeable graphic designers the use of these background features can result in Web pages as stunning in graphic impact as anything seen in multimedia CD-ROMs.

Changing the colors of page elements

Netscape allows you to specify a specific color for the background, text, and hypertext links of your Web page, making it possible to get rid of the default gray or white background without having to download big graphics. You can also manipulate the colors of other page elements in web pages, using a simple set of HTML extensions. These extensions may be the most efficient way to give your pages a distinctive look, because the browser handles all of the color changes, and your readers do not have to sit still while you download fancy graphics to them.

Picking the background color is easy in WYSIWYG (what you see is what you get) graphic web page layout programs. Unfortunately, picking a color without one of these Web page editors is a procedure only a gearhead could love. The color is specified in the tag in hexadecimal code, where the six elements give the red, green, and blue values that blend to make the color. In the tag, the hex code is always preceded by a "#" sign: (#RRGGBB). Since this whole business is handled visually by the new generation of WYSIWYG page editors, we will not go into further details on the arcana of hexadecimal RGB color selection.

Here are hex color codes for some background colors:

#FFFFFF	#FAFAEC	#E1E5E2	₩FOD9C1	#CDCOCO
#DFC3A6	#C2DOE8	#BEE3C2	₩B4BCCD	#000000

Using the HTML extensions for changing the color of page backgrounds, text, and link colors is easy — you just add a few extensions to the "BODY" tag at the beginning of your HTML code for the page (this particular tag yields a white background):

<BODY BGCOLOR="#FFFFFF">

Background colors and legibility

Shifting the page background from gray to white is really the only alteration of the standard Web page background that we can recommend if your highest priority is screen legibility. The legibility of type on the computer screen is already compromised by the low resolution of the computer screen. The typical Macintosh or Windows computer screen displays text at 72 to 80 dots per inch (about 5,200 dots per square inch), or almost 300 times less resolution than a typical magazine page (1,440,000 dots per square inch). Black text on a white (or very light gray) background yields the best overall type contrast and legibility. Studies have shown the black backgrounds are significantly less legible than white backgrounds, even when white type is used (for maximum contrast). Colored backgrounds can work as an alternative to plain Netscape gray if the colors are kept in very muted tones, and low in overall color saturation (pastels, light grays, and light earth tones work best).

Netscape background patterns

Early in 1995 Netscape 1.1N gave Web page authors the ability to use small tiled GIF or JPEG graphics (or a single large graphic) to form a background pattern behind the Web page. The feature is controversial in Web design discussions, because pages that use large background images take much longer to download, and because the background patterns tend to make pages much harder to read unless they are carefully designed:

Background patterns are controversial in Web page design, because pages that use large background images can take much longer to download, and because the background patterns tend to make pages much harder to read unless they are very carefully designed.

To be suitable for use as a texture the graphic should be a small GIF or JPEG, ideally no more than about 100 by 100 pixels in size. In our experience, the JPEG background patterns load slightly faster than equivalent GIF graphics. Typical graphics used for background patterns are homogeneous textures:

Background graphics are added to a Web page by Netscape-specific modifications of the standard "BODY" HTML tag:

<BODY BACKGROUND="example.jpeg">

When Netscape sees the BACKGROUND tag it will tile the graphic file "example.jpeg" across the page, under the text and any other graphics. Older Web browsers that do not support background images will just ignore the background tag, and give the page a default white or gray background.

How you might use background textures depends entirely on your goals for your Web site, the access speeds that are typical for your target audience, and whether the multimedia/CD-ROM style look (fast becoming a cliche) meets the aesthetic goals of your Web site. Using large or visually complex background textures on any page that is heavily accessed by busy people looking for work-related information would be foolish — the long download times, unprofessional aesthetics, and poor legibility would instantly create ill will in your users. However, in the hands of skilled graphic designers creating Web pages specifically designed for graphic impact, the option to use background textures opens up many interesting visual design possibilities. This is particularly true in universities and commercial organizations where fast network access is commonplace and bandwidth is not the major issue it is with modem-based users.

Our advice is: if you don't have professional graphic design training or experience in constructing complex graphic communications, then stay away from background images or textures — the chances making a bad functional and aesthetic mistake are overwhelming.

Contents

Web Graphics

Introduction

Color display primer

Graphic file formats
Interlaced GIF

Transparent GIF

JPEG graphics

Summary-File formats

<u>Illustrations</u>

Optimizing graphics I

Optimizing graphics II

Height & width tags

Colored backgrounds

Imagemaps

Imagemaps offer a means to define multiple "live" link areas within a single graphic on a Web page. Thus you can make a banner graphic for the top of your page, and imbed multiple "button" areas within the graphic. The header and footer graphics used in this style guide are simple imagemaps. This is how the header graphic would look if you could see the "live" areas defined in the imagemap:

Yale C/AIM Web Style Guide

Server-side imagemaps vs client-side imagemaps

Until recently Web imagemaps had a reputation for being complex to implement and slow to execute, because the original procedure for creating imagemaps on Web pages required reference to a separate file on the host Web server every time a user clicked on an imagemap. This "server-side" imagemap technology was needlessly complex and very inefficient. Since early 1996 the major Web browsers have supported "client-side" imagemaps, where the information on what areas of a graphic are "live" links is incorporated within the HTML code for the Web page, where it belongs. Most Web page layout programs now incorporate easy graphic interfaces for setting up imagemaps, so we will not cover the HTML technical details here. (See the reference links below for more information on the technical details of creating web imagemaps, or look at the HTML source of any page in this style guide.)

Space-efficient graphic impact

Imagemaps have become a standard feature of most professionally-designed Web sites because they offer an effective combination of visual appeal and, when used properly, space-efficient functionality. Imagemaps are particularly effective when incorporated into moderately-sized "splash" graphics at the top of home pages, or into the "signature" graphics or logos that define your pages. For example, Apple Computer uses an imagemap at the top of their education page that offers 12 different link choices within a distinctive graphic that instantly marks the page as part of Apple's Web site:

é	Am	ericas H	igher Ed	ucation
Apple Education Worldwide	Learning Technologies	Distance Learning	Collaboration	Information Access
	Workflow	Mobility	Other Resources	Campus Sales
Contents		Find		Apple

Graphic has been reduced from the original size. hed.info.apple.com/

Graphic flexibility

Imagemaps are the only means to incorporate multiple links into a graphic illustration, such as this anatomic example:

Imagemaps are also the ultimate means to overcome the vertical, list-oriented, graphically inflexible norms of conventional Web pages built with standard HTML tags. With imagemaps you can simply abandon HTML page layout, and build links into large graphics, just as you might in CD-ROM authoring programs. However, such designs are only suitable for audiences with high bandwidth access to the Web or the local intranet.

References

Apple Computer, Inc. - Higher Education site

Example of an interlaced GIF

Example of a noninterlaced GIF

Pat Lunch

Example WITHOUT height and width tags

Example WITH height and width tags

Contents

Multimedia

Introduction

Design and AV elements

Digital Video

Digital Audio

GIF Animation

Perhaps the most powerful aspect of the computing technology is the ability to combine text, graphics, sounds, and moving images in meaningful ways. The promise of multimedia has been slow to reach the web because of bandwidth limitations, but each day brings new solutions. The options enumerated here are certainly not the only ones — and will surely soon become outdated — but they are the solutions we use in our work and have proved to be the most practical and effective for our purposes.

Splash vs. content

Web designers must always be considerate of the consumer. A happy customer will come back, but one who has been made to wait, and is then offered goods that are irrelevant, will very likely shop elsewhere. Since multimedia comes with a high price-tag in terms of bandwidth, it should be used sparingly and judiciously.

Splash screens have become a common location for multimedia elements. Like the cover to a book, splash screens are intended to entice users into a site — to open the book and read what's inside. Animations and sound can pique a user's curiosity, compelling them to enter the site and explore. Using "splash" in the interior of a site, however, is not something we advocate. As we discuss in the interface section of this manual, any page element that is not relevant to the content is simply distracting.

The options for content are essentially defined by bandwidth. Audio files can be compressed so effectively that sound can now be considered for site content, particularly for intranet sites. For example, a site about poetry could include recitations; a text about a composer could include excerpts from her work; a language site could include pronunciations.

Animation files at present are not terribly useful as content because of compression limitations. Most animation file formats require the file to be fully downloaded before it can be played, so file size is a serious limitation. And most popular animation formats do not support compression, so if one content-rich GIF image is 30k, two combined makes 60k, and so on.

If your site will be accessed by people using modems, forget about digital video, at least for the moment. The quality compromises required to deliver video to modems altogether obviate its usefulness. However, if your site is intended for use on an intranet, video content is a definite possibility.

Plug-ins

Each day brings a new plug-in that allows users to see new and exciting things using their favorite browser software. This is especially true of multimedia; the options for encoding and delivering audio, animations, and video are dizzying. It is tempting to create files that utilize the functionality offered by these custom plug-ins, but there are two considerations designers should bear in mind. First, you will loose a large number of users when they hit the "Plug-in not supported, etc..." dialog box.

The bother and potential confusion of downloading and installing plug-ins

Will deter a large percentage of users. Secondly, it is not prudent to create content in a custom file format which could quickly become obsolete. It is best to create your multimedia content in the standard formats for operating systems and browser software.

 C/AIM

 © Lynch and Horton, 1997. All rights reserved.

Contents

Multimedia

Introduction Design and AV elements Digital Video Digital Audio GIF Animation The combination of low bandwidth considerations and primitive interface options create interesting design challenges for web developers who want to incorporate multimedia elements into their sites. There are two main tenets that designers should adhere to: be sure to inform the user that they are entering a high-bandwidth area, and provide them with the tools they need to control their experience once in the area.

Warning! High data rates

Be sure that visitors to your site are informed about the high-bandwidth areas before entering. For example, have the contents page of your site explain clearly where you are sending the user before they decide to go. Also be sure to explain what browser software and plug-ins are required so users are not confronted with unfriendly dialog boxes. And as with all data-intensive site elements, make certain that your multimedia content is relevant. If someone has come to your site to learn more about, say, web style guidelines, and you present them with a video of your pet hamster, you will simply lose your audience.

Keep it friendly

Be sure to provide users with status information and controls when presenting multimedia elements. For example, the QuickTime controller bar, though perhaps not aesthetically inspiring, is an extremely effective interface element that provides both controls and status information. It allows users to adjust the volume of a movie, play and stop and scrub through a movie, and also provides information about the movie's download status.

QuickTime Controller Bar

The problem with dispensing with such elements is that users will hit your page and have no way to control their viewing environment. Say, for example, they are looking at your page at a public computer workstation, and you have looping bird calls as a page element, but provide no control options. They user has an unsettling moment where they are simply unable to control their interaction with your site.

Qualification

There is one significant qualification in this discussion of multimedia design considerations. If you are creating a site for a specific audience and not for global interests you often have more flexibility and can ask more from your users. You can require them to use specific browser software, plug-ins, and you can take steps to ensure that they know what to expect when visiting your site. We have found this to be true for many of the academic sites we develop. The audience for these sites is usually a group of students or faculty with specialized interests. If we are charged with the task of creating a custom site that fully addresses these interests, function defines form. A site on German poetry for a German grammar class can have bandwidth-intensive audio and video elements because the students who access the site do so for the purpose of using these multimedia elements to enhance their understanding of the poetry. They are not casual visitors; since they are invested in the content, they will tolerate lengthy download times and more demanding site interaction.

Multimedia

Introduction

Design and AV elements Digital Video Digital Audio

GIF Animation

QuickTime is the format for video and sound files that we have used in our web projects. It works on both Windows and Macintosh computers without much custom configuration. The latest plug-in for QuickTime is built into Netscape 3.0, so users are not required to do any special installations.

Fast-starting video

The most current versions of the QuickTime plug-in and system software have a feature called fast start. Movies can be saved in a special format that puts all the critical file information at the start of the file data structure. This means that as soon as this information reaches the client machine, the movie can be set to play — users do not have to wait until the movie is fully downloaded before clicking on the play button. Depending on network speed, a fast start QuickTime file can be played almost immediately after the page is loaded. If the "autoplay" option is set to true in the movie's HTML tag, the movie will begin playing automatically as soon as the QuickTime plug-in estimates it will be able to play the entire movie without waiting for additional data. As long as the user's connection is faster than the movie's data rate, the movie will play from start to finish without pause.

The implication of fast-start video is that duration is no longer an overriding concern for audio and video site content. At one level, it no longer matters if your video is one minute or 10, because with fast start each of these durations look essentially the same. As long as the user's connection and the movie's data rate are within the same range, your one minute movie can start playing at the same time as your 10 minute movie.

Example of video with fast start

File size is, of course, still a consideration. A 6MB movie file needs to be kept somewhere on the client machine. Some machines will crash if asked to hang onto large movie files. Assess your audience — their network access, their processing power and memory configuration — and plan accordingly. For example, if you have 10 minutes of video that you want to put on the web for low-end machines, chop it up into smaller chunks to make sure your audience can access it.

Data rate limits

Set the data rate of your movies slightly lower than the throughput of your user's connection is you want them to be able to watch your movies in real time. For a 28.8 modem that means a data rate somewhere around two KBps, for ISDN around five KBps, and for T1 lines from five to 40 KBps. To deliver true video at these data rates the compromises are great. The image size must be small, the frame rate low, and the sound compressed. As a result of compression the image quality will be less than optimal. Nonetheless, there is still interesting video and sound that can delivered using the web.

Creative solutions

If you are creating content for a web site, tailor your multimedia elements for web delivery. Think of creative solutions that may be more modest but will be viewable by your target audience. For example, instead of using true full-motion digital video and audio that will require so much compression and size reduction as to render it useless, use audio and a sequence of still images to add multimedia to your site. Say, for example, you want to use video to show how to cook lasagna. Instead of using video, take a bunch of still images and pair them with a good-quality narration of the recipe.

If you must use true video in your site, be sure to shoot footage that will handle the compression and size reduction required for delivery on the web. Keep away from wide shots; shoot at medium or close range so that the detail of the image will be distinguishable at small sizes. The low frame rates and small viewing size required for web video will not effectively display motion, so don't shoot video that includes much action. The best source video for the web is close-up shots of talking heads.

Pay attention to source

It is especially important that web multimedia be created from excellent source. The processing that must be applied to A/V elements in order to attain web resolution will only emphasize any flaws in your original source. If you begin with bad audio and then reduce its sample rate and depth, and then add compression to further reduce the data rate, any flaws present in the original source material will be exaggerated.

References

Rainer Maria Rilke - 3 Gedichte

Contents

Multimedia

Introduction

Design and AV elements Digital Video Digital Audio

GIF Animation

Sound and music can be delivered quickly and effectively over the Web. High-quality audio files can be compressed so that they maintain their fidelity, yet the data rates required to deliver the file remain reasonable. This is especially true when using streaming audio.

But quality is imperative in web audio. Any type of digital data compresses best when it begins at the highest quality possible. For example, a blurry photograph will remain blurry when digitized, and file compression such as JPEG will only emphasize the blur. This is also the case with sound files. An audio file that begins its digital life with background noise or with a low dynamic range will be difficult to repair, and its flaws will be more apparent after the extensive downsampling and compression required to make the file web-deliverable.

File Processing

It is difficult to remove noise once it is present in a signal, so always try to record in the quietest place possible and take steps to reduce or eliminate environmental noise (e.g., turn off unneeded equipment, turn off or lower the ventilation system). However, if your recorded audio does have noise, you can reduce or sometimes eliminate it using the equalizer and noise gate features of sound editing software such as SoundEdit 16. One trick when using the equalizer to reduce noise is to raise each band individually until you find the one that contains the greatest amount of noise. If you can pinpoint the band that adds the most noise, you can lower that band and reduce the noise.

Example with noise

Example without noise

You can also use the equalizer to add substance to your audio files. In many cases your web audio will be played on built-in computer speakers and your audio may lack the punch you had intended. Using the equalizer to boost the mid-range frequencies will help fill out your sound, but be sure to check your files on a variety of systems to ensure that your sound stays balanced.

It is also a good idea to normalize your sound files. Normalization ensures that you are working with the loudest possible audio signal, and since you will lose volume due to downsampling for the web, normalizing is an easy step toward increasing the quality of your music and sounds. Normalizing a file finds the loudest peak in a file and then amplifies the entire file to make that peak's volume 100%.

Example without normalizing

Example with normalizing

Our recipe for creating web audio

- **1.** Record the audio in the best possible setting with the best available equipment.
- **2.** Digitize the audio at 44.1 kHz with a 16-bit sample rate.
- **3.** Use SoundEdit 16 to edit and mix the audio.
- **4.** Normalize the file.

5. Use Movie Cleaner Pro to perform downsampling from 44/16 to 22.050 kHz, 16-bit with IMA 4:1 compression, and to make the file fast-start QuickTime.

References

Essex, J. 1996. *Multimedia Sound and Music Studio*. New York: Random House Reference and Information Publishing, Inc.

Terran Interactive: Movie Cleaner Pro

Macromedia: SoundEdit 16

© Lynch and Horton, 1997. All rights reserved.

Rev. 1/97

Contents

Multimedia

Introduction

Design and AV elements

Digital Video

Digital Audio

GIF Animation

The GIF file format has an option for creating animations that provides web site designers with a low-tech option for adding moving images to web pages. The software used to create animated GIFs is free and easy to use. And since GIF is a format supported by most browser software, you can add animations to your pages with the assurance that most visitors to your site will be able to view them. However, there are two main drawbacks to using animated GIFs, the first of which is file size and the second, distraction.

How it works

The animation option combines any number of GIF still images into a single file. There are a number of animation programs that will convert your still "frames" into an animated GIF; we use a freeware program called GifBuilder. Using a simple drag-and-drop interface, we import PICT files created in PhotoShop. GifBuilder will accept an imported palette or create a custom palette, and it allows you to set frame durations, transparency, and playback options such as looping. Once we have set all the parameters and previewed the animation, we save the file, at which point GifBuilder packages the still images together as a single animated GIF.

How much it weighs

Bandwidth is an important consideration when creating animated GIFs. Since this is an uncompressed file format, each frame in the animation carries its full weight, so if you have 10 frames of 10k PICTs, you end up with a 100k file to push through the wire. However, since animated GIFs do "stream" in the sense that they begin to play before they are fully downloaded, there is some flexibility. It may be too much to ask viewers to wait for a 100k GIF still image to load, but a 100k GIF animation that begins to play after 40k has loaded is certainly reasonable.

Enhancement or distraction?

Animation should be meaningful, not distracting. Ideally, it should add something to the content of your page. What it definitely should not do is disrupt your reader's concentration with needless chatter.

Splash screens are a good place to use animation. Animated images can provide just the right amount of pizzazz to attract viewers into your site. But be sure to keep the file size modest. Requiring a lengthy download right at the start of your site will lose all but the most committed viewers.

If you are using animation as content — e.g., to help illustrate a concept or technique — open the animation in a secondary window using the TARGET="main" parameter of the A HREF tag. That way your readers can view the animation and then close the window. If you present the animation on the main content page it will interfere with the other page elements.

References

Siegel, D. 1996. *Creating killer web sites*. Indianapolis: Hayden Books. www.killersites.com

<u>GifBuilder</u>

Rainer Maria Rilke: 3 Gedichte

Jones and Jones

tbwa/chiat/day

Movie with fast start

34.2 KBps, 3.6 MB, 1m48s Video compression, 1 frame per second 16 bit/22 kHz audio w/ IMA compression

Watch your connection speed, then click play when you think enough has downloaded

Multimedia presentation of Rainer Maria Rilke's poem "Merry-Go-Round" from Dartmouth's "Rainer Maria Rilke - 3 Gedichte" web site

	Apple Computer, Inc. 1992. <i>Macintosh human interface guidelines</i> . Reading, MA: Addison-Wesley.			
Contents	Binns, B. 1989. Better type. New York: Watson-Guptill.			
Appendices	Conklin, J. 1987. Hypertext: An introduction and survey. <i>IEEE Computer</i> , September, 1987, 17Đ41.			
Multimedia bibliography Interface bibliography	December, J. and N. Randall. 1994. <i>The World Wide Web unleashed</i> . Indianapolis, IN: SAMS Publishing.			
Interface glossary	Gygi, K. 1990. Recognizing the symptoms of hypertextand what to do about it. In <i>The art of hu man-computer interface design</i> , ed. B. Laurel. Reading, MA: Addison-Wesley.			
	Holmes, N. and R. DeNeve. 1990. <i>Designing pictorial symbols</i> . New York: Watson-Guptill.			
	Horton, W. K. 1994. <i>Designing and writing online documentation. 2nd Edition.</i> New York: Wiley.			
	Horton, W. K. 1994. The icon book: visual symbols for computer systems and documentation. New York: Wiley.			
	Hurlburt, A. 1978. The grid. New York: Van Nostrand Reinhold.			
	Landow, G. P. (1989). The rhetoric of hypermedia: Some rules for authors. <i>Jour. of Computing in Higher Education</i> , 1(1), 39Đ64.			
	Lemay, L. 1995. <i>Teach yourself web publishing with HTML in a week.</i> Indianapolis, IN: SAMS Publishing.			
	Marcus, A. 1992. Graphic design for electronic documents and user interfaces. New York: ACM Press, Addison-Wesley.			
	Microsoft Corporation. 1992. <i>The Windows interface: An application design guide</i> . Redmond, WA: Microsoft Press.			
	Nelson, T. 1987. <i>Dream machines/Computer lib</i> . Redmond, WA: Tempus Books.			
	Norman, D. A. 1988. <i>The psychology of everyday things</i> . New York: Basic Books.			
	Norman, D. A. 1990. Why interfaces don't work. In <i>The art of human-computer interface design</i> , ed. B. Laurel. Reading, MA: Addison-Wesley.			
	Norman, D. A. 1993. Things that make us smart: Defending human attributes in the age of the machine. Reading, MA: Addison-Wesley.			
	Patton, P. 1993. Making metaphors: User interface design. ID 40 (2): 62Đ66.			
	Quin, Christine A. 1994. <u>From grass roots to corporate image: The</u> <u>maturation of the web.</u>			

Shneiderman, B. 1992. Designing the user interface. 2nd Ed. Reading,

Mass.: Addison DWesley.

Spiekermann, E. and E. M. Ginger. 1993. *Stop stealing sheep: & find out how type works*. Mountain View, CA: Adobe Press.

Tufte, E. R. 1989. *Visual design of the user interface*. Armonk, NY: IBM Corporation.

Tufte, E. R. 1990. Envisioning information. Cheshire, CT: Graphics Press.

University of Chicago Press. 1982. *Chicago manual of style*. 13th Ed. Chicago: University of Chicago Press.

Wilson, A. 1967. The design of books. Santa Barbara, CA: Peregrine Press.

Xerox Corporation. 1988. *Xerox publishing standards: A manual of style and design.* New York: Watson-Guptill.

	Adobe Systems, Inc. 1993. <i>Adobe Premiere: Classroom in a book.</i> Mountain View, CA: Adobe Press.
Contents	Adobe has produced three excellent book-length tutorials on its major software products, Illustrator, Photoshop, and Premiere. Each comes with
Appendices	its own CD-ROM of example files and tutorials. Well written, highly recommended for quick-starts into these complex but essential imaging
Literature cited	tools.
Multimedia bibliography	HIGHLY RECOMMENDED
Interface bibliography	Apple Computer Inc. 1002 Apple CD ROM Handback Baseling MA

apple Apple

Interface glossary

Apple Computer, Inc. 1992. *Apple CD-ROM Handbook*. Reading, MA: Addison-Wesley.

An excellent introduction to the basic technology of CD-ROM production. Covers both authoring and content issues and CD technology, in a (mostly) non-technical style.

Bennet, H. 1993. PhotoCD: A Macintosh primer. *CD-ROM Professional* 6 (4): 93-101.

Introduction to the technology and uses of Kodak's PhotoCD CD-ROM format for digital photography.

Bove, T. and C. Rhodes. 1990. *Using Macromind Director*. Carmel, IN: Que Corporation.

One of the very few third-party books on Macromedia Director. Although this book only covers version 2.0, most of the Director interface is still similar enough for the book to be a useful companion to the current version 4.0 manuals.

HIGHLY RECOMMENDED

Cohen, L. S., R. Brown, and T. Wendling. 1993. *Imaging essentials*. Mountain View, CA: Adobe Press.

Excellent introduction to the technology, software, and processes in electronic imaging and computer illustration. The best single reference I've seen to the common image formats used in electronic design. Also has excellent illustrated explanations of the complex filtering and channel operations possible in Adobe Photoshop.

HIGHLY RECOMMENDED

Dayton, L. and J. Davis. 1993. *The Photoshop wow book*. Berkeley, CA: Peachpit Press.

Although Photoshop's manual and tutorial is excellent, the program is so complex and can be used in so many different contexts that it is useful to have third-party books like this one around to see what other people do with Photoshop. Well written and illustrated.

Drucker, D. L., and M. D. Murie. 1992. *QuickTime handbook*. Carmel, IN: Hayden Press/Prentice Hall.

Well-written, not overly technical overview of Apple's QuickTime digital video technology for the Macintosh. Covers the major video concepts and hardware tools, video digitizers, and video editing software like Premiere, VideoFusion, and Videoshop.

Goodman, D. 1993. *The complete HyperCard 2.2 handbook,* 3rd ed. New York: Bantam Books.

The granddaddy of all scripting handbooks. Goodman explains things very well, and the book is well organized for quick reference to specific topics

and problems. Since HyperCard, SuperCard, and Director all share similarities in their scripting languages, this book is useful even if you don't actually use HyperCard.

Horton, W. K. 1991. *Illustrating computer documentation*. New York: Wiley.

An excellent book with a dry, somewhat misleading title. This book actually covers many general issues of graphic design, for both paper documents and the computer screen. Horton always cites his sources in academic style, so the bibliography here is also quite valuable.

Jerram, P. and M. Gosney. 1993. *Multimedia power tools*. New York: Random House.

A very good overview of current (Macintosh) multimedia software, hardware, and technology. The best single-volume survey of multimedia for the Macintosh. Very comprehensive listings and short reviews of authoring tools and graphics software. The companion CD-ROM suffers from a slow and very mediocre user interface, but contains lots of public domain and demonstration tools.

Jerram, P. 1994. CD-ROM universe. NewMedia 4 (6): 40-46.

An excellent overview of the current state of the CD-ROM publishing industry, with interesting data on the average budgets for major CD titles. A related article in the same issue covers CD distribution channels, partnerships, and CD publishers.

HIGHLY RECOMMENDED

Johnson, N., F. Gault, and M. Florence. 1994. *How to digitize video*. New York: Wiley.

The best single-volume reference I've seen to date on the tools and technology of digital video. Covers both Mac and windows versions of QuickTime, as well as Microsoft's Video for Windows AVI standard.

Kiamy, D. 1993. *High-tech marketing companion*. Reading, MA: Addison-Wesley.

A compilation of short articles on the business of software and hardware marketing and distribution. A good introduction to some of the realities of publishing software, getting a distributor, and properly packaging your products for the Mac and PC marketplace.

Lipson, S. 1994. Windows as a second language. Alameda, CA: Sybex.

Being a serious multimedia publishers means reckoning with "that other platform." If you are a hapless Mac user (like me) forced by circumstances to deal with Windows you will find this book both helpful and entertaining. Given the GUI design edge the Mac has, I doubt if Windows users would even need an equivalent Windows-to-Mac translator.

Lynch, P. J., C. C. Jaffe, P. I. Simon, and S. Horton. 1992. Multimedia for clinical education in myocardial perfusion imaging. *Journal of Biocommunication* 19 (4): 2-8.

A brief paper on how we used multimedia to create an extensive atlas of digital medical imaging.

Lynch, P. J. 1994. Visual design for the user interface, Part 1: Design fundamentals. *Journal of Biocommunication* 21 (1): 22-30.

This (and the following article) are my own attempt to bring all of the basic concepts and existing literature on the visual design of interfaces into two short articles.

Lynch, P. J. 1994. Visual design for the user interface, Part 2: Graphics in the interface. *Journal of Biocommunication* 21 (2): 6-15.

Martin, J. A. 1993. Hands on: PhotoCD. *Macworld* 10 (7): 92-97. Overview of PhotoCD technology and uses, especially as applied to the Macintosh and Mac imaging software.

NewMedia Magazine. 1993. Multimedia tools guide. *NewMedia* Vol. 3 (Special issue, November 1993): 1-88.

Patton, P. 1993. Making metaphors: User interface design. *I.D.* 40 (2): 62-66.

Graphic and industrial design firms are entering the business of user interface design; the emerging field of software design.

Pearlman, C. and J. Abrams, moderators. 1994. The I.D. magazine multimedia forum. *I.D.* 41 (2): 36-43.

Roundtable discussion among 13 multimedia designers, graphic designers, and electronic publishers on the design implications of multimedia.

Rabb, M. J., ed. 1990. *The presentation design book*. Chapel Hill, NC: Ventana Press.

A good introduction to the basics of graphic presentation to audiences. Oriented more to speaker support issues than to multimedia design, but many of the design problems are the same, and many multimedia programs will be used as interactive speaker support "slides" anyway.

Rosenthal, S. 1994. Electronic publishing. *NewMedia* 4 (7): 44-47. Good overview of the current state and near future of electronic publishing, especially as compared to paper-based publications. Short articles on CD publishing standards and CD-ROM packaging follow.

Spanbauer, S. 1993. The write stuff: CD-recordable. *NewMedia* 3 (10): 62-68.

A brief survey and explanation of recordable CD-ROM ("CDR") technology and potential uses. Anyone interested in CD-ROM publishing or large multimedia productions needs at least a basic understanding of CDR, which is quickly becoming an essential prototyping and mass storage medium.

HIGHLY RECOMMENDED

Spiekermann, E. and E. M. Ginger. 1993. *Stop stealing sheep.* Mountain view, CA: Adobe Press.

An excellent book on the uses and abuses of typography. Don't be put off by the odd title. This is the best recent book that I've seen on typography.

© Lynch and Horton, 1997. All rights reserved.

http://info.med.yale.edu/caim/manual/appendix/biblio_multimedia.html (3 sur 3) [31/05/2000 16:35:39]

Apple Computer, Inc. 1989. *HyperCard stack design guidelines*. Reading, Mass.: Addison-Wesley.

The "file card" metaphor introduced by HyperCard in 1987 has become the dominant theme in multimedia authoring systems. This book is an excellent guide to the user interface design considerations necessary when designing any graphic interface for the computer screen. It also contains discussions of how multimedia affects user interface design, and the design problems presented by interactive sound and music in computer presentations.

Apple Computer, Inc. 1992. *Macintosh human interface guidelines*. Reading, MA: Addison-Wesley.

This volume is Apple's standard guide to the graphic user interface of the Macintosh computer. This book is an excellent introduction to the design principles that underlie all graphic user interfaces, as the Macintosh "desktop" interface is by far the oldest and most highly evolved of the graphic user interfaces now on the market.

Apple Computer, Inc. 1993. *Making it Macintosh. The Macintosh interface guidelines companion*. CD-ROM. Reading, MA: Addison-Wesley.

Designed as an interactive companion to the Macintosh Interface Design Guidelines. Has well-organized screens and excellent graphic design, but strangely, the program makes minimal use of the Mac interface.

Blattner, M. M., and R. B. Dannenberg, eds. 1992. *Multimedia interface design*. Reading, MA: Addison-Wesley.

A compilation of research papers in interface design and human-computer interaction in multimedia system. Most of the papers are dry and quite technical, but the book is good as a concise reference to a spectrum of research interests in the professions of interface design and multimedia interfaces.

Grudin, J. 1990. The computer reaches out: The historical continuity of interface design. In *Empowering people: CHI '90 conference proceedings.*, ed. J. C. Chew and J. Whiteside. 261-268. Reading, MA.: Addison-Wesley. A concise overview of the development of graphic user interface concepts and technologies, starting in the mid-1960's with pioneering work by Doug Engelbart (inventor of the mouse) and Ivan Sutherland (inventor of interactive computer graphics).

Hayes, F. and N. Baran. 1989. A guide to GUI's. *Byte* 14 (7): 250-257. This is a brief survey of the major graphic user interfaces currently in use, including screen shots of each interface.

Hoffer, E. P., and G. O. Barnett. 1990. Computers in medical education. In *Medical informatics: Computer applications in medical care*, ed. E. H. Shortliffe and L. E. Perreault. 535-561. Reading, MA: Addison-Wesley. This chapter covers some of the history of computer-aided instruction in medicine. Very good summations of the advantages and problems inherent in teaching medicine with computers.

HIGHLY RECOMMENDED

Horton, W. K. 1994. *Designing and writing online documentation, 2nd Edition.* New York: Wiley.

A superbly researched book covering virtually every facet of computer document design. Horton uses academic-style literature citations liberally

Contents

Appendices

Literature cited

Multimedia bibliography

Interface bibliography

Interface glossary

throughout the book, so if you are interested in pursuing some specific topic you can easily find out who Horton is citing as a source. The book's bibliography alone is worth the \$29.95 cover price.

HIGHLY RECOMMENDED

Horton, W. K. 1991. *Illustrating computer documentation*. New York: Wiley.

A very practical volume, full of immediately useful and practical advice on computer document design. This book covers a wide variety of topics in visual literacy. Illustrators and graphic designers may find some of the points self-evident or tedious, but the book covers so much useful material that this doesn't really detract from the overall value. Again, Horton's bibliography is extremely thorough, and well worth the price of the book.

Laurel, B., ed. 1990. *The art of human-computer interface design*. Reading, Mass.: Addison-Wesley.

An interesting compilation of 55 short articles and essays on various aspects of human-computer interaction. The book gives an excellent plain-English (minimal level of tech jargon) overview of human interface design problems, and the design of computer documents.

Laurel, B. 1991. Computers as theater. Reading, Mass.: Addison-Wesley.

Laurel has many interesting things to say about the nature of human-computer interaction, and how dramatic metaphors can help clarify how people react to and work with their computers. This is NOT a how-to book of practical advice, but if you are interested in the possible futures of human interface design this short book is an interesting read.

Lynch, P. J. and C. C. Jaffe. 1990. An Introduction to Interactive Hypermedia. *Journal of Biocommunication* 17 (1): 2-8.

A review article describing how hypertext and hypermedia metaphors can be applied to medical teaching problems. Describes the basic structure of hypertext systems, and how audiovisual computing techniques can extend the hypertext metaphor into multimedia documents.

HIGHLY RECOMMENDED

Marcus, A. 1992. *Graphic design for electronic documents and user interfaces.* New York: ACM Press, Addison-Wesley.

A very well-written book on the theoretical basis and practical problems associated with computer document design. Marcus' outline for a computer document design program is especially useful, outlining many of the design features that should be specified in a thorough interface design program.

HIGHLY RECOMMENDED

McCloud, S. 1993. *Understanding comics: The invisible art.* Northhampton, MA: Kitchen Sink Press.

A superb book-length graphic essay (McCloud uses comics to explain graphic communication). Fast becoming a classic in graphic communications, both for McCloud's insights into graphic form and communication, and because the book is self-exemplifying as a graphic narrative.

Microsoft Corporation. 1992. *The windows interface: An application design guide*. Redmond, WA: Microsoft Press.

On of the few existing books dedicated specifically to Windows interface design. Well written and organized.

HIGHLY RECOMMENDED

Norman, D. A. 1988. *The psychology of everyday things*. New York: Basic Books. (Now sold in paperback as The Design of Everyday Things.) This little book is already considered a modern classic in the industrial design and human interface design professions. Norman is a cognitive psychologist, and his book is a highly readable examination of why certain kinds of manufactured things work well and are easy to understand, and why other things (like computers and VCR's) are often so poorly designed and difficult to use. If you pick one book off this list to read, PICK THIS ONE.

Norman, D. A. 1992. *Turn signals are the facial expressions of automobiles*. Reading, MA: Addison-Wesley.

A compilation of short essays on industrial design and human-technology interactions. Highly readable, plain-English wisdom on the design of computers, consumer products, and high technology.

HIGHLY RECOMMENDED

Norman, D. A. 1993. *Things that make us smart: Defending human attributes in the age of the machine.* Reading, MA: Addison-Wesley.

An extension of Norman's earlier books, this time focusing specifically on the uses, human interface issues, and societal problems of computers and high technology.

Shneiderman, B. 1992. *Designing the user interface*. 2nd Ed. Reading, Mass.: Addison-Wesley.

Shneiderman is one of the leading academics in human-computer interface design. This somewhat technical book gives a good overview of interface design developments during the 1970's through the early-1990's, and contains many useful explanations of the philosophical and research underpinnings of graphic interface design.

Shortliffe, E. H., and L. E. Perreault, ed. 1990. *Medical informatics: Computer applications in health care*. Reading, MA: Addison-Wesley.

This volume is an excellent introduction to the wide range of topics now lumped under the umbrella term medical informatics, including hospital information systems, bibliographic research systems like MEDLINE, digital radiology systems, picture archiving and communication systems (PACS), and other many topics involving the use of computers in medical environments. The best single-volume introduction to medical informatics available.

HIGHLY RECOMMENDED

Smith, D. C., C. Irby, R. Kimball, and B. Verplank. 1982. Designing the Star user interface. *Byte* 7 (4): 242-282.

This article is a GUI classic. It was written by the principle designers of the Xerox Star graphic user interface developed at Xerox's Palo Alto Research Center (PARC) in the mid 1970's. This is the interface work everyone else (Apple, Microsoft, etc.) has copied and adapted into today's current Mac and Windows GUI's. The article covers all of the basic ideas that underlie the graphic metaphors for human-computer interaction, and how those ideas were implemented on the Xerox Star computer. Highly readable, with minimal technical jargon.

Tognazzini, B. 1992. *Tog on interface*. Reading, MA: Addison-Wesley. For fifteen years "Tog" Tognazinni was Apple's chief interface advocate (he has since left Apple and now works at Sun). This book is a lively, informal series of essays on a wide variety of interface design issues. Not a book to refer to for carefully organized prescriptions on interface problems, but good fun to read anyway.

HIGHLY RECOMMENDED

Tufte, E. R. 1983. *The visual display of quantitative information*. Cheshire, CT: Graphics Press.

Tufte's book is now widely regarded as the best work that has ever been done on the design of data graphics. Full of well designed and superbly printed illustrations of Tufte's likes and dislikes in data graphics. Don't be put off by the title; the text is very well written and not particularly technical.

HIGHLY RECOMMENDED

Tufte, E. R. 1990. *Envisioning information*. Cheshire, CT: Graphics Press. This book is the best single-volume textbook on visual literacy that I know of, covering conventional graphic design issues, quantitative data graphics, and also includes Tufte's thoughts on human interface design for the computer screen. Superbly illustrated with many graphic examples.

Weiser, M. 1991. The computer for the 21st Century. *Scientific American* 265 (3): 94-104.

The author is one of the current researchers at Xerox's Palo Alto Research Center (PARC), and he describes PARC's current work on new computing software and hardware paradigms. Weiser advocates what PARC calls a "ubiquitous computing" model, where offices and other work environments might be full of many small computers that will all interact and communicate to aid people in creating and using information. Weiser's model is especially relevant to medical environments, and may be the most realistic scenario for the future of medical computing.

Buttons

A rectangular graphic that is usually labeled with text to indicate its function. Buttons usually perform an instantaneous action to initiate or conclude a process.

Check boxes

Used when alternatives are not mutually exclusive, or may be applied simultaneously, such as type styles: type can be both bold and italic at the same time. Check boxes never initiate or conclude an action, they are only used to set choices.

Bold
Italic
Outline

Cursors (or pointers)

An extremely important but often overlooked component of graphic interfaces. Cursors indicate the point of action or insertion on the screen, often acting as a virtual manipulator or hand tool for moving and editing on-screen objects. Cursors are often used to indicate the state of the system (watch or hourglass cursors indicate a short pause, for example), or change to indicate a change in the interactive possibilities offered by the interface (like the window resize arrow cursors that appear at the edges of windows in the Microsoft Windows interface).

Default buttons

A screen button with a heavy outline used to indicate the most likely action to be taken (as long as there is no danger that the action will result in the loss of the user's data). Default buttons are usually linked to the Return key of the keyboard; to initiate the default action the user can just hit the Return key.

Dialog boxes

Special windows that pop up to provide information or choices to the user. Dialog boxes are usually modal, that is, they must be dismissed (with the "Cancel" or "OK" buttons) before further action can take place. Some dialog boxes provide many buttons, pop-up menus, or other choices; others may just contain a text message with an "OK" button used to dismiss the dialog box.

Contents

Appendices

Literature cited

Multimedia bibliography

Interface bibliography

Interface glossary

Note the way check boxes, radio buttons, buttons, default buttons, pop-up menus and text fields are used in the dialog box examples below. These interface elements form the visual and functional vocabulary of the graphic interface, and should only be used in accordance with the interface guidelines of the operating system you are designing within.

	Character
Font:	Size: OK
Palatino	
Underline:	Color:
None 🔻	r 🛛 🖌 🔽 🕞 🖌 🖌 🖌 🗸 🗸 🗸 🗸 🗸 🗸 Black
	_Position
Bold	🖲 Normal 🛛 By:
🗆 Italic	🔿 Superscript
🗌 🗆 Outline	🔾 Subscript
Shadow	
Strikethru	Spacing
Small Caps	Normal By: Sectored
All Caps	
Hidden	○ Expanded

Icons

Graphic representations of objects in the computer interface, including folders, documents, trash cans, mail boxes, applications, storage media, and other hardware attached to the computer or the computer network.

Pop-up menus

Often used in dialog boxes to provide a list of mutually exclusive choices; a more compact choice than listing the items as radio buttons. Pop-up menus are indicated in both the Mac and Windows interfaces by rectangles with downward-pointing arrows.

Font:	
Palatino	▼

Pull-down menus

Menus that drop down from the menu bar at the top of the screen (Mac interface) or top of the window (Windows interface). Menu selection usually initiate some action directly. Menu items that open a dialog box for further information are indicated by placing an ellipsis after the item name (for example, "Print..." opens a dialog box that solicits further information before printing actually takes place). Dividers are used to logically group menu items, or may simply provide visual relief in long menus. Submenus (such as the "Modify" submenu shown at the left) are a means of multiplying the number of menu items available. However, multiple submenus, or triple-layered submenus require too much dexterity for most users and most interface guidelines discourage nested submenus.

File		
New	ЖN	
Open	ж 0	
Open Special 💦 🕟	Modify	
£lose -	***	
Save	жs	
Revert file		
Page Setup		
Print	*P	
Quit	₩Q	

Radio buttons

Denote mutually exclusive choices. Radio buttons are used in situations where only one setting can be active at a time. The name is derived from the metaphor of car radio buttons, where only one radio station can be selected at a time. Radio buttons never initiate or conclude an action, they are only used to set choices.

Window styles

All interfaces provide a number of standard window styles. Window styles also incorporate standard interface elements such as scroll bars, close boxes, pop-up menus, and "zoom boxes."

Note that the (Macintosh) window styles shown above are not just visual alternatives. Each style of window implies a range of interface behaviors as well. For example, "Palette" windows should always float above other

windows and are never overlapped (except by other palettes). Modal windows force the user to take a specified action to dismiss the window before any further interaction can take place.

Rev

Web Style Guide	<u>4</u>)	<u>-</u>
<u>Contents</u> Colophon and tools	This site was designed by Patrick J. Lynch of Yale University's Center for Advanced Instructional Media, and Sarah Horton of Dartmouth College's Academic Computing. Typeface used is Times New Roman or Times Roman. Illustration labels are set in Geneva, Verdana, or Arial.	
	Tools These are the tools we used to create this site. Unless otherwise noted, the software is Macintosh OS. This site was created primarily with various Macintosh OS computers, and a Dell Dimension 486/66 machine running Windows95.	
	HTML editing, writing, text editing■ BBEdit 4.0, from Bare Bones Software.	
	Web browser Netscape 3.0 (Mac & Windows95) 	
	Creating image maps ■ WebMap 1.0.1	
	 Image editing Adobe Photoshop 3.0 & 4.0 (Mac & Windows95) Studio8 2.0 DeBabelizer 1.6.5 	
	Compression StuffIt Deluxe	
	Multimedia Adobe Premiere 4.0 	
	Utilities ■ Fetch 3.0 ■ CuteFTP (Windows95)	
C/AIM		
	© Lynch and Horton, 1997. All rights reserved. Rev. 1/97	<u> </u>

Contents	Copyright All contents of the guide are copyright (C) 1997, Patrick Lynch and Sarah Horton, all rights reserved. You may excerpt up to three graphics from the guide in your print and Web publications, if you agree to credit the graphics on your pages where they appear, as:		
Copyright notice	Copyright Lynch & Horton, 1997. Yale University. http://info.med.yale.edu/caim/manual/		
	Please do not omit the home URL of the style guide on any credit lines.		

© Lynch and Horton, 1997. All rights reserved.

Rev. 1/97

Contents

About the authors

Photos by Bill Brawley, Dartmouth College

Patrick Lynch and Sarah Horton began working together in March of 1991 at the Yale University School of Medicine's Center for Advanced Instructional Media (CAIM). They shared an office the size of a closet and became close friends and colleagues. During that time they authored numerous multimedia titles together, Lynch as Director of CAIM and Horton as Designer/Programmer. They have co-authored several professional papers and have won many awards for software design, including the 1992 Best-in-Show Award from the Health Sciences Communications Association and a Gold Medal, Silver Medal and Award of Excellence in the international INVISION Multimedia Awards. The Yale Center for Advanced Instructional Media expanded its operations in July 1999 to include Web design services for the Yale New Haven Medical Center.

Patrick Lynch continues at the Yale University School of Medicine as Design Director, Web Design and Development and Center for Advanced Instructional Media, and is also the author of an online web design column visualLogic, at his Web site patricklynch.net.

Sarah Horton is Multimedia Applications Specialist for <u>Curricular</u> <u>Computing</u> at Dartmouth College.

