Java Look and Feel Design Guidelines

java.sun.com: Java Look and Feel Design Guidelines @ @ Contents Index Search

Framesversion | No framesversion | Reader Feedback

JAVA

LOOK AND F
DESIGN GUI

EEL
DELINES

Version 1.0.2 December 1999
Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, CA 94303 USA, 650 960-1300
Copyright© 1999 Sun Microsystems, Inc. All Rights Reserved.

Termsof Use | Privacy Palicy.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

http://java.sun.com/products/jif/dg/higtitle.alt.ntm [05/06/2000 14:11:49]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/products/jlf/dg/index.htm
mailto:jlfguide@sun.com?subject=JLFDG%201.0.1%20Feedback
http://www.sun.com/
http://www.sun.com/share/text/SMICopyright.html
http://www.sun.com/privacy/
http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Preface

java.sun.com: Java Look and Feel Design Guidelines @ @ Contents Index Search

Preface

Java Look and Feel Design Guidelines provides essential information for anyone involved in
creating cross-platform applications and applets in the Javar™ programming language. In
particular, this book offers design guidelines for software that uses the Javar™ Foundation Classes
(JFC) together with the Javalook and fedl.

Who Should Use This Book

Although the human interface designer and the software developer might well be the same person,
the two jobs require different tasks, skills, and tools. Primarily, this book addresses the designer

who chooses the interface components, lays them out in a set of views, and designs the user
interaction model for an application. (Unless specified otherwise, this book uses "application” to
refer to both applets and applications.) This book should also prove useful for devel opers,
technical writers, graphic artists, production and marketing specialists, and testers who participate
in the creation of Java applications and applets.

Java Look and Feel Design Guidelines focuses on design issues and human-computer interaction
in the context of the Javalook and feedl. It also attempts to provide a common vocabulary for
designers, developers, and other professionals. If you require more information about technical
aspects of the Java Foundation Classes, visit the Java Technology and Swing Connection web
sites at http://java.sun.com and http://java.sun.com/productg/jfc.

The guidelines provided in this book are appropriate for applications and applets that run on
persona computers and network computers. They do not address the needs of software that runs
on consumer electronic devices.

What Is in This Book

Java Look and Feel Design Guidelines includes the following chapters:

Chapter 1, " The Java L ook and Feedl," introduces key design concepts and visual elements

underlying the Javalook and feel and offers a quick visual tour of an application and an applet
designed with the JFC components and the Java look and feel.

Chapter 2, " The Java Foundation Classes," provides an overview of the Javam™ Development

Kit and the Java Foundation Classes, introduces the JFC components, discusses the concept of
pluggable look and feel designs, and describes the currently available look and feel options.

Chapter 3, " Design Considerations,” discusses some of the fundamental challenges of

designing Javalook and feel applications and applets and of providing for accessibility,
internationalization, and localization.

Chapter 4, " Visual Design," suggests ways to use the Javalook and feel theme mechanism to

change colors and fonts, provides guidelines for the capitalization of text in the interface, and
gives recommendations for layout and visual alignment.

http://java.sun.com/products/jlf/dg/higa.htm (1 sur 8) [05/06/2000 14:15:51]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/
http://java.sun.com/products/jfc

Design Guidelines: Preface

Chapter 5, " Application Graphics," discusses the use of cross-platform color, the creation of

graphics that suit the Javalook and feel, and the use of graphics to enhance corporate and product
identity.

Chapter 6, " Behavior," tells how users of Javalook and feel applications utilize the mouse,

keyboard, and screen and provides guidelines regarding user input and human-computer
interaction, including drag-and-drop operations.

Chapter 7, " Windows, Panes, and Frames," discusses and makes recommendations for the use

of primary, secondary, plain, and utility windows as well as panels, scroll panes, tabbed panes,
split panes, and internal frames.

Chapter 8, " Dialog Boxes," describes dialog boxes and alert boxes, sets standards for dialog box
design, and provides examples of typical dialog boxesin Javalook and feel applications.

Chapter 9," Menusand Toolbars,” defines and gives guidelines for the use of drop-down

menus, contextual menus, toolbars, and tool tips and provides examples of typical menusin Java
look and feel applications.

Chapter 10, " Basic Controls," coversthe use of controls such as command buttons, toggle

buttons, checkboxes, radio buttons, sliders, and combo boxes; it also describes progress bars and
provides suggestions for their use.

Chapter 11, " Text Components,” explains and makes recommendations for the use of the JFC

components that control the display and editing of text: |abels, text fields, text areas, and editor
panes.

Chapter 12, " Lists, Tables, and Trees," discusses and makes recommendations for the use of
lists, tables, and tree views.

Appendix A, " Keyboard Navigation, Activation, and Selection,” contains tables that specify
keyboard operations for the components of the Java Foundation Classes.

Glossary definesimportant words and phrases found in this book. Glossary terms appear in
boldface throughout the book.

What Is Not in This Book

This book does not provide detailed discussions of human interface design principles or the
design process, nor does it present much general information about usability testing.

For authoritative explications of human interface design principles and the design process, see
Macintosh Human Interface Guidelines.

For the classic book on usability testing, see Jakob Nielsen's Usability Engineering.

For details on both of these valuable resources, see Related Books and Web Sites.

Graphic Conventions

Screen shots in this book illustrate the use of JFC components in applications with the Java look
and feel. Because such applications typically run inside windows provided and managed by the
native platform, the screen shots show assorted styles of windows and dialog boxes from the
Microsoft Windows, Macintosh, and CDE (Common Desktop Environment) platforms.

http://java.sun.com/products/jlf/dg/higa.htm (2 sur 8) [05/06/2000 14:15:51]

Design Guidelines: Preface

Throughout the text, symbols are used to call your attention to design guidelines. Each type of
guidelineisidentified by a unique symbol.

_& Javalook and Fed Standards

Requirements for the consistent appearance and compatible behavior of Javalook and
feel applications.

Javalook and feel standards promote flexibility and ease of use in cross-platform
applications and support the creation of applications that are accessible to all users,
including users with physical and cognitive limitations. These standards require you to
take actions that go beyond the provided appearance and behavior of the JFC
components.

Occasionaly, you might need to violate these standards. In such situations, use your
discretion to balance competing requirements. Be sure to engage in user testing to
validate your judgments.

E0 Cross-Platform Delivery Guidelines

Recommendations for dealing with colors, fonts, keyboard operations, and other issues
that arise when you want to deliver your application to avariety of computers running a
range of operating systems.

@ I nternationalization Guidelines
Advice for creating applications that can be adapted to the global marketplace.
=== |Implementation Tips

Technical information and useful tips of particular interest to the programmers who are
implementing your application design.

Related Books and Web Sites

Many excellent references are available on topics such as fundamental principles of human
interface design, design issues for specific (or multiple) platforms, and issues relating to
accessibility, internationalization, and applet design.

Design Principles

The resources in this section provide information on the fundamental concepts underlying
human-computer interaction and interface design.

http://java.sun.com/products/jlf/dg/higa.htm (3 sur 8) [05/06/2000 14:15:51]

Design Guidelines: Preface

Baecker, Ronald M., William Buxton, and Jonathan Grudin, eds. Readings in Human-Computer
Interaction: Toward the Year 2000, 2d ed. Morgan Kaufman, 1995. Based on research from
graphic and industrial design and studies of cognition and group process, this volume addresses
the efficiency and adequacy of human interfaces.

Hurlburt, Allen. The Grid: A Modular System for the Design and Production of Newspapers,
Magazines, and Books. John Wiley & Sons, 1997. Thisis an excellent starting text. Although
originally intended for print design, this book contains many guidelines that are applicable to
software design.

IBM Human-Computer Interaction Group. "IBM Ease of Use." Available:
http://www.ibm.com/ibm/easy. This web site covers many fundamental aspects of human

interface design.

Laurel, Brenda, ed. Art of Human-Computer Interface Design. Addison-Wesley, 1990. Begun as a
project inside Apple, this collection of essays explores the reasoning behind human-computer
interaction and looks at the future of the relationship between humans and computers.

Mullet, Kevin, and Darrell Sano. Designing Visual Interfaces: Communication Oriented
Techniques. Prentice Hall, 1995. This volume covers fundamental design principles, common
mistakes, and step-by-step techniques for handling the visual aspects of interface design.

Nielsen, Jakob. Usability Engineering. AP Professional, 1994. This classic covers international
user interfaces (including gestural interfaces), international usability engineering, guidelines for
internationalization, resource separation, and interfaces for more than one locale.

Norman, Donald A. The Design of Everyday Things. Doubleday, 1990. A well-liked, amusing,
and discerning examination of why some products satisfy while others only baffle or disappoint.
Photographs and illustrations throughout complement the analysis of psychology and design.

Shneiderman, Ben. Designing the User Interface: Strategies for Effective Human-Computer
Interaction, 3d ed. Addison-Wesley, 1997. The third edition of this best-seller adds new chapters
on the World Wide Web, information visualization, and cooperative work and expands earlier
work on development methodol ogies, eval uation techniques, and tools for building user
interfaces.

Tognazzini, Bruce. Tog On Interface. Addison-Wesley, 1992. Based on a human interface column
that Tognazzini wrote for Apple developers, this book delves into the pivotal challenges of user
interface design, including the difficulties inherent in multimedia software.

Tufte, Edward R. Envisioning Information. Graphics Press, 1990. One of the best books on
graphic design, this volume catal ogues instances of superb information design (with an emphasis
on maps and cartography) and analyzes the concepts behind their implementation.

Tufte, Edward R. The Visual Display of Quantitative Information. Graphics Press, 1992. Tufte
explores the presentation of statistical information in charts and graphs with apt graphical
examples and elegantly interwoven text.

Tufte, Edward R. Visual Explanations. Images and Quantities, Evidence and Narrative. Graphics
Press, 1997. The third volume in Tufte's series on information display focuses on data that
changes over time. Tufte explores the depiction of action and cause and effect through such
examples as the explosion of the space shuttle Challenger, magic tricks, and a cholera epidemicin
19th-century London.

Design for Specific Platforms

The resourcesin this section cover application design for the CDE, IBM, Java, Macintosh, and

http://java.sun.com/products/jlf/dg/higa.htm (4 sur 8) [05/06/2000 14:15:51]

http://www.ibm.com/ibm/easy

Design Guidelines: Preface

Microsoft Windows platforms.

CDE

Three volumes address the needs of designers and related professionals creating applications
using CDE and Motif 2.1.

The Open Group, 1997. CDE 2.1/Motif 2.1--Style Guide and Glossary.
The Open Group, 1997. CDE 2.1/Matif 2.1--Style Guide Reference.
The Open Group, 1997. CDE 2.1/Motif 2.1--Style Guide Certification Check List.

They can be ordered from the Open Group at
http://www.opengroup.org/public/pubs/catal og/mo.htm.

IBM

Object-Oriented Interface Design: IBM Common User Access Guidelines. Que Corp, 1992.
Available: http://www.ibm.com/ibm/hci/quidelines/design/ui design.html. This book is out of
print but available from most or al IBM branch offices. A small portion of the printed book is
intertwined with a modest amount of more current material at this IBM web site.

Java

Campione, Mary, and Kathy Walrath. The Java Tutorial: Object-Oriented Programming for the
Internet, 2d ed. Addison-Wesley, 1998. Full of examples, this task-oriented book introduces you
to fundamental Java concepts and applications. Walrath and Campione describe the Java
language, applet construction, and the fundamental Java classes and cover the use of multiple
threads and networking features.

Campione, Mary, et a. The Java Tutorial Continued: The Rest of the JDK. Addison-Wesley,
1998. The experts describe features added to the original core Java platform with many
self-paced, hands-on examples. The book focuses on Java 2 APIs but also contains the
information you need to use the JDK 1.1 versions of the APIs.

Chan, Patrick. The Java Developer's Almanac, 1999. Addison-Wesley, 1999. Organized to
increase programming performance and speed, this book provides a quick but comprehensive
reference to the Javar™ 2 Platform, Standard Edition, v. 1.2.

Eckstein, Robert, Mark Loy, and Dave Wood. Java Swing. O'Reilly & Associates, 1998. An
excellent introduction to the Swing components, this book documents the Swing and Accessibility
application programming interfaces. An especially useful chapter explains how to create a custom
look and feel.

Geary, David M. Graphic Java 2: Mastering the JFC. Volume 2, Snving. Prentice Hall, 1998. This
comprehensive volume describes the skills needed to build professional, cross-platform
applications that take full advantage of the Java Foundation Classes. The volume includes
chapters on drag and drop, graphics, colors and fonts, image manipulation, double buffering,
sprite animation, and clipboard and data transfer.

Sun Microsystems, Inc. Java 2 Platform API Specification. Available:
http://java.sun.com/products/jdk/1.2/docs/api/overview-summary.html. This web site provides

up-to-date technical documentation on the Java2 API.

http://java.sun.com/products/jlf/dg/higa.htm (5 sur 8) [05/06/2000 14:15:51]

http://www.opengroup.org/public/pubs/catalog/mo.htm
http://www.ibm.com/ibm/hci/guidelines/design/ui_design.html
http://java.sun.com/products/jdk/1.2/docs/api/overview-summary.html

Design Guidelines: Preface

Sun Microsystems, Inc. Java Look and Feel Design Guidelines. Available:
http://java.sun.com/productd/jlf. Thisweb site contains an HTML version of this book.

Sun Microsystems, Inc. The Java Tutorial: A Practical Guide for Programmers. Available:
http://java.sun.com/docs/books/tutorial/index.html. This web site is divided into four trails: a
getting started trail for those new to the Java language; atrail introducing the Java language with
sections on writing appl ets, the essential Java classes, creating a GUI, and custom networking; a
specialized trail addressing such topics as internationalization, 2D graphics, and security; and a
trail providing a comprehensive example.

Topley, Kim. Core Java Foundation Classes. Prentice Hall Computer Books, 1998. Topley
explains how to build basic Swing applications, with an emphasis on layout managers and basic
graphics programming. The book also describes the creation of multiple document interface
(MDI) applications.

Walker, Will. "The Multiplexing Look and Fedl." Available:
http://java.sun.com/products/jfc/tsc/archivel/archive.html. This article describes a special ook and
feel that provides away to extend the features of a Swing GUI without having to create a new
look and feel design. Walker describes an example application that can simultaneously provide
audio output, Braille output, and the standard visual output of ordinary Swing applications.

Macintosh

Apple Computer, Inc. Macintosh Human Interface Guidelines. Addison-Wesley, 1992. This
volume is the official word on Macintosh user interface principles. It includes a superb
bibliography with titles on animation, cognitive psychology, color, environmental design, graphic
and information design, human-computer design and interaction, language, accessihility, visual
thinking, and internationalization.

Apple Computer, Inc. Mac OS 8 Human Interface Guidelines. Available:
http://devel oper.apple.com/techpubs/mac/HIGOS8Guide/thig-2.html. This site offersa

supplement to Macintosh Human Interface Guidelines.

Microsoft Windows

Windows I nterface Guidelines for Software Design. Microsoft Press, 1995. Available:
http://msdn.microsoft.com/library/. The official book on Microsoft interface design contains
specifications and guidelines for designers who would like to enhance the usability of their
programs. These guidelines are available in print, and a modest portion of them is on the World
Wide Web. Y ou can download an addendum to the book from

http://msdn.microsoft.com/devel oper/userexperience/winuiguide.asp.

Design for Multiple Platforms

The books in this section discuss the complex issues that arise when designing software that runs
on many platforms.

McFarland, Alan, and Tom Dayton (with others). Design Guide for Multiplatform Graphical User
Interfaces (LP-R13). Bellcore, 1995. (Available only from Bellcore. Call 800-521-2673 from US
& Canada, +1-908-699-5800 from elsewhere.) Thisis an object-oriented style guide with
extensive guidelines and a good explanation of object-oriented user interface style from the user's
perspective.

http://java.sun.com/products/jlf/dg/higa.htm (6 sur 8) [05/06/2000 14:15:51]

http://java.sun.com/products/jlf
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/products/jfc/tsc/archive/archive.html
http://developer.apple.com/techpubs/mac/HIGOS8Guide/thig-2.html
http://msdn.microsoft.com/library/
http://msdn.microsoft.com/developer/userexperience/winuiguide.asp

Design Guidelines: Preface

Marcus, Aaron, Nick Smilonich, and Lynne Thompson. The Cross-GUI Handbook: For
Multiplatform User Interface Design. Addison-Wesley, 1995. This source describes the graphical
user interfaces of Microsoft Windows and Windows NT, OSF/Motif, NeXTSTEP, IBM 0S/2, and
Apple Macintosh. The text includes design guidelines for portability and migration and
recommendations for handling contradictory or inadequate human interface guidelines.

Design for Internationalization

The books in this section describe software design for the global marketplace.

Fernandes, Tony. Global Interface Design: A Guide to Designing International User Interfaces.
AP Professional, 1995. Fernandes addresses devel opers of Internet software designed for a global
market. He explains cultural differences, languages and their variations, taboos, aesthetics,
ergonomic standards, and other issues designers must research and understand.

Guide to Macintosh Software Localization. Addison-Wesley, 1992. A thorough and thoughtful
discussion of the internationalization and localization processes that should prove helpful for
developers on any platform.

Kano, Nadine. Developing International Software for Windows 95 and Windows NT. Microsoft
Press, 1993. Kano targets Microsoft's guidelines for creating international software to an audience
with knowledge of Microsoft Windows coding techniques and C++. The work contains
information on punctuation, sort orders, locale-specific code-page data, DBCS/Unicode mapping
tables, and multilingual API functions and structures.

Luong, Tuoc V., James S.H. Lok, and Kevin Driscoll. Internationalization: Devel oping Software
for Global Markets. John Wiley & Sons, 1995. The Borland internationalization team describes
its procedures and methods with afocus on testing and quality assurance for translated software.
This hands-on guide tells how to produce software that runs anywhere in the world without
requiring expensive recompiling of source code.

Nielsen, Jakob, and ElisaM. Del Galdo, eds. International User Interfaces. John Wiley & Sons,
1996. This book discusses what user interfaces can and must do to become commercialy viablein
the global marketplace. Contributors discuss issues such as international usability engineering,
cultural models, multiple-language documents, and multilingual machine translation.

O'Donnell, Sandra Martin. Programming for the World: A Guide to Internationalization. Prentice
Hall, 1994. This theoretical handbook explains how to modify computer systems to accommodate
the needs of international users. O'Donnell describes many linguistic and cultural conventions
used throughout the world and discusses how to design with the flexibility needed for the global
marketplace.

Uren, Emmanuel, Robert Howard, and Tiziana Perinotti. Software Internationalization and
Localization: An Introduction. Van Nostrand Reinhold, 1993. This guide to software adaptation
encourages developersto aim at producing localized software with the same capabilities as the
original software while meeting local requirements and conventions.

Design for Accessibility

These resources explore how to design software that supports all users, including those with
physical and cognitive limitations.

Bergman, Eric, and Earl Johnson. "Towards Accessible Human Interaction.” In Advancesin
Human-Computer Interaction, edited by Jakob Nielsen, vol. 5. Ablex Publishing, 1995.
Available:

http://java.sun.com/products/jlf/dg/higa.htm (7 sur 8) [05/06/2000 14:15:51]

Design Guidelines: Preface

http://www.sun.com/tech/access/updt.HCI .advance.html. This article discusses the relevance of

accessibility to human interface designers and explores the process of designing for ranges of user
capabilities. It provides design guidelines for accommodating physical disabilities such as
repetitive strain injuries (RSI), low vision, blindness, and hearing impairment. It also contains an
excellent list of additional sources on accessibility issues.

Schwerdtfeger, Richard S. IBM Guidelines for Writing Accessible Applications Using 100% Pure
Java. IBM Corporation, 1998. Available:

http://www.austin.ibm.com/sns/access.html. This web site presents principles of accessibility, a
checklist for software accessibility, and alist of references and resources. In addition, it provides
discussions of accessibility for the web and for Java applications.

Schwerdtfeger, Richard S. Making the GUI Talk. BYTE, 1991. Available:
ftp://ftp.software.ibm.com/sns/sr-0s2/sr2doc/guitalk.txt. This speech deals with off-screen model

technology and GUI screen readers.

Sun Microsystems, Inc. Accessibility Quick Reference Guide. Available:
http://www.sun.com/tech/access/access.quick.ref.html. This site defines accessibility, lists stepsto

check and double-check your product for accessibility, and offers tips for making applications
more accessible.

Sun Microsystems, Inc. "Enabling Technologies." Available:

http://www.sun.com/access. This web site includes a primer on the Java platform and accessibility
and describes the support for assistive technologies now provided by the Swing components of
the Java Foundation Classes.

Design for Applets

These books provide arange of information on designing applets.

Gulbransen, David, Kenrick Rawlings, and John December. Creating Web Applets With Java.
Sams Publishing, 1996. An introduction to Java applets, this book addresses nonprogrammers
who want to incorporate preprogrammed Java applets into web pages.

Hopson, K.C., Stephen E. Ingram, and Patrick Chan. Designing Professional Java Applets. Sams
Publishing, 1996. An advanced reference to devel oping Java applets for business, science, and
research.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jlf/dg/higa.htm (8 sur 8) [05/06/2000 14:15:51]

http://www.sun.com/tech/access/updt.HCI.advance.html
http://www.austin.ibm.com/sns/access.html
ftp://ftp.software.ibm.com/sns/sr-os2/sr2doc/guitalk.txt
http://www.sun.com/tech/access/access.quick.ref.html
http://www.sun.com/access
http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Colophon

java.sun.com: Java Look and Feel Design Guidelines @ @ Contents Index Search

Colophon

LEAD WRITER
Patria Brown

WRITERS
Patria Brown, Gail Chappell

LEAD HUMAN INTERFACE DESIGNER
Don Gentner

JAVA LOOK AND FEEL CREATOR
ChrisRyan

MANAGING EDITOR
Sue Factor

GRAPHIC DESIGNER
Gary Ashcavai

ILLUSTRATORS
Gary Ashcavai, Don Gentner, Chris Ryan

PRODUCTION EDITOR
Bob Silva

PRODUCT MARKETING MANAGER
Christine Bodo

MANAGEMENT TEAM
Laine Yerga, Lynn Weaver, Rob Patten

GUIDELINE CONTRIBUTORS
Don Gentner, Chris Ryan, Michael C. Albers, Brian Beck, David-John Burrowes, Carola Fellenz,
Robin Jeffries, Earl Johnson, Jeff Shapiro, Dena Shumila

Special thanks to Jonathan Schwartz
and the Enterprise Products Group in Java Software

Grateful acknowledgments to Ruth Anderson, Maria Capucciati, Tom Dayton, Martine
Freiberger, Janice Gelb, Dale Green, Mary Hamilton, George Kaempf, Andrea Mankoski, Anant
Kartik Mithal, Moggy ODonovan, Ray Ryan, Scott Ryder, Tom Santos, the Swing Team, Harry
Vertelney, Willie Walker, Steve Wilson, and all our internal and external reviewers

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jlf/dg/colophon.htm [05/06/2000 14:12:03]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Contents

A-Z (Index)

Title Page (Home)

Contents
Preface

Part |: Overview

1. The Java L ook and Feel
Fundamentals of the Java Look and Feel
Visual Tour of the Java Look and Feel
MetalEdit Application
Retirement Savings Calculator Applet

2: The Java Foundation Classes
Java Devel opment Kit
Java Foundation Classes
JDK 1.1 and the Java 2 SDK
Support for Accessibility
Support for Internationalization
User Interface Components of the Java Foundation Classes
Pluggable Look and Feel Architecture
Example Model and Interface
Client Properties
Major JFC User Interface Components
Look and Feel Options
Java L ook and Fedl--the Recommended Design
Alternative Approaches

Supplied Designs

Part I1: Fundamental Java
Application Design

3: Design Consider ations

Choosing an Application or an Applet
Distribution
Security Issues
Placement of Applets

Designing for Accessihility
Benefits of Accessibility
Accessible Design

Planning for Internationalization and L ocalization
Benefits of Global Planning

Global Design

4: Visual Design
Themes
Colors
Fonts
Capitalization of Text in the Interface
Headline Capitalization in English
Sentence Capitalization in English
Layout and Visual Alignment
Between-Component Padding and Spacing Guidelines
Design Grids
Titled Borders for Panels
Text Layout

http://java.sun.com/products/jif/dg/higtoc.htm (1 sur 5) [05/06/2000 14:11:30]

Design Guidelines: Contents

Animation
Progress and Delay Indication
System Status Animation

5: Application Graphics
Working With Cross-Platform Color
Working With Available Colors
Choosing Graphic File Formats
Choosing Colors
Maximizing Color Quality
Designing Graphicsin the Java L ook and Feel Style

Designing Icons
Working With Icon Styles

Drawing Icons

Designing Button Graphics
Using Button Graphic Styles
Producing the Flush 3D Effect
Working With Button Borders
Determining the Primary Drawing Area
Drawing the Button Graphic

Designing Symbols

Designing Graphics for Corporate and Product Identity
Designing Installation Screens
Designing Splash Screens
Designing Login Splash Screens
Designing About Boxes

6. Behavior
Mouse Operations
Pointer Feedback
Mouse-over Feedback
Clicking and Selecting Objects
Displaying Contextual Menus
Drag-and-Drop Operations
Typical Drag and Drop
Pointer and Destination Feedback
Keyboard Operations
Keyboard Focus
Keyboard Navigation and Activation
Keyboard Shortcuts
Mnemonics

Part I11: The Componentsof the
Java Foundation Classes

7: Windows, Panes, and Frames
Anatomy of a Primary Window
Constructing Windows
Primary Windows
Secondary Windows
Plain Windows
Utility Windows
Organizing Windows
Panels
Scroll Panes
Tabbed Panes
Split Panes
Working With Multiple Document Interfaces
Internal Frames

http://java.sun.com/products/jif/dg/higtoc.htm (2 sur 5) [05/06/2000 14:11:30]

Design Guidelines: Contents

Palettes

8: Dialog Boxes
Modal and Modeless Dialog Boxes

Dialog Box Design
Tab Traversal Order
Spacing in Dialog Boxes
Command Buttons in Dialog Boxes
Default Command Buttons
Common Dialog Boxes
Find Dialog Boxes
Login Dialog Boxes
Preferences Dialog Boxes
Print Dialog Boxes
Progress Dialog Boxes
Alert Boxes
Info Alert Boxes
Warning Alert Boxes
Error Alert Boxes
Question Alert Boxes
Color Choosers

9: Menusand Toolbars
Menu Elements
Menu Bars
Drop-down Menus
Submenus
Menu ltems
Checkbox Menu Items
Radio Button Menu ltems
Separators
Common Menus
Typical File Menu
Object Menu
Typical Edit Menu
Typical Format Menu
View Menu
Typical Help Menu
Contextual Menus
Toolbars
Toolbar Placement
Draggable Toolbars
Toolbar Buttons

Tool Tips

10: Basic Controls

Command Buttons
Default Command Buttons
Combining Graphics With Text in Command Buttons
Using Ellipsesin Command Buttons
Command Button Spacing
Command Button Padding

Toggle Buttons
I ndependent Choice
Exclusive Choice

Checkboxes
Checkbox Spacing

http://java.sun.com/products/jif/dg/higtoc.htm (3 sur 5) [05/06/2000 14:11:30]

Design Guidelines: Contents

Radio Buttons
Radio Button Spacing
Combo Boxes
Noneditable Combo Boxes
Editable Combo Boxes
Sliders
Progress Bars

11: Text Components
Labels
Labels That Identify Controls
Labels That Communicate Status and Other Information
Text Fields
Noneditable Text Fields
Editable Text Fields
Password Fields
Text Areas
Editor Panes
Default Editor Kit
Styled Text Editor Kit
RTF Editor Kit
HTML Editor Kit

12: Lists, Tables, and Trees
Lists

Scralling

Selection Modelsfor Lists
Tables

Table Appearance

Table Scrolling

Column Reordering

Column Resizing

Row Sorting
Selection Models for Tables

Tree Views
Linesin Tree Views
Graphicsin Tree Views
Editingin Tree Views

Appendix A: Keyboard Navigation, Activation, and Selection
Checkboxes

Combo Boxes

Command Buttons

Desktop Panes and Internal Frames

Dialog Boxes

HTML Editor Kits

Lists

Menus

Radio Buttons

Scrollbars

Sliders

Split Panes

Tabbed Panes

Tables

Text Areas and Default and Styled Text Editor Kits
Text Fields

Toggle Buttons
Tool Tips

http://java.sun.com/products/jif/dg/higtoc.htm (4 sur 5) [05/06/2000 14:11:30]

Design Guidelines: Contents
Toolbars
Tree Views

Glossary

I ndex

Errata

Colophon

Search

Java Look and Feel Design Guidelines. Copyright 1999. Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jif/dg/higtoc.htm (5 sur 5) [05/06/2000 14:11:30]

http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Index

java.sun.com: Java Look and Feel Design Guidelines @ @ Contents Index Search

Numerals

8-bit colors, 58-62
256-color displays, 58-62

Return to the top of this page.

A

About Application item (Help menu), 139
About boxes, 76
Abstract Window Toolkit (AWT), 16
accelerator keys. See keyboard shortcuts
access keys. See mnemonics
accessibility, 30-32
ease of useand, 30
JFC support for, 16-17
keyboard focus and, 32, 83-85
mnemonics and, 31-32, 88-90
multiplexing look and feel, xxv
recommended reading, XXvii-xxviii
tab traversal and, 32, 114
usability testsfor, 32
active components, spacing of, 48-49
active windows
color design for borders, 40, 43
example, 5

http://java.sun.com/products/jlf/dg/higix.htm (1 sur 28) [05/06/2000 14:11:45]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Index

aert boxes, 122-126
See also dialog boxes
capitalization of text in, 47
Error, 124-125
Info, 123
keyboard operations for, 194
platform-specific examples, 10
Question, 125-126
Warning, 10, 124
alignment. See spacing and alignment
Alt key, 82, 88-89
animation, 54-55
See also mouse-over feedback
applets, 27-29
browser windows and, 29
examples, 5, 10-12
JFC downloads with, 28
menusin, 29
mnemonicsin, 29
recommended reading, xxviii
security issues, 28-29
application graphics, 57-76
See also button graphics; colors; icons
About boxes, 76
corporate and product identity and, 73-76
GIFfilesand, 58-59
installation screens, 73
internationalization, 36, 62
Javalook and feel style, 62
JPEG filesand, 58, 73
splash screens, 73-75
symbols, 72
treeviews, 189
application windows. See primary windows
applications, compared with applets, xix, 5, 27-29
Apply button, 118
arrow keys, 82, 85, 86, 191
arrows. See arrow keys; indicators; scroll arrows

http://java.sun.com/products/jlf/dg/higix.htm (2 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

assistive technologies, 16-17, 31
See also accessibility
audience, Xxix

Return to the top of this page.

B

background canvas, color design for, 41, 43
Backspace key, 82
behavioral design, 77-90
bibliography, xxii-xxviii
bit depth, 58
black, usein Javalook and feel, 40, 42, 43, 44
blinking. See animation
blues, usein Javalook and fedl, 40-41, 43
borders
in button graphics, 68, 143-144
color design for, 43
inicons, 64

boxes. See About boxes; alert boxes; checkboxes, combo boxes; dialog boxes
branding, for products, 73-76

browser windows, 5, 10-13, 29
button controls, 147, 148-156

See also button graphics; checkboxes, command buttons; mouse buttons; radio buttons;
toggle buttons; toolbar buttons

button graphics, 66-72
See also spacing and alignment
bordersin, 68, 143-144

drop-down arrowsin, 144

Return to the top of this page.

C

Cancel button, 75, 116-117
capitalization, 46-47
cascading menus. See submenus

http://java.sun.com/products/jlf/dg/higix.htm (3 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

case-sengitivity, in user input, 159
CDE look and fedl, 24
cellsintables, 176-177, 180-182
channels (for scrollbars), 103
checkbox menu items, 135
example, 7
keyboard operations for, 196
checkboxes, 154-155
example, 9
font design for, 45
keyboard operations for, 192
inmenus, 7,135
spacing of, 48-49, 154-155
text with, 46-47, 154
choosers, color, 126-127
choosing menu items, 133
clicking, 77-78
See also dragging
Control-clicking, 80
double-clicking, 77, 80
as selection technique, 80
Shift-clicking, 80
triple-clicking, 77, 80
client properties, 18
Close button, 76, 116
close controls, 98, 99, 109, 110
See also window controls
Closeitem (File menu), 98, 137
collapse box. See window controls
color choosers, 126-127

color model, 4, 39-44

colors, 39-44
See also application graphics
black, 40, 42, 43, 44
blues, 40-41, 43
cross-platform, 57-62
dithering, 58, 60-62
graphic file formats and, 58-59

http://java.sun.com/products/jlf/dg/higix.htm (4 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

Javalook and feel model, 39-44
primary, 40-41, 43-44
redefining, 44
table of Javalook and feel colors, 43
web-safe, 58, 60
white, 40, 42, 43, 44
columnsin tables
reordering, 177

resizing, 178-179
selecting, 184-186
combo boxes, 156-159
capitalization of text with, 46-47
defined, 147
editable, 158-159
example, 9
internationalization, 36
keyboard operations for, 192
noneditable, 157-158
command buttons, 148-150

See also button graphics; default command buttons; toolbar buttons
in aert boxes, 122-123

Apply, 118

Cancdl, 75, 116-117

Close, 76,116

color design for, 41

elipssmark in, 150

examples, 8,9

font design for, 45

Help, 116

keyboard operations for, 193

OK, 116-117/

Reset, 118

spacing of, 122-123, 143-144, 151

text with, 46, 142-143, 148, 149, 150-151
Command key, 87

commands, menu. See menu items

http://java.sun.com/products/jlf/dg/higix.htm (5 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

common menus, 136-139
company logos, 73-76
components, 17-18
spacing between, 47-53
specifying look and feel of, 23-24
table of major JFC components, 19-22
containers, 95-110

See also dialog boxes; windows
content panes, 104-106

contextual menus, 139-140

See also menus
defined, 129

displaying, 80-81

keyboard operations for, 196
control type style, in Javalook and feel, 43, 45
controls, 147-161

See also checkboxes; command buttons; radio buttons; sliders; toggle buttons; window
controls

capitalization of text with, 46-47
in menus, 135-136
copyright information, 74, 76
corporate identity, graphicsand, 73-76
crosshair pointers, 79
cross-platform colors, 57-62

See also colors
cross-platform delivery guidelines, defined, xxii

cursors. See pointers

Return to the top of this page.

D

dataloss and alert boxes, 124
default colors, 40-43

See also colors
default command buttons, 149-150

See also command buttons
behavior of, 118-119

http://java.sun.com/products/jlf/dg/higix.htm (6 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

examples, 9, 10
mnemonics with, 113
default editor kit, 170, 200-201
default fonts, 45
default pointers, 79
delay feedback, 54-55, 121-122
Delete key, 82
design principles. See principles of design
destination feedback, 82
dialog boxes, 111-127

See also command buttons; spacing and alignment; utility windows
capitalization of titlesand text in, 47

command buttonsin, 115-119
find, 120
initial keyboard focusin, 113
international considerations, 35
keyboard operationsfor, 194
login, 120
mnemonicsin, 113
modes, 112
palette windows, 110
platform-specific examples, 8-9
print, 121
progress, 54-55, 121-122
tab traversal in, 32, 114
tittesfor, 113
astop-level containers, 97-99
Diaog font, 45
dimmed text, color design for, 41, 43
disabilities. See accessibility
dithering, 58
in button graphics, 71
inicons, 65
prevention of, 60-62
dockable toolbars, 141-142
dotsin menus. See ellipsis mark

http://java.sun.com/products/jlf/dg/higix.htm (7 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

double-clicking, 77, 80
downloading applets, 28
drag texture, 4, 8
drag-and-drop operations, 81-82
dragging
and dropping, 81-82
as selection technique, 77, 80
title bars, 109
toolbars, 141-142

drop-down arrows
See also indicators
for combo boxes, 156-158

for toolbar buttons, 144
drop-down menus, 131

See also menus
common, 136-139

defined, 129

displaying, 131

examples, 6-8

keyboard operations for, 196
titlesof, 131

toolbar buttons and, 144

Return to the top of this page.

E

ease of use. See principles of design
Edit menu, 138

example, 7

keyboard shortcutsin, 88

mnemonicsin, 90
editable combo boxes, 158-159

See also combo boxes

example, 9

in login splash screens, 75
editable text fields, 9, 167-168
editing

http://java.sun.com/products/jlf/dg/higix.htm (8 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

password fields, 169
selection techniques, 77, 80
tables, 177
text, 169-172
text fields, 167-168
tree views, 189
editor panes, 170-172
example, 8
keyboard operations for, 200-201
8-bit colors, 58-62
ellipsis mark
in command buttons, 150
in menu items, 134
End key, 82, 87
Enter key, 82, 86, 87, 149
Error alert boxes, 124-125
error messages, 47, 124-125
Escape key, 87, 89, 150
Exit item (File menu), 98, 137

Return to the top of this page.

F

Federal Rehabilitation Act, 30
feedback
animation and, 54-55
while dragging, 82
mouse-over, 79, 145
pointer styleas, 54, 78, 82, 106
progress bars, 160-161
progress dialog boxes, 54-55, 121-122
system status, 55
Ferret utility tool, 31

fields. See password fields; text fields
File menu, 137

Closeitemin, 137
Exititemin, 137

http://java.sun.com/products/jlf/dg/higix.htm (9 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

keyboard shortcutsin, 88
mnemonicsin, 90
Preferencesitemin, 134
find dialog boxes, 120
flush 3D effects
See also application graphics
button graphicsand, 67, 70
component spacing and, 48-49
default theme and, 41, 43
example, 3
iconsand, 63-64, 65
symbolsand, 62

fonts
See also text
international considerations, 37

redefining, 45
table of default fonts, 45
Format menu, 7, 138

formatted text panes. See editor panes
formatting classes, 37

function keys, 82

Return to the top of this page.

G

GIF (Graphics Interchange Format), 58-59
glossary, 205-217
gradients

See also application graphics

in button graphics, 71-72

dithering added to, 61

inicons, 65
graphic conventions in this book, xxi-xxii
graphic file formats, 58-59
Graphics Interchange Format (GIF), 58-59
graphics. See application graphics; button graphics; colors

http://java.sun.com/products/jlf/dg/higix.htm (10 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

grids, 49-51

Return to the top of this page.

H

hand pointers, 79
handicaps. See accessibility
headline capitalization style, 46-47
Help button, 116
Help menu, 139
About Application itemin, 139
mnemonicsin, 90
help messages, capitalization of, 47
hierarchical menus. See submenus
highlighting, color design for, 43
Home key, 82, 87
HTML banners, 10-11
HTML editor kits, 172, 194, 200-201

human interface principles. See principles of design

Return to the top of this page.

|-beam pointer. See text pointers
icons, 63-66
See also application graphics
bordersin, 64
capitalization of text with, 46-47
internationalization, 36, 62
selection, 77, 80
implementation tips, defined, xxii
inactive components, spacing of, 48-49
inactive menu items, color design for, 43
inactive windows
color design for, 41, 43
example, 5

http://java.sun.com/products/jlf/dg/higix.htm (11 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

indicators
for combo boxes, 156-159

for submenus, 132
for toolbar buttons, 144
intreeviews, 187
Info alert boxes, 123
informational symbols, 72
input focus. See keyboard focus
insertion point, 78, 80, 84
installation screens, 73
internal frames, 108-110
color design for, 40-41
keyboard operations for, 193-194
internationalization, 33-37
fontsand, 37
formatting classes and, 37
graphics and, 36, 62
JDK support for, 17
layout managers and, 35, 49
mnemonics and, 33, 36
placement of checkbox text, 154
placement of radio button text, 155
recommended reading, XXVi-xxvii
resource bundles and, 35, 164
scrollbarsand, 104
Stop button and, 122
testing in different locales, 37

internationalization guidelines, defined, xxii

Return to the top of this page.

J

JApplet component. See applets
Java2 SDK, 15-16

Java2D API, 16
Java Accessibility API, 16

http://java.sun.com/products/jlf/dg/higix.htm (12 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

See also accessihility
Java Accessibility Utilities, 16
Java applets. See applets
Java Development Kit (JDK), 15-16
Java Foundation Classes (JFC)

downloading with applets, 28

features of, 15-18

table of major JFC components, 19-22
Javalook and feel

color model, 39-44

compared to other designs, 23-24

defined, 15

design fundamentals, 3-4

fontsin, 45

keyboard operationsin, 82-90

mouse operationsin, 77-82

visual tour of, 4-13
Javalook and feel standards, defined, xxi
JavaHelp, 139
JButton component. See command buttons; toolbar buttons
JCheckbox component. See checkboxes
JCheckboxMenultem component. See checkbox menu items
JColorChooser component. See color choosers
JComboBox component. See combo boxes
JDesktopPane component. See desktop panes
JDialog component. See dialog boxes
JDK (Java Development Kit), 15-16
JEditorPane component. See editor panes
JFC. See Java Foundation Classes
JFrame component. See primary windows
Jinternal Frame component. See internal frames
JLabel component. See labels
JList component. Seelists
JMenu component. See drop-down menus; submenus
JMenuBar component. See menu bars
JMenultem component. See menu items
Joint Photographic Experts Group (JPEG), 58, 73
JOptionPane component. See aert boxes
JPanel component. See panels
JPasswordField component. See password fields

http://java.sun.com/products/jlf/dg/higix.htm (13 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

JPEG (Joint Photographic Experts Group), 58, 73

JPopupMenu component. See contextual menus
JProgressBar component. See progress bars
JRadioButton component. See radio buttons
JRadioButtonMenultem component. See radio button menu items
JScrollBar component. See scrollbars

JScroll Pane component. See scroll panes
JSeparator component. See separators

JSlider component. See dliders

JSplitPane component. See split panes
JTabbedPane component. See tabbed panes
JTable component. See tables

JTextArea component. See text areas
JTextField component. See text fields
JTextPane component. See editor panes
JToggleButton component. See toggle buttons
JToolBar component. See toolbars

JTooltip component. See tool tips

JTree component. See tree views

Jwindow component. See plain windows

Return to the top of this page.

K

key bindings. See keyboard operations
keyboard focus, 83-85
accessibility and, 32, 83-85
defined, 83
keyboard navigation and activation. See keyboard operations
keyboard operations, 83-90
See also keyboard shortcuts; mnemonics
for navigation and activation, 85-87

tables of, 191-203
keyboard shortcuts, 87-88

See also keyboard operations; mnemonics
defined, 83

duplicates in contextual menus, 140
duplicatesin toolbar buttons, 145
example, 7

http://java.sun.com/products/jlf/dg/higix.htm (14 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

font design for, 45

intool tips, 144

stylein menus, 88, 130

table of common sequences, 88
keys

Alt, 82, 88-89

arrow, 82, 85, 86, 191

Backspace, 82

Command, 87

Delete, 82

End, 82, 87

Enter and Return, 82, 86, 87, 149

Escape, 87, 89, 150

function, 82

Home, 82, 87

Meta, 87

modifier, 82, 85-89

Option, 82

Page Down, 82, 86

Page Up, 82, 86

Shift, 80, 82, 85, 191

spacebar, 85, 87

Tab, 85, 86, 191

Return to the top of this page.

L

|abels, 164-166

See also text
active and inactive, 165

capitalization of, 46-47

color design for, 40-41, 43
communicating status with, 166
example, 9

identifying controls with, 164-166
internationalization and, 52

http://java.sun.com/products/jlf/dg/higix.htm (15 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

mnemonicsin, 166
spacing and alignment of, 52, 53, 165

layers. See containers
layout managers, 35, 49, 101
layout. See spacing and alignment
legal requirements
About boxes, 76
accessibility and, 30
splash screens, 75

list boxes. See combo boxes
lists, 173-175
keyboard operations for, 195
scrollingin, 174
selectionin, 80, 174-175
localization, 33-37
See also internationalization
login dialog boxes, 120
login splash screens, 75
look and feel designs, 23-24

See also Javalook and feel
lower-level containers, 101-108

See also panels; scroll panes; split panes; tabbed panes

Return to the top of this page.

M

Macintosh look and feel, 24
MDI (multiple document interface), 108-110, 112
menu bars, 130-131
in applets, 29
example, 6
keyboard operations for, 196
menu items, 132-136

See also keyboard shortcuts; menus; mnemonics
About Application (Help menu), 139

available and unavailable, 133
capitalization of, 46

http://java.sun.com/products/jlf/dg/higix.htm (16 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

checkbox, 135
choosing, 133
Close (File menu), 98, 137
elipssmark in, 134
example, 7
Exit (File menu), 98, 137
highlighted, 133
keyboard operations for, 196
Preferences (File menu), 134
radio button, 136
in submenus, 132
table of common keyboard shortcuts, 88
table of common mnemonics, 90
menu separators, 7, 134, 136
menu titles, 131

See also keyboard shortcuts; menu items; menus, mnemonics
capitalization of, 46
example, 6
font design for, 45
order of, 136
menus, 129-146

See also contextual menus; drop-down menus; keyboard shortcuts; menu bars; menu
items; menu titles; mnemonics; submenus

appletsand, 29
choosing items, 133

common in Javalook and feel, 136-139
displaying, 131

Edit, 7, 88, 90, 138

elipssmark in, 134

File, 88, 90, 134, 137

Format, 7,138

Help, 90, 139

keyboard operations for, 196

Object, 137

order of, 136

http://java.sun.com/products/jlf/dg/higix.htm (17 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

separators, 7, 134, 136
types of, 129
View, 139
Meta key, 87
Metal. See Javalook and feel
Metal Edit application, 5-10
Microsoft Windows look and feel, 24
MIME (Multipurpose Internet Mail Extensions), 82
minimized internal frames, 109-110, 193
minimized windows, example, 5
mnemonics, 88-90
See also keyboard operations; keyboard shortcuts
accessibility and, 31-32, 88-90
in applets, 29
defined, 83
in dialog boxes, 113
examples, 7,9
international considerations, 33, 36
inlabels, 9, 166
table of common assignments, 90
modal dialog boxes, 112
modeless dialog boxes, 112
models (in components), 17-18
modifier keys, 82, 85-89
See also keyboard shortcuts; mnemonics
mouse buttons, 77-78
mouse operations, 77-82
See also dragging
clicking, 77-78, 80
displaying contextual menus, 80-81
mouse-over feedback, 79, 145
move pointers, 79
multiplatform design, recommended reading, xxvi
multiple document interface (MDI), 108-110, 112

Return to the top of this page.

http://java.sun.com/products/jlf/dg/higix.htm (18 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

N

navigation, 85-87
See also keyboard shortcuts, mnemonics
accessibility considerations, 31, 32
between components, 191
tab traversal, 32,114
tables of keyboard operations, 191-204
nested panes, 106, 107-108
nodes, in tree views, 187-188
noneditable combo boxes, 157-158

See also combo boxes
noneditable text fields, 167

See also text fidds

Return to the top of this page.

O

Object menu, 137
OK button, 116-117

option buttons. See radio buttons
Option key, 82

Return to the top of this page.

P

padding. See spacing and alignment
Page Down key, 82, 86

Page Up key, 82, 86

palette windows, 110

See also dialog boxes
palettes, color, 58, 59, 60
See also color choosers; colors
panels, 51-52, 101
panes. See scroll panes; split panes; tabbed panes
password fields, 168-169
plain windows, 73-75, 99-100

http://java.sun.com/products/jlf/dg/higix.htm (19 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

platform-specific design, recommended reading, Xxxiv-xxvi
pluggable look and feel architecture, 17-18
See also Javalook and feel
plug-in editor kits. See editor panes
pointers, 78-79
changing shape of, 54, 78, 82, 106
table of JDK types, 79

pop-up menus. See combo boxes; contextual menus
pop-up windows. See dialog boxes
posting menus, 131, 133

Preferences item (File menu), 134
primary colors, in Javalook and feel, 40-41, 43-44
primary windows, 95-98
See also windows
defined, 93
platform-specific examples, 5, 6
principles of design, 27-37
accessibility, 30-32
applets and, 28-29
internationalization and, 33-37
recommended reading, xxii-xxiii
print dialog boxes, 121
product names, 74, 76
progress bars, 160-161
color design for, 40-41
defined, 147
progress dialog boxes, 55, 121-122

See also feedback

Return to the top of this page.

http://java.sun.com/products/jlf/dg/higix.htm (20 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

Q

Question alert boxes, 125-126
Quit. See Exit item

Return to the top of this page.

R

radio button menu items, 135-136
example, 7
keyboard operations for, 196
radio buttons, 155-156
capitalization of text with, 47
example, 9
keyboard operations for, 196
in menus, 135-136
spacing of, 156
reading order and localization, 35
recommended reading, xxii-xxviii
Reset button, 118
resize pointers, 79
resource bundles, 35, 164
Retirement Savings Calculator applet, 10-13
Return key, 82, 86, 87, 149
reverse video, 43
rollovers. See mouse-over feedback

rows in tables
selecting, 182-184
sorting, 179

RTF editor kit, 171

Return to the top of this page.

S

screen readers, 16
See also accessibility

http://java.sun.com/products/jlf/dg/higix.htm (21 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

scroll arrows, 103-104
scroll boxes, 102
color design for, 40-41
example, 8
scrollbars, 102-104
example, 8
inlists, 174
intables, 177
internationalization considerations, 104
keyboard operations for, 197

secondary menus. See submenus
secondary windows, 93, 98-99

See also dialog boxes
security of information, in applets, 28-29
selection, 77, 80

of listitems, 174-175

of table cells, 180-182

of table columns, 184-186

of tablerows, 182-184
sentence capitalization style, 47
separators, 7, 134, 136
shadows, color design for, 41, 43
Shift key, 80, 82, 85, 191
shortcut keys. See keyboard shortcuts
shortcut menus. See contextual menus
dliders, 159-160

capitalization of text with, 47

defined, 147

drag texturein, 85

example, 12

keyboard operations for, 197
small type style, in Javalook and feel, 43, 45
sorting order and localization, 37
spacebar, 85, 87
spacing and alignment, 47-53

in aert boxes, 122

http://java.sun.com/products/jlf/dg/higix.htm (22 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

inside button graphics, 66-72
of checkboxes, 48-49, 154-155
of command buttons, 122-123, 151
between components, 48-49
design gridsand, 49-50
in dialog boxes, 50-51, 115
internationalization and, 49
of labels, 52, 53, 165
layout managers and, 35, 49, 101
of radio buttons, 156
of scrollbars, 103
intables, 177
of text, 49, 52-53
of titled borders, 51-52
of toggle buttons, 152-153
of toolbar buttons, 143
splash screens, 73-75, 99-100
split panes, 106-108
drag texturein, 85
keyboard operations for, 198
splitter bars, 107

standard menus. See drop-down menus
Stop button, 122

styled text editor kit, 170-171, 200-201
submenus, 132

See also menus
defined, 129

keyboard operations for, 196

Swing. See Java Foundation Classes
symbols, 62

system colors, 59
system status feedback, 55
system type style, in Javalook and fedl, 43, 45

Return to the top of this page.

http://java.sun.com/products/jlf/dg/higix.htm (23 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

T

Tabkey, 85, 86,191

tab traversal, 32,114

tabbed panes, 104-106
capitalization of tab names, 47
keyboard operations for, 198

tables, 176-186
cell background color, 176
editing cells, 177
example, 12
font design for, 45
format options, 177
keyboard operations for, 199-200
reordering columns, 177
resizing columns, 178-179
scrollingin, 177
selecting cells, 180-182
selecting columns, 184-186
selecting rows, 182-184
selection techniquesin, 80
sorting rows, 179

text, 163-172

See also editor panes; fonts; |abels; password fields; text areas; text fields
in buttons, 143, 149, 151

capitalization in interface, 46-47
color design for, 43
direction of, 17
selection, 77, 80
gpacing and alignment, 49, 52-53
usein labels, 52

text areas, 169-170, 200-201

text fields, 167-168
capitalization of labelswith, 47
in combo boxes, 158, 159
examples, 9, 12
font design for, 45

http://java.sun.com/products/jlf/dg/higix.htm (24 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

keyboard operations for, 202
indliders, 160

text pointers, 79

themes, 23, 39-45

three-dimensional effects. See flush 3D effects
title bars
alert box examples, 10

capitalization of text in, 47
color design for, 41, 43
dialog box examples, 9
dragging, 109
window examples, 6
titled borders, 51-52
toggle buttons, 152-153
See also button graphics; command buttons; toolbar buttons
example, 8
keyboard operations for, 202
tool tips, 145-146
capitalization of, 47
font design for, 45
keyboard operations for, 203
timing of, 146
for toolbar buttons, 144
toolbar buttons, 142-145
See also button graphics; command buttons; toggle buttons
examples, 6, 8
graphicsin, 66-67
with menus, 144
spacing of, 143
textin, 143
tool tipsfor, 143
toolbars, 140-145
docking, 141-142
examples, 6, 8
keyboard operations for, 203
spacing of buttonsin, 143
tool tipsfor, 144
top-level containers, 97-100

http://java.sun.com/products/jlf/dg/higix.htm (25 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

See also dialog boxes; plain windows; primary windows; utility windows
trademarks, 74, 76
tree views, 187-189
font design for, 45
keyboard operations for, 203-204
triangles. See indicators
triple-clicking, 77, 80
turners, 187-188
type styles, in Javalook and feel, 45
typography. See fonts; text

Return to the top of this page.

U

unavailable itemsin menus, 133
usability testing
accessibility issues, 32
internationalization, 37
user type style, in Javalook and feel, 43, 45
utility windows, 100
defined, 93
keyboard operations for, 194

Return to the top of this page.

V

version numbers, in About box, 76
vertical spacing. See spacing and alignment
View menu, 139
visual design, 39-55
See also application graphics; spacing and alignment
visual identifiers, product, 74, 76

Return to the top of this page.

http://java.sun.com/products/jlf/dg/higix.htm (26 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

W-Y

walit pointers, 79
Warning alert boxes, 10, 124
warning symbols, 72

web. See applets

web-safe colors, 58, 60
white, use in Javalook and feel, 40, 42, 43, 44

window controls
close controls, 98, 99, 109, 110

ininternal frames, 108-109
in plain windows, 99-100
platform-specific examples, 6
in primary windows, 97-98
windows, 93-110
See also dialog boxes
active, 5, 40, 43
browser, 5, 10-13, 29
capitalization of titles, 47
color design for, 40-41, 43
framesand, 22
keyboard focus, 83
keyboard operations for, 193-194
in MDlIs, 108-110
palette, 110
panels and panesin, 51-52, 101-108
plain, 73-75, 99-100
platform-specific examples, 5, 6
primary, 93, 95-98
secondary, 93, 98-99
astop-level containers, 97-100
utility, 93, 100
Windows. See Microsoft Windows look and feel
word order and localization, 36

word wrap, in text areas, 169-170

Return to the top of this page.

http://java.sun.com/products/jlf/dg/higix.htm (27 sur 28) [05/06/2000 14:11:45]

Design Guidelines: Index

Z

zoom box. See window controls
zooming panes, 107

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jlf/dg/higix.htm (28 sur 28) [05/06/2000 14:11:45]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Glossary

java.sun.com: Java Look and Feel Design Guidelines @ @ Contents Index Search

Glossary

Abstract Window Toolkit

The class library that provides the standard API for building
GUlsfor Java programs. The Abstract Window Toolkit
(AWT) includes imaging tools, data transfer classes, GUI
components, containers for GUI components, an event
system for handling user and system events among parts of
the AWT, and layout managers for managing the size and
position of GUI components in platform-independent
designs. (The GUI componentsin the AWT are implemented
as native-platform versions of the components, and they have
largely been supplanted by the Swing components.) See al'so
Java Foundation Classes, Swing classes.

accessibility

The degree to which software can be used comfortably by a
wide variety of people, including those who require assistive
technol ogies like screen magnifiers or voice recognition. An
accessible JFC application employs the Java Accessibility
API, enablesits usersto select an appropriate look and feel,
and provides keyboard operations for all actions that can be
carried out by use of the mouse. See also Java Accessibility

API, Java Accessibility Utilities, keyboard operations.

alert box

A dialog box used by an application to convey a message or
warning or to gather information from the user. Four
standard aert boxes (Question, Info, Error, and Warning) are
supplied for JFC applications. Alert boxes are created using
the JOptionPane component. See also dialog box.

applet

A program, written in the Javalanguage, that a user can
interact with in aweb browser. See also application.

application

A program that combines all the functions necessary for a
user to accomplish a particular set of tasks (for instance,
word processing or inventory tracking). Unless stated
otherwise, this book uses "application” to refer to both
applets and standal one applications. See also applet.

assistive technology

Hardware or software that hel ps people with disabilities use a
computer (or provides aternative means of use to all users).
Examples include pointing devices other than the mouse,
audio or text-only browsers, and screen readers that translate
the contents of the screen into Braille, voice output, or
audible cues.

AWT

See Abstract Window Toolkit.

http://java.sun.com/products/jlf/dg/higg.htm (1 sur 12) [05/06/2000 14:12:13]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Glossary

bit depth

The amount of information (in bits) used to represent a pixel.
A bit depth of 8 supports up to 256 colors; a bit depth of 24
supports up to 16,777,216 colors.

browser

An application that enables users to view, navigate through,
and interact with HTML documents and applets. Also called
a"web browser."

button

A collective term for the various controls whose on-screen
appearance typically simulates a push button or aradio
button. The user clicks buttons to specify commands or set
options. See also checkbox, command button, radio

button, toggle button, toolbar button.

checkbox

A control, consisting of a graphic and associated text, that a
user clicksto select or deselect an option. A check mark in
the checkbox graphic indicates that the option is selected.
Checkboxes are created using the JCheckBox component.
See also radio button.

checkbox menu item

A menu item that appears with a checkbox next to it to
represent an on or off setting. A check mark in the checkbox
graphic indicates that the menu item is selected. Checkbox
menu items are created using the JCheckBoxMenultem
component. See al'so menu item.

color chooser A component that enables a user to select a color. Color
choosers are created using the JColorChooser component.
See also HSB, palette window, RGB, utility window.

combo box A component with a drop-down arrow that the user clicksto

display alist of options. Noneditable combo boxes
(sometimes called "list boxes") have alist from which the
user can select one item. Editable combo boxes offer a text
field aswell asalist of options. The user can make a
selection by typing avalue in the text field or by selecting an
item from the list. Combo boxes are created using the
JComboBox component.

command button

A button with arectangular border that contains text, a
graphic, or both. A user clicks acommand button to specify a
command to initiate an action. Command buttons are created
using the JButton component. See also button, toggle

button, toolbar button.

component A piece of code or, by extension, the interface element
implemented by that code. See also Swing classes.
container A component (such as an applet, window, pane, or internal

frame) that holds other components.

http://java.sun.com/products/jlf/dg/higg.htm (2 sur 12) [05/06/2000 14:12:13]

Design Guidelines: Glossary

contextual menu

A menu that is displayed when a user presses mouse button 2
while the pointer is over an object or area associated with
that menu. A contextual menu offers only menu items that
are applicable to the object or region at the location of the
pointer. Sometimes called a "pop-up menu." Contextual
menus are created using the JPopupMenu component. See
also menu.

control

An interface element that a user can manipulate to perform
an action, select an option, or set avalue. Examplesinclude
buttons, sliders, and combo boxes.

cross-platform

Pertaining to heterogeneous computing environments. For
example, a cross-platform application is one that has asingle
code base for multiple operating systems.

Ccur sor

See pointer.

default command button

The command button that the application activatesif a user
presses Enter or Return. Default buttons in Javalook and feel
applications have a heavier border than other command
buttons. See a'so command button.

designer

A professional who specifies the way that users will interact
with an application, chooses the interface components, and
lays them out in a set of views. The designer might or might
not be the same person as the developer who writes the
application code.

desktop pane

A container, a sort of "virtual desktop," for an MDI
application. Desktop panes are created using the
JDesktopPane component. See also internal frame, M DI .

dialog box

A secondary window displayed by an application to gather
information from users or to inform them of a condition. A
dialog box can contain panes, lists, buttons, and other
components. Dialog boxes are created using the JDialog
component. See also alert box, color chooser, palette

window, secondary window, utility window.

dithering

Simulating unavailable colors in adisplayed graphic by using
a pattern of two or more available colors.

drag

To move the mouse while holding down a mouse button. See
also drag and drop.

drag and drop

To drag an interface element to anew location in order to
move, copy, or link it. See also drag.

drop-down arrow

The triangular indicator that a user clicks to view more
options than are visible on screen--such as the list attached to
a combo box or the options provided by some toolbar
buttons.

http://java.sun.com/products/jlf/dg/higg.htm (3 sur 12) [05/06/2000 14:12:13]

Design Guidelines: Glossary

drop-down menu

A menu that is displayed when a user chooses amenu titlein
the menu bar. Drop-down menus are created using the IMenu
component. See also menu, menu bar.

editor pane

A component that supports avariety of plug-in editor kits.
The JFC includes editor kits that can display plain, styled,
HTML, and RTF data. Editor panes are created using the
JEditorPane component. See also plug-in editor kit.

flush 3D style

In the Javalook and feel, the effect created by rendering
on-screen graphics whose surfaces appear to be in the same
plane as the surrounding canvas.

GIF

Graphics Interchange Format. An 8-bit graphics format
developed by CompuServe and commonly used on the World
Wide Web. GIF files are limited to 256 colors, and they
compress without loss of information. The GIF format is
typically used for graphicsin the Javalook and feel. See also
bit depth, JPEG.

HSB

For "hue, saturation, brightness." In computer graphics, a
color model in which hue refersto a color's light frequency,
saturation is the amount or strength of the hue (its purity),
and brightness is the amount of black in the color (its
lightness or darkness). See also RGB.

icon

An on-screen graphic representing an interface element that a
user can select or manipulate--for example, an application,
document, or disk.

insertion point

The place, usualy indicated by a blinking bar, where typed
text or adragged or pasted selection will appear. See also

pointer.

internal frame

A container used in MDI applications to create windows that
auser cannot drag outside of the desktop pane. In an MDI
application that uses the Javalook and feel, internal frames
have awindow border, title bar, and standard window
controls with the Javalook and feel. Internal frames are
created using the Jinternal Frame component. See also
desktop pane, MDI.

internationalization

The process of preparing software that is suitable for the
global marketplace, taking into account wide variationsin
regions, languages, and cultures. Internationalization usually
requires the separation of component text from code to ease
the process of trandation. See also localization.

Java 2D API

A programming interface (part of the Java Foundation
Classes in the Java 2 SDK) that provides an advanced
two-dimensional imaging model for complex shapes, text,
and images. Features include enhanced font and color
support and a single, comprehensive rendering model. See
also Java Foundation Classes.

http://java.sun.com/products/jlf/dg/higg.htm (4 sur 12) [05/06/2000 14:12:13]

Design Guidelines: Glossary

Java 2 SDK

The software development kit that devel opers need to build
applications for the Java 2 Platform, Standard Edition, v. 1.2.
See also Java Development Kit.

Java Accessibility API

A programming interface (part of the Java Foundation
Classes) that enables assistive technologies to interact and
communicate with JFC components. A Java application that
fully supports the Java Accessibility APl is compatible with
such technologies as screen readers and screen magnifiers.
See also accessibility, assistive technology, Java

Accessibility Utilities, Java Foundation Classes.

Java Accessibility Utilities

A set of classes (provided in the Java 2 SDK) for use by the
vendors who create assistive technol ogies or automated tool
tests. See also accessibility, assistive technology, Java

Accessibility API, Java Foundation Classes.

Java Development Kit

Software that includes the APIs and tools that developers
need to build applications for those versions of the Java
platform that preceded the Java 2 Platform. Also called the
"JDK." See aso Java 2 SDK.

Java Foundation Classes

A product that includes the Swing classes, pluggable ook
and feel designs, and the Java Accessibility API (all
implemented without native code and compatible with JIDK
1.1). For the Java 2 platform, the Java Foundation Classes
(JFC) aso include the Java 2D API, drag and drop, and other
enhancements. See also Abstract Window ToolKkit,

pluggable look and feel ar chitecture, Swing classes.

Java look and fed

The default appearance and behavior for JFC applications,
designed for cross-platform use. The Javalook and feel
works in the same way on any platform that supports the
Java Foundation Classes. See also Java Foundation

Classes, pluggable look and feel architecture.

JDK See Java Development Kit.

JFC See Java Foundation Classes.

JFC application An application built with the Java Foundation Classes. See
also Java Foundation Classes.

JPEG A graphics format developed by the Joint Photographic
Experts Group. The JPEG format is frequently used for
photographs and other complex images that benefit from a
larger color palette than a GIF image can provide. JPEG
compression is "lossy"; decompressed images are not
identical to uncompressed images. See also GIF.

keyboard focus The active window or component where the user's next

keystrokes will take effect. Sometimes called the "input
focus."

http://java.sun.com/products/jlf/dg/higg.htm (5 sur 12) [05/06/2000 14:12:13]

Design Guidelines: Glossary

keyboard operations

A collective term for keyboard shortcuts, mnemonics, and
other forms of navigation and activation that utilize the
keyboard instead of the mouse. See also keyboard shortcut,

mnemonic.

keyboard shortcut A keystroke combination (usually amodifier key and a
character key, like Control-C) that activates amenu item
from the keyboard even if the relevant menu is not currently
displayed. See aso keyboard oper ations, mnemonic.

label Static text that appearsin the interface. For example, alabel

might identify a group of checkboxes. (The text that
accompanies each checkbox within the group, however, is
specified in the individual checkbox component and is
therefore not considered alabel.) Labels are created using the
JLabel component.

layout manager

An object that assists the designer in determining the size and
position of components within a container. Each container
type has a default layout manager. See also Abstract

Window Toolkit.

list

A set of choices from which a user can select one or more
items. Itemsin alist can betext, graphics, or both. Lists are
created using the JList component. See also combo box.

localization

The process of customizing software for a particular locale.
Localization usually involves trandlation and often requires
changesto fonts, keyboard usage, and date and time formats.
See also internationalization.

look and fed|

The appearance and behavior of a complete set of GUI
components. See also Java look and fesdl.

M DI

Multiple document interface. An interface that confines all of
an application'sinternal frames inside its desktop pane. See

also desktop pane.

menu

A list of choices (menu items) logically grouped and
displayed by an application so that a user need not memorize
al available commands or options. Menus in the Javalook
and feel are "sticky"--that is, they remain posted on screen
after the user clicks the menu title. Menus are created using
the IMenu component. See also contextual menu,

drop-down menu, menu bar, menu item, submenu.

menu bar

The horizontal strip at the top of awindow that contains the
titles of the application's drop-down menus. Menu bars are
created using the IMenuBar component. See also drop-down

menu.

menu item

A choice in amenu. Menu items (text or graphics) are
typically commands or other options that a user can select.
Menu items are created using the JMenultem component.
See also checkbox menu item, radio button menu item.

http://java.sun.com/products/jlf/dg/higg.htm (6 sur 12) [05/06/2000 14:12:13]

Design Guidelines: Glossary

middle mouse button

The central button on a three-button mouse (typically used in
UNIX environments). The Javalook and feel does not utilize
the middle mouse button. See also mouse button 2.

MIME

Multipurpose Internet Mail Extensions. An Internet standard
for sending and receiving non-ASCII email attachments
(including video, audio, and graphics). Web browsers also
use MIME types to assign applications to interpret and
display filesthat are not writtenin HTML.

minimized internal frame

A reduced representation of an internal framein an MDI
application. Minimized internal frameslook like horizontally
oriented tags that appear at the lower-left corner of the
desktop. The user can drag minimized internal frames to
rearrange them. See also M DI .

mnemonic

An underlined letter, typically in amenu title, menu item, or
the text of a button or component. A mnemonic shows the
user which key to press (in conjunction with the Alt key) to
activate acommand or navigate to a component. See al'so
keyboar d operations, keyboard shortcut.

modal dialog box

In a JFC application, adialog box that prevents the user's
interaction with other windows in the current application.
Modal dialog boxes are created using the JDialog
component. See also dialog box, modeless dialog box.

modeless dialog box

In a JFC application, a dialog box whose presence does not
prevent the user from interacting with other windowsin the
current application. Modeless dialog boxes are created using
the JDialog component. See also dialog box, modal dialog

box.

modifier key

A key (for example, the Control or the Shift key) that does
not produce an aphanumeric character but rather modifies
the action of other keys.

mouse button 1

The primary button on a mouse (the only button, for
Macintosh users). By default, mouse button 1 is the leftmost
button, though users might switch the button settings so that
the rightmost button becomes mouse button 1. See a'so
middle mouse button, mouse button 2.

mouse button 2

On atwo-button or three-button mouse, the button that is
used to display contextual menus. By default, mouse button 2
Is the rightmost button on the mouse, though users might
switch the settings so that the leftmost button becomes
mouse button 2. See also contextual menu, middle mouse

button, mouse button 1.

mouse-over feedback

A changein the visual appearance of an interface element
that occurs when the user moves the pointer over it--for
example, the display of a button border when the pointer
moves over atoolbar button.

multiple document interface

SeeMDI.

http://java.sun.com/products/jlf/dg/higg.htm (7 sur 12) [05/06/2000 14:12:13]

Design Guidelines: Glossary

native code Code that refers to the methods of a specific operating
system or is compiled for a specific processor.

palette window In an MDI application with the Javalook and feel, a

model ess window that displays a collection of tools, colors,
or patterns. Palette windows float on top of document
windows. User choices made in a palette window affect
whichever primary window is active. Palette windows are
created using the Jinternal Frame component. See also utility

window.

pane A collective term for scroll panes, split panes, and tabbed
panes.

panel A container for organizing the contents of awindow, dialog

box, or applet. Panels are created using the JPanel
component. See also tabbed pane.

password field A special text field in which the user types a password. The
field displays a masking character for each typed character.
Password fields are created using the JPasswordField
component.

plain window An unadorned window with no title bar or window controls,
typically used for splash screens. Plain windows are created
using the JWindow component. See also primary window,

window controls.

pluggable look and feel architecture | An architecture that separates the implementation of
interface elements from their presentation, enabling an
application to dynamically choose how its interface elements
interact with users. When a pluggable look and feel is used
for an application, the designer can select from several ook
and feel designs.

plug-in editor kit An editor that can be used by the editor pane. The Java
Foundation Classes supply plug-in editor kits for plain,
styled, RTF, and HTML data.

pointer A small graphic that moves around the screen as the user
mani pul ates the mouse (or another pointing device).
Depending on its location and the active application, the
pointer can assume various shapes, such as an arrowhead,
crosshair, or clock. By moving the pointer and pressing
mouse buttons, a user can select objects, set the insertion
point, and activate windows. Sometimes called the "cursor.”
See also insertion point.

preference A setting for an application or tool. Typically set by users.
See al'so property.
primary window A top-level window of an application, where the principal

interaction with the user occurs. Primary windows always
retain the look and feel of the user's native platform. Primary
windows are created using the JFrame component. See al'so
dialog box, secondary window.

http://java.sun.com/products/jlf/dg/higg.htm (8 sur 12) [05/06/2000 14:12:13]

Design Guidelines: Glossary

progress bar An interface element that indicates one or more operations
are in progress and shows the user what proportion of the
operations has been completed. Progress bars are created
using the JProgressBar component. See also control, slider.

property A characteristic of an object. Depending on the object, the

user or the designer might set its properties. See also
preference.

radio button

A button that a user clicksto set an option. Unlike
checkboxes, radio buttons are mutually exclusive--selecting
one radio button deselects al other radio buttonsin the
group. Radio buttons are created using the JRadioButton
component. See also checkbox.

radio button menu item

A menu item that appears with a radio button next to it.
Separators indicate which radio button menu items arein a
group. Selecting one radio button menu item deselects all
othersin that group. Radio button menu items are created
using the JRadioButtonM enultem component.

resour ce bundle

The place where an application stores its |ocale-specific data
(isolated from source code).

RGB

For "red, green, blue." In computer graphics, a color model
that represents colors as percentages of red, green, and blue.
See also HSB.

scroll arrow

In ascrollbar, one of the arrows that a user can click to move
through displayed information in the corresponding direction
(up or down in avertical scrollbar, left or right in a
horizontal scrollbar). See also scrollbar.

scroll box

A box that a user can drag in the channel of a scrollbar to
cause scrolling in the corresponding direction. The scroll
box's position in the scrollbar indicates the user's location in
the list, window, or pane. In the Javalook and feel, the scroll
box's size indicates what proportion of the total information
is currently visible on screen. A large scroll box, for
example, indicates that the user can peruse the contents with
just afew clicksin the scrollbar. See also scrollbar.

scroll pane

A container that provides scrolling with optional vertical and
horizontal scrollbars. Scroll panes are created using the
JScroll Pane component. See also scrollbar.

scrollbar

A component that enables a user to control what portion of a
document or list (or similar information) is visible on screen.
A scrollbar consists of avertical or horizontal channel, a
scroll box that moves through the channel of the scrollbar,
and two scroll arrows. Scrollbars are created using the
JScrollBar component. See also scroll arrow, scroll box,

scroll pane.

http://java.sun.com/products/jlf/dg/higg.htm (9 sur 12) [05/06/2000 14:12:13]

Design Guidelines: Glossary

secondary window

A modal or modeless window created from and dependent
upon a primary window. Secondary windows set options or
supply additional details about actions and objectsin the
primary window. Secondary windows are dismissed when
their associated primary window is dismissed. Secondary
windows are created using either the JFrame or the JDialog
component. See also dialog box, primary window.

separ ator

A line graphic that is used to divide menu itemsinto logical
groupings. Separators are created using the JSeparator
component.

dider

A control that enables the user to set avalue in arange--for
example, the RGB values for acolor. Sliders are created
using the JSlider component. See also progress bar.

split pane

A container that enables the user to adjust the relative size of
two adjacent panes. Split panes are created using the
JSplitPane component.

submenu

A menu that is displayed when a user chooses a certain menu
item in a higher-level menu. Submenus are created using the
JMenu component.

Swing classes

A set of GUI components, featuring a pluggable look and
feel, that are included in the Java Foundation Classes. The
Swing classes implement the Java Accessibility API and
supply code for interface elements such as windows, dialog
boxes and choosers, panels and panes, menus, controls, text
components, tables, lists, and tree views. See also Abstract
Window Toolkit, Java Foundation Classes, pluggable
look and fedl architecture.

tabbed pane

A container that enables the user to switch between several
components (usually JPanel components) that appear to share
the same space on screen. The user can view a particular
panel by clicking its tab. Tabbed panes are created using the
JTabbedPane component.

table

A two-dimensional arrangement of datain rows and
columns. Tables are created using the JTable component.

text area

A multiline region for displaying (and sometimes editing)
text. Text in such areasisrestricted to asingle font, size, and
style. Text areas are created using the JTextArea component.
See dl'so editor pane.

text field

An areathat displays asingle line of text. In a noneditable
text field, a user can copy, but not change, the text. In an
editable text field, a user can type new text or edit the
existing text. Text fields are created using the JTextField
component. See also password field.

theme mechanism

A feature that enables a designer to specify alternative colors
and fonts across an entire Javalook and feel application. See
also Java look and fedl.

http://java.sun.com/products/jlf/dg/higg.htm (10 sur 12) [05/06/2000 14:12:13]

Design Guidelines: Glossary

title bar

The strip at the top of awindow that containsitstitle and
window controls. See also window controls.

toggle button

A button that aternates between two states. For example, a
user might click one toggle button in atoolbar to turn italics
on and off. A single toggle button has checkbox behavior; a
programmiatically grouped set of toggle buttons can be given
the mutually exclusive behavior of radio buttons. Toggle
buttons are created using the JToggleButton component. See
also toolbar button.

tool tip

A short text string that appears on screen to describe the
interface element beneath the pointer.

toolbar

A collection of frequently used commands or options.
Toolbars typically contain buttons, but other components
(such astext fields and combo boxes) can be placed in
toolbars as well. Toolbars are created using the JT ool Bar
component. See also toolbar button.

toolbar button

A button that appearsin atoolbar, typically acommand or
toggle button. Toolbar buttons are created using the JButton
or JToggleButton component. See also command button,

toggle button.

top-level container

The highest-level container for a Java application or applet.
The top-level containers are JWindow, JFrame, and JDialog.

treeview A representation of hierarchical data (for example, directory
and file names) as a graphical outline. Clicking expands or
collapses elements of the outline. Tree views are created
using the JTree component.

turner A graphic used in the tree view component. The user clicksa

turner to expand or collapse a container in the hierarchy.

utility window

In anon-MDI application with the Javalook and feel, a
modeless dialog box that typically displays a collection of
tools, colors, fonts, or patterns. Unlike pal ette windows,
utility windows do not float. User choices madein a utility
window affect whichever primary window is active. A utility
window is not dismissed when a primary window is
dismissed. Utility windows are created using the JDialog
component. See also palette window, secondary window.

web browser

See browser.

window

See dialog box, palette window, plain window, primary
window, secondary window, utility window.

window controls

Controls that affect the state of awindow (for example, the
Maximize button in Microsoft Windows title bars).

http://java.sun.com/products/jlf/dg/higg.htm (11 sur 12) [05/06/2000 14:12:13]

Design Guidelines: Contents

java.sun.com: Java Look and Feel Design Guidelines @ @ Contents Index Search

Contents

A-Z (Index)

Title Page (Home)

Contents
Preface
Part |: Overview

1: TheJaval ook and Fedl
Fundamentals of the Java Look and Feel
Visual Tour of the Java L ook and Feel
Metal Edit Application
Retirement Savings Calculator Applet

2. The Java Foundation Classes

Java Development Kit
Java Foundation Classes
JDK 1.1 and the Java 2 SDK
Support for Accessibility
Support for Internationalization

User Interface Components of the Java Foundation Classes
Pluggable Look and Feel Architecture
Example Model and Interface
Client Properties
Major JFC User Interface Components

L ook and Feel Options
Java L ook and Feel--the Recommended Design
Alternative Approaches
Supplied Designs

Part I Fundamental Java Application Design

3: Design Considerations

Choosing an Application or an Applet
Distribution
Security Issues
Placement of Applets

Designing for Accessibility
Benefits of Accessibility
Accessible Design

http://java.sun.com/products/jlf/dg/higtoc.nf.htm (1 sur 6) [05/06/2000 14:12:15]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Contents

Planning for Internationalization and L ocalization
Benefits of Global Planning

Global Design

4. Visual Design

Themes
Colors
Fonts

Capitdliization of Text in the Interface
Headline Capitalization in English
Sentence Capitalization in English

Layout and Visual Alignment
Between-Component Padding and Spacing Guidelines

Design Grids
Titled Borders for Panels

Text Layout

Animation
Progress and Delay Indication
System Status Animation

5. Application Graphics

Working With Cross-Platform Color
Working With Available Colors
Choosing Graphic File Formats
Choosing Colors
Maximizing Color Quality

Designing Graphicsin the Java Look and Feel Style

Designing lcons
Working With Icon Styles
Drawing Icons

Designing Button Graphics
Using Button Graphic Styles
Producing the Flush 3D Effect
Working With Button Borders
Determining the Primary Drawing Area
Drawing the Button Graphic

Designing Symbols

Designing Graphics for Corporate and Product |dentity
Designing Installation Screens
Designing Splash Screens
Designing Login Splash Screens
Designing About Boxes

6: Behavior
Mouse Operations
Pointer Feedback
Mouse-over Feedback
Clicking and Selecting Objects
Displaying Contextual Menus
Drag-and-Drop Operations

http://java.sun.com/products/jlf/dg/higtoc.nf.htm (2 sur 6) [05/06/2000 14:12:15]

Design Guidelines: Contents

Typica Drag and Drop

Pointer and Destination Feedback
Keyboard Operations

Keyboard Focus

Keyboard Navigation and Activation

Keyboard Shortcuts

Mnemonics

Part I11: The Components of the Java Foundation Classes

7. Windows, Panes, and Frames
Anatomy of aPrimary Window
Constructing Windows

Primary Windows
Secondary Windows
Plain Windows
Utility Windows
Organizing Windows
Panels
Scroll Panes
Tabbed Panes
Split Panes
Working With Multiple Document Interfaces
Internal Frames
Pal ettes

8. Dialog Boxes
Modal and Modeless Dialog Boxes
Dialog Box Design
Tab Traversa Order
Spacing in Diadlog Boxes
Command Buttons in Dialog Boxes
Default Command Buttons
Common Dialog Boxes
Find Dialog Boxes
Login Dialog Boxes
Preferences Dialog Boxes
Print Dialog Boxes
Progress Dialog Boxes
Alert Boxes
Info Alert Boxes
Warning Alert Boxes
Error Alert Boxes
Question Alert Boxes
Color Choosers

9: Menusand Toolbars
Menu Elements
Menu Bars

Drop-down Menus

http://java.sun.com/products/jlf/dg/higtoc.nf.htm (3 sur 6) [05/06/2000 14:12:15]

Design Guidelines: Contents

Submenus
Menu ltems
Checkbox Menu Items
Radio Button Menu Items
Separators
Common Menus
Typica File Menu
Object Menu
Typica Edit Menu
Typical Format Menu
View Menu
Typical Help Menu
Contextual Menus
Toolbars
Toolbar Placement
Draggable Toolbars
Toolbar Buttons

Tool Tips

10: Basic Controls

Command Buttons
Default Command Buttons
Combining Graphics With Text in Command Buttons
Using Ellipses in Command Buttons
Command Button Spacing
Command Button Padding

Toggle Buttons
| ndependent Choice
Exclusive Choice

Checkboxes
Checkbox Spacing

Radio Buttons
Radio Button Spacing

Combo Boxes
Noneditable Combo Boxes
Editable Combo Boxes

Sliders

Progress Bars

11. Text Components
Labels
Labels That Identify Controls
Labels That Communicate Status and Other Information
Text Fields
Noneditable Text Fields
Editable Text Fields
Password Fields
Text Areas
Editor Panes
Default Editor Kit

http://java.sun.com/products/jlf/dg/higtoc.nf.htm (4 sur 6) [05/06/2000 14:12:15]

Design Guidelines: Contents

Styled Text Editor Kit
RTF Editor Kit
HTML Editor Kit

12: Lists, Tables, and Trees

Lists

Scrolling

Selection Modelsfor Lists
Tables

Table Appearance

Table Scrolling

Column Reordering

Column Resizing

Row Sorting

Selection Models for Tables
Tree Views

Linesin Tree Views

Graphicsin Tree Views

Editing in Tree Views

Appendix A: Keyboard Navigation, Activation, and Selection
Checkboxes
Combo Boxes
Command Buttons
Desktop Panes and Internal Frames
Dialog Boxes
HTML Editor Kits
Lists
Menus
Radio Buttons
Scrollbars
Sliders
Split Panes
Tabbed Panes
Tables
Text Areas and Default and Styled Text Editor Kits
Text Fields
Toggle Buttons
Tool Tips
Toolbars
Tree Views

Glossary

I ndex

Errata

Colophon
Search

http://java.sun.com/products/jlf/dg/higtoc.nf.htm (5 sur 6) [05/06/2000 14:12:15]

http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: The Java Look and Feel

java.sun.com: Java Look and Feel Design Guidelines @ @ Contents Index Search

1: The Java Look and Feel

Asthe Java platform has matured, designers and developers have recognized the need for consistent, compatible, and
easy-to-use Java applications. The Javalook and feel meets that need by providing a distinctive platform-independent
appearance and standard behavior. The use of this single look and feel reduces design and devel opment time and lowers
training and documentation costs for al users.

Thisbook sets standards for the use of the Javalook and feel. By following these guidelines, you can create Java
applications that effectively support al users worldwide, including those with physical and cognitive limitations.

Fundamentals of the Java Look and Feel

The Javalook and feel isthe default interface for applications built with the Java Foundation Classes. The Javalook and feel
isdesigned for cross-platform use and can provide:

o Consistency in the appearance and behavior of common design elements
o Compatibility with industry-standard components and interaction styles
0 Aesthetic appeal that does not distract from application content

Three distinctive visual elements are the hallmarks of the Javalook and feel components: the flush 3D style, the drag
texture, and the color model.

In the Javalook and feel, component surfaces appear to be at the same level as the surrounding canvas. This "flush 3D" style
isillustrated in the following figure.

Figure 1 Consistent Use of the Flush 3D Style

oK Cancel Help Size: |10 | hd

¥ Plain Text
) Left
) []E | D eold @ B
& Right 7 Italic

The clean, modern appearance reduces the visual noise associated with beveled edges. Flush 3D components fit in with a
variety of applications and operating systems.

A textured pattern, used throughout the Javalook and feel, indicates items that users can drag. Such an indication cues
cross-platform usersin areliable way. The following figure demonstrates several uses of the drag texture.

Figure 2 Consistent Use of the Drag Texture

Java Look and Feel

Center =

‘ Java Look and Feel ‘ ‘

A simple and flexible color model ensures compatibility with platforms and devices capable of displaying quite different
color depths. The default colors provide an aesthetically pleasing and comfortable scheme for interface elements, as shown
in the following figure.

Figure 3 Role of the Color Model in Compatibility

http://java.sun.com/products/jlf/dg/higc.htm (1 sur 9) [05/06/2000 14:16:54]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: The Java Look and Feel

i Edit JawvaLoaok and Feel Deasign
Guidelines provides ezzential
Title oo Undo inforrmation for anyone
Redo irwalved in the process of
Cut creating crozs-platfarm
- Copy Jawa applications and
applets, In particular, thiz
S bk affers dezign guidelines

Visual Tour of the Java Look and Feel

The Javalook and feel implements widely understood interface elements (windows, icons, menus, and pointers) and works
in the same way on any operating system that supports the Java Foundation Classes (JFC). The visua tour in this section
shows off two JFC applications with the Java look and feel: Metal Edit and Retirement Savings Calculator. Metal Edit isa
standal one, text-editing application; Retirement Savings Calculator is an applet displayed in a browser window.

The following figure shows a Microsoft Windows desktop with Metal Edit and Retirement Savings Calculator. Metal Edit has
amenu bar and toolbar as well as atext-editing area. Retirement Savings Calculator is displayed inside a web browser.
Other Microsoft Windows applications are a so present; some are represented by minimized windows.

Although the windows of many applications can be open on the desktop, only one can be the active window. In the figure,
Metal Edit is the active window (indicated by the color of the title bar), whereas the Netscape Navigator T browser, which
contains Retirement Savings Calculator, isinactive. As an applet, Retirement Savings Calculator is displayed within an

HTML page.
Figure 4 Typical Desktop With Applications on the Microsoft Windows Platform

Active window running
standalone |ava application

B MiwialE diic Isterfece Modids
B [Fon Foqm |lelp

Inactive window running
browser with Java applet

= B (Blnea b B
INTES2OCTION
=i Altheagh compaier- human inerfsce dasipn has teen retogrniosd e sdstine

-ﬂ Frald oo Hitila morm ihan o de-sle thers 12 & kg hiriey of Sengring
Lt IR W Dnirrd b Biadiiad v I il I'.‘ﬁh'll"ll\!'l’lﬂ gLty

i ety s Ter Troe Thioee o e T moen 10 1790 v Frm "

m G0 P VAT G0 G TeTel O MR, GO PAIRT GIET) SO A e tioenal o pment Savings Caleulator
ETSEMET VRIS Elrd ColpARTiry + Lhise Tees oriEpAUseT maYy be el for sTinng

papers. Pinanoid plansing and keeping trackaf appanimenty Secnd tham

ere fewnrinbarent sorstraint: oo the 5!\.1:r.r|’|r.wr'm.rl‘br<b:|p-wr: _D—
aritkm sha indarfiacar fer mes hardoal Jo. i mrw i el T Thea relladiom

II'II"H‘l:I|'|IIW¢|-ﬂ|'Il!|'1 Al B I N':“'I"\?lll [S PR R i

PN Miibad FOR A6 Bt Oodi] e ol § T ot D08 YRR

Thid SFsh euaiiivd The el Ul Vifrd Dol Bt~ BT HYMTTE0S Sl

by cons-dering & wide =arty of rysiens, inchuling meny Cron oftsr arear of ‘

im<hnology. Thase non compruter rascmyins can ke instructive tecmoe Thay ary bt Fumsl
simpler and fher clearer. In sdithion, ron conpuier mamplar provide soma
helpfd dotachoont and perepective for thoes of w imscred o om ey

Thide o't Esi ¥ deady® WYY 1 G0N & iven deSrhidilHh & LT by e
i 0 R TPO, R R GOl Oer Uik EAsenny (B WTTo08) T0F Wnk TW0
BECRobis TR WP Wi ki PAAS LTIl Gy Wit 1 ol LAY T W Pl
o parstura of ha waiir azanping from the fmecet Frox theesnpieaening | (L Peably | Wewrly
riardpoind, Tha problen ir do contral ke Plaw of the Tt wsder roppdy and the B BN AT 4,208 00
seid weter nugply and San coabine e waier rireams o proedae tha Senired |
BT Fo sk TRARCET IR0 o e B 16 P | e Sl ore i) i = ITd 1500463

=T .00 5758

| 0 Cmad ol Phamand =5 R | e TR S AIELTY
mt i BETS 5 BENAEA 51
Ele £t Yoo Heb Fow

P pirasort Mg LN §1.8270.14

E 'E? E L&;] Propected Feiipent Savings

ch'““" -‘q‘.‘d"lw jﬂdw!bh:l e Tires A oo i e Fafon Amvursed Apgr ool stion Flee

s * 0. Vo Fand Hisons 143K
ﬁ ﬁ H 3 ERE R

Foantr Fampbaard Mipaloora [
Fivaey (B Freiached;

=l

@} aom

18 sbgrdn]

T

g5 | By || DK Nepcom Mo | T Fronags Exrest - Hia. | it Dusstirnsim icricon e, | (IE wiolifes - usarrasn | Bae FOE S 2w

— Inactive window Minimized window

MetalEdit Application

Jawa applet

This section uses a hypothetical text-editing application called "Metal Edit" to illustrate some of the most important visua

http://java.sun.com/products/jif/dg/higc.htm (2 sur 9) [05/06/2000 14:16:54]

Design Guidelines: The Java Look and Feel

characteristics of the Javalook and feel, including its windows, menus, toolbars, editor panes, dialog boxes, and aert boxes.

Example Windows

The windows in Javalook and feel applications use the borders, title bars, and window controls of the platform they are
running on. For instance, the Metal Edit document window shown in Figure 4 is running on a Microsoft Windows desktop
and uses the standard Microsoft window frame and title bar. As shown in the following figure, the contents of the document
window (menu bar, toolbar, and editor pane) use the Javalook and feel. However, the window borders, title bars, and

window controls have a platform-specific appearance.

Figure 5 Document Window on Three Platforms

OeEE EoEd bl EEE=E

INTRODUCTION

Althoush computer-humat interface desigh hasz beet recoghiized az a
diztinnct field for little more that a decade, there iz a long history of
dezigning interfaces to control mechanical devicez. In general, humat
interfaces for computers differ from thoze for mechanical devicez inn two
wavs, First, compatred with mozt mechanical devices, computers often
control functions of greater vatriety and complexity - the zame computer
may be uzed for writing papers, financial planning and Keepinig track of
appointments. Second, there are fewer inherent cofistraints on the design
of ifiterfaces for compters, unlike the interfaces for mechanical devices
that are limited tw the relative inflexitility of mechatical and electrical |
cotitrolzs. Honetheless, desigh madels play similar roles in both computer -

Jawa look and feel
window contentz—
rmenu bar, toolbar,
and editor pane

MetalEdit: Interface Models . l e o
at Orm-zpecitic

{ haordersz, title bars,
and window

[0 ==—————— MetalEdit: Interface Models = == 0 B|controls

L

IS I=] E3

Example Menus

The menu bar, which is the horizontal strip under the window title, displays the titles of application menus, called
"drop-down menus." Drop-down menus provide access to an application's primary functions. They aso enable usersto
survey the features of the application by looking at the menu items. Chapter 9 contains discussions of drop-down menus,
submenus, and contextual menus and provides guidelines for the creation of menus and menu items for your application.

Figure 6 Example Menu Bar

http://java.sun.com/products/jlf/dg/higc.htm (3 sur 9) [05/06/2000 14:16:54]

Design Guidelines: The Java Look and Feel

IEile Edit Font Format Helpl

|— ffenu titles

The following figure shows the contents of the Edit and Format menus from the Metal Edit menu bar. The menu items are
divided into logical groupings by menu separators (in the flush 3D style). For instance, in the Edit menu, the Cut, Copy, and
Paste commands, which are related to the clipboard, are separated from Undo and Redo commands, which reverse or restore
changes in the document. For more information, see Separators. Selected menu titles are highlighted in blue in the default

Javalook and feel theme. For details, see Themes.

Figure 7 Example Drop-down Menus

Menutitle ———FEdit
Menuitem Undo Ctrl-7
Inactive menu item —
Kevboard shorkout Ll RS
Copy Ctrl-iC
Paste Ctrl-v
Find... Ctrl-F
Menu gepamtgr —1 Select ﬂll Ctrl-4
Preferences
Format |
Ch Eckbn}: ¥ Mormal Ztrl-Shift-f
menuy item [Bold Ctrl-Shift-B
[talic _trl-Shitt-l
[C Underline Ztrl-Shift-1
Fadio I_:ruttnn —— = Align Left Ztrl-Shift-L
menu item O Align Center Ctrl-Shift-C
i Align Right i_trl-Shift-F
i Justify _trl-Shift-

MIn ermonic

Keyboard shortcuts offer an aternative to using the mouse to choose a menu item. For instance, to copy a selection, users
can press Control-C. For details, see Keyboard Shortcuts.

Mnemonics provide yet another way to access menu items. For instance, to view the contents of the Edit menu, users press
Alt-E. Once the Edit menu has keyboard focus, users can press C to copy a selection. These alternatives are designated by
underlining the "E" in Edit and the "C" in Copy. For details, see Mnemonics.

The menus shown in Figure 7 illustrate two commonly used menu titles, menu items, and menu item arrangements for Java
look and feel applications. For details, see Drop-down Menus and Menu Items.

Example Toolbar

A toolbar displays command and toggle buttons that offer immediate access to the functions of many menu items. The
Metal Edit toolbar is divided into four areas for functions relating to file management, editing, font styles, and alignment.
Note the flush 3D style of the command and toggle buttons and the textured drag area to the left of the toolbar. For details,
see Toolbars.

SN EERIEER = B

L Dragarea |— Command buttons |— Toggle buttons

http://java.sun.com/products/jlf/dg/higc.htm (4 sur 9) [05/06/2000 14:16:54]

Design Guidelines: The Java Look and Feel

Example Editor Pane

The document text in the following figureis displayed in an editor pane with a styled text editor plug-in kit, which is
embedded in a scroll pane. (Note the use of the drag texture in the scroll box.) For more on styled text editor plug-in kits, see
Editor Panes. For details on scroll panes, see Scroll Panes.

Figure 9 Example Editor Pane

INTRODUCTION =

Althouzh computer-humarn interface Jdesign has been recoghnized az a distinct
field for little more that a decade, there iz a long history of designing
interfaces 1o control mechanical devicez. I general, human interfaces for —
compuaters Jiffer from thoze for mechanical devices if two wavs. First,
compatred with most mechatical devwices, computers often contral functions of
greater variety and complexity - the zame compiiter may be used for writing
papers, financial planning and keeping track of appointmetits. Second, there
are fewer intherent cofstraints on the dezign of interfaces for computers,
utilike the interfaces for mechanical devices that are limited b the relative
inflexitility of mechatical and electrical controls. Nonetheless, dezigt models
plav zsimilar roles in btoth computer and mechanical svstems.

| Dragtexture
: if scroll box

1]

Example Dialog Boxes

In the Javalook and feel, dialog boxes use the borders and title bars of the platform they are running on. However, the
dialog box contents have the Javalook and feel. Chapter 8 describes dialog boxes in the Javalook and feel and contains

recommendations for their use.

Figure 10 shows a preferences dialog box with the title bars, borders, and window controls of several platforms. The dialog
box enables users to specify optionsin the Metal Edit application. Noneditable combo boxes are used to select ruler units and
afont. Text fields are used to specify the margins. An editable combo box enables users to specify font size. Radio buttons
and checkboxes are used to set other preferences. Clicking the Browse command button displays a file chooser in which
users can select a stationery folder.

Note the flush 3D borders of the combo boxes, text fields, radio buttons, checkboxes, and command buttons. Labels use the
primary 1 color, one of eight colorsin the default Javalook and feel theme. For athorough treatment of basic controls
(including combo boxes, radio buttons, checkboxes, and command buttons), see Chapter 10. For a detailed discussion of text

fields and labels, see Chapter 11.

Metal Edit provides mnemonics and keyboard navigation and activation sequences for each of the interactive controlsin the
preferences dialog box. The dialog box in the following figure illustrates two ways to create a mnemonic: directly in a
component, indicated by an underlined letter in the component text, or in alabel associated with the component, indicated
by an underlined letter in the label.

Figure 10 Example Dialog Boxes on Microsoft Windows, Macintosh, and CDE Platforms

http://java.sun.com/products/jlf/dg/higc.htm (5 sur 9) [05/06/2000 14:16:54]

Design Guidelines: The Java Look and Feel

MetalEdit: Preferences

| — 1

[0 ==———— MetalEdit: Preferences
Left) puer Uiz '
uEr _l.._d._. [o S S R —— —
Shioy I
Left Mz
Ruler Units: Centimeters Moneditable
Tl Show: cotmbo box
Left Margin: 2hcm Right Margin: | 2.5 cm Editable text field
D atd
Defautll Show: [] Hidden Text |
[l Margins J Ch;ﬁkhl:ﬂ-:es .
Date Fi Ll Cwith rrne manics)
Stat Default Font: | Palatino v Size: 12|« Editable combo box
Date Format:) 11/3/98 —‘
Station " Nov 3, 1008 Radio buttans
- | _) Nowvember 3, 1008
Stationery: gramsiMetalEditStationery | Browse .. E?F:E:E[ﬁgeb Lttan
—— | Moneditable text field
0K Cancel Help }—Cummand button row

Default button

Label
Gwith mnermonic)

Example Alert Boxes

The alert boxesin aJavalook and feel application use the borders, title bars, and window controls of the platform they are
running on. However, the symbols, messages, and command buttons supplied by the JFC use the Javalook and feel. (You
provide the actual message and specify the number of command buttons as well as the button text. The JFC provides layouts
for the symbol, the message, and the command buttons.)

When users try to close awindow without saving changes, the Warning alert box asks them if they would like to save
changes. Of the three command buttonsin Metal Edit's Warning aert box, shown in the following figure, the default

command button is Save. The Don't Save button closes the window without saving changes. The Cancel button closes the
dialog box but leaves the unsaved document open. For details, see Alert Boxes.

Figure 11 Example Alert Boxes on CDE, Microsoft Windows, and Macintosh Platforms

http://java.sun.com/products/jlf/dg/higc.htm (6 sur 9) [05/06/2000 14:16:54]

Design Guidelines: The Java Look and Feel

MetalEdit warning

4 Save Changes?
MetalEdit: Warning

Save Changes?

Tl =l TN x 1 iam g L=, L, =l L g

MetalEdit: Warning "cc————

Save Changes?
The docurment you are closing has unsaved changes.
Do you want to save the changes bhefare clasing the

document?
| Default
' cotmmand
Save Don’t Save Cancel buttan

Retirement Savings Calculator Applet

The sample applet, Retirement Savings Calculator, is part of aweb page displayed in the Netscape Navigator browser, as
shown in the following figure. This human resources applet enables employees of a fictitious company to determine their
contributions to a retirement savings plan. To make it easy for all employees to access information on their retirement
savings, the company provides the applet in aweb page. (Note the boundaries of the applet. The HTML page a so includes a
banner in the GIF format aswell asan HTML header with the title of the page.) All the JFC components shown in the
sample applet use the Javalook and feedl.

Figure 12 Applet on an HTML Page in a Browser (Exploded View)

#Z Retirement Savings Calculator - Metscape
e Edit View Go Communicaior Help
= T r 3 — Browszer
HE = PO N .
“| " Bookmaks M Location:[nitp:/ hrwed fretirement himi | 7 What's Related
— HTML page
with banner
. . and applet
Retirement Savings Calculator tit| e
Salary Contribtbon: -':
1 " | [[} []] 1
13-4 2% A% & B LEi]
Hews Contributions To: O Money Market Fumni
[Bond Fund
(% Stock Market Fund
Save | Reset || Help |
Eifect on Paycheck: | T Weskly [Yearly
Grioas Salary $1.039.47 $54,258.00
T Withkealding 32244 16682463
Otber Deductions 200 465 58
Retiremént Savings 6257 3.254.28
Net Paycheck $645.66 $33,689.51 — Applet
Retirement Matching £31.19 $1.627.14
Projected Retirement Savings
Appreciation Rates:) Assumed Appreciation Rate: [|
‘R Voor Bl Lilotane AL Tar

http://java.sun.com/products/jlf/dg/higc.htm (7 sur 9) [05/06/2000 14:16:54]

Design Guidelines: The Java Look and Feel

NI T N REAEY O RATEE F AFULEE W

$120,000 =

. Actusl
B Frojectad
)

$100,000 o

jen000 ——m———mm

80,000 44—

F40,000

§20.000

fo =

a8 4T 98 99 00 M

183,58 M

0z 03 04

pr

& ==

| Document Done

Sk &5 a0 @ 2| 4| |

L HTML page
Ccontinued)
— Brovwser

[continued)

The applet obtains an employee's current retirement savings contribution and other salary data from a database and fills
noneditabl e text fields with the relevant data. The employee can drag a slider to specify a salary contribution and click a
radio button to specify whether new contributions go to a money market, bond, or stock market fund. A row of command
buttons offers a choice of whether to save changes, reset the salary contribution, or display help.

Using the employee'sinput, the applet cal culates the employee's weekly and yearly gross salary, tax withholding, other
deductions, retirement savings contribution, net paycheck, and the company's matching funds. Results are displayed in a
table. Finally, the employee can type an assumed appreciation rate in an editable text field to see accumulated future savings
or instruct the applet to use the five-year fund history to project savingsin the chart at the bottom of the applet.

Figure 13 Retirement Savings Calculator Applet

Salary Confribution: ¢

] %

Label

2% 4%

g%

slider

[1
Hew Contributions To:) Money Market Fund —|
{2 Bond Fund Radio buttan
(% Stock Market Fund J graoup
. Save || Reset || Help I] Cormmarid
button row
Effect on Paycheck: [Weslkly | Vearly 1
Gross Salary $1,039.47 $54,238.00
Tax Withbalding 3Z22.44 16, F24.63
Other Deductions 9.00 46958| | Taple
Retirement Savings 6257 3,254 28
et Paycheck $645 66 | $3Z 68951
Retirement Matching $31.19 | £1,627.14
Projected Retirement Sadings
_— - - Editable
Appreciation Rates:) Assumed Appreciation Rate: | text field
- | .
e G R 1A Maoneditable
text field
$12|]_||]|:||:| g 8 e e
. Actual
f100,000 - M Frojocted
iau-’uuu TR T IR P T I ETE PT R IE TE P IR IR T PRI
Chan

FE0,000 4

idu-luuu [S S — III
______ -l

http://java.sun.com/products/jlf/dg/higc.htm (8 sur 9) [05/06/2000 14:16:54]

Design Guidelines: The Java Look and Feel

#20.000

in

96 97 ¥ %9 00 OF 0Z 03 04

For more information on the components used in this applet, see Text Fields, Sliders, Radio Buttons, Command Buttons,
and Tables.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jlf/dg/higc.htm (9 sur 9) [05/06/2000 14:16:54]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: The Java Foundation Classes

java.sun.com: Java Look and Feel Design Guidelines @ @ Contents Index Search

2: The Java Foundation
Classes

This book assumes that you are designing software based on the Java Foundation Classes and
utilizing the Javalook and feel. This chapter provides an overview of that technology: the Java
Development Kit and JavaT™ 2 SDK, the user interface components of the Java Foundation
Classes, the pluggable look and feel architecture, and available look and feel designs.

Java Development Kit

The APIs and tools that devel opers need to write, compile, debug, and run Java applications are
included in the Java Development Kit (JDKTM) and Java 2 SDK.

The guidelinesin this book pertain to applications built with the Java 2 SDK, Standard Edition, v.
1.2 (referred to hereafter as "Java 2 SDK"), or the Java Development Kit versions 1.1.3 through
1.1.7 (referred to hereafter as"JDK 1.1"). The Java Foundation Classes are available for use with
JDK 1.1, but they are an integral part of the Java 2 platform.

Java Foundation Classes

The Java Foundation Classes (JFC) include the Swing classes, which define a complete set of
graphic interface components for JFC applications. An extension to the original Abstract Window
Toolkit, the JFC includes the Swing classes, pluggable ook and feel designs, and the Java
Accessibility API, which are all implemented without native code (code that refers to the
methods of a specific operating system or is compiled for a specific processor). The JFC
components include windows and frames, panels and panes, dialog boxes, menus and toolbars,
buttons, dliders, combo boxes, text components, tables, lists, and trees.

All the components have ook and feel designs that you can specify. The cross-platform, default
look and feel isthe Java look and feel. For details on the design principles and visual elements

underlying the Javalook and feel, see Chapter 1.

EB== In code, the Javalook and fedl isreferred to as"Metal "

JDK 1.1 and the Java 2 SDK

The following figure summarizes the differences in the Java Foundation Classesin JDK 1.1 and
the Java 2 SDK. Both development kits contain the Abstract Window Toolkit (AWT), the class
library that provides the standard application programming interfaces for building graphical user
interfaces for Java programs. There is native code in the AWT code in both kits, and in drag and
drop and the Java 2D™ API in the Java 2 SDK.

http://java.sun.com/products/jlf/dg/higd.htm (1 sur 8) [05/06/2000 14:14:34]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: The Java Foundation Classes

Figure 14 Java Foundation Classes for JDK 1.1 and the Java 2 SDK

|DK 1.1 Java 2 SDK
AWT (native code) AWT (native code)

Applet Applet

|avaBeans™ |avaBeans

R system EMI| system

Security SQL support

SOL support

IFC {part of Java 2 platform)

IFC1.1 Java Accessibility AP

(Must be utilized with JDK 1.1)

|ava Accessibility AP

Java 2D AP (native code)
Drag and drop (native code)
Swing

Swing 1.1 Components with pluggable
Components with pluggable look and feel
look and feel Litilities
Utilities

In the Java 2 SDK, the Java Foundation Classes also include the Java 2D API, drag and drop, and
other enhancements. The Java 2D API provides an advanced two-dimensional imaging model for

complex shapes, text, and images. Features include enhanced font and color support and asingle,
comprehensive rendering model.

Support for Accessibility

Three features of JDK 1.1 and the Java 2 SDK support people with special needs: the Java
Accessibility API, the pluggable ook and feel architecture, and keyboard navigation.

The Java Accessibility APl provides ways for an assistive technology to interact and
communicate with JFC components. A Java application that fully supports the Java Accessibility
API is compatible with technol ogies such as screen readers and screen magnifiers. A separate
package, Java Accessibility Utilities, provides support in locating the objects that implement the
Java Accessibility API.

A pluggable look and feel architecture is used to build both visual and nonvisual designs, such as
audio and tactile user interfaces. For more on the pluggable look and feel, see Pluggable L ook and

Feel Architecture.

Keyboard navigation enables users to move between components, open menus, highlight text, and
so on. This support makes an application accessible to people who do not use a mouse. For details
on keyboard operations, see Appendix A.

Support for Internationalization

JDK 1.1 and the Java 2 SDK provide internationalized text handling. This feature includes
support for the bidirectional display of text lines--important for displaying documents that mix
languages with aleft-to-right text direction (for instance, English, German, or Japanese) and

http://java.sun.com/products/jlf/dg/higd.htm (2 sur 8) [05/06/2000 14:14:34]

Design Guidelines: The Java Foundation Classes

languages with aright-to-left direction (for instance, Arabic or Hebrew). JDK 1.1 and the Java 2
SDK also provide resource bundles, locale-sensitive sorting, and support for localized numbers,
dates, times, and messages.

User Interface Components of the Java
Foundation Classes

The Java Foundation Classes include Swing, a complete set of user interface components,
including windows, dialog boxes, alert boxes, panels and panes, and basic controls. Each JFC
component contains amodel (the data structure) and a user interface (the presentation and
behavior of the component), as shown in the following illustration.

Figure 15 Structure of the JFC Components

Model User Interface

Pluggable Look and Feel Architecture

Because both presentation and behavior are separate and replaceable (" pluggable™), you can
specify any of several look and feel designs for your application--or you can create your own look
and feel. The separation of a component's model (data structure) from its user interface (display
and interaction behavior) is the empowering principle behind the pluggable look and feel

ar chitectur e of the JFC. A single JFC application can present a Javalook and feel, a
platform-specific look and feel, or a customized interface (for example, an audio interface).

Example Model and Interface

Consider the dlider in the following figure as a simplified example. The slider's model contains
information about the slider's current value, the minimum and maximum values, and other
properties. The slider's user interface determines how users see or interact with the slider. The
model knows almost nothing about the user interface--while the user interface knows a great deal
about the model.

Figure 16 Pluggable Look and Feel Architecture of a Slider

http://java.sun.com/products/jlf/dg/higd.htm (3 sur 8) [05/06/2000 14:14:34]

Design Guidelines: The Java Foundation Classes

: e Filling =zlider

100

Data Maodel

minimums=1
Maximum=100

valle=57

major tick spacing=25
has focus=false

Look and Feel

Shape and color of slider and channel
Response to drag of slider

Response to click in channel
Response to Page Down

Client Properties

——— |FC-supplied
data structure

Custamizahle
user interface
elements

Y ou can use the client properties mechanism to display an alternate form of a specific Java user
interface component. If alook and feel design does not support the property, it ignores the
property and displays the component as usual. Y ou can set alternate appearances for diders,
toolbars, trees, and internal frames. For instance, anonfilling slider is displayed by default.
However, by using the client properties mechanism, you can display afilling slider, as shown in

Figure 16.

Major JFC User Interface Components

The following table illustrates the major user interface componentsin the JFC. Components are
listed alphabetically by their namesin code. Their English names are provided, followed by the
location of more detailed information on each component.

Table 1 Names and Appearance of the JFC User Interface Components

Component | Code Name Common Name For Details
e .
JApplet Applet Click here
Click here
ok | JButton Command button and toolbar button Click here

http://java.sun.com/products/jlf/dg/higd.htm (4 sur 8) [05/06/2000 14:14:34]

Design Guidelines: The Java Foundation Classes

http://java.sun.com/products/jlif/dg/higd.htm (5 sur 8) [05/06/2000 14:14:34]

[¥]— JCheckBox Checkbox Click here
& = JCheckBoxMenultem Checkbox menu item Click here
..JE JColorChooser Color chooser Click here
= JComboBox Elonedltable and editable combo Click here
0XEeS _—
"‘_-"‘ JDesktopPane Desktop pane Click here
=
— Didloa b q ind q Click here
. ialog box, secondary window, an -
- JDidlog utility window Click here
Click here
doxd . . .
- JEditorPane Editor pane Click here
|__ooo] .
| JFrame Primary window Click here
j Internal f nimized internal | Sickhere
nternal frame, minimized intern -
JIinternalFrame frame, and palette window M
Click here
label JLabel Label Click here
- List List Click here
=1 M Drop-d dsub Click here
= enu rop-down menu and submenu Click here
File JMenuBar Menu bar Click here
— \ JMenultem Menu item Click here
f g\ JOptionPane Alert box Click here
JPanel Panel Click here

Design Guidelines: The Java Foundation Classes

http://java.sun.com/products/jlif/dg/higd.htm (6 sur 8) [05/06/2000 14:14:34]

T JPasswordField Password field Click here
E& JPopupMenu Contextual menu Click here
i JProgressBar Progress bar Click here
() — JRadioButton Radio button Click here
’@—_‘ JRadioButtonMenultem | Radio button menu item Click here
JScrollBar Scrollbar Click here
_ T JScrollPane Scroll pane Click here
JSeparator Separator Click here

JSlider Slider Click here
][JSplitPane Split pane Click here
[— JT abbedPane Tabbed pane Click here
= Jrable Table Click here
tesct JTextArea Plain text area Click here
] JTextField (I\‘Is?r?gelgi}?r?elz;a and editable text fields Click here
T JTextPane E(tjjg;(-)irnpane with the styled editor kit Click here
=R JToggleButton Toggle button and toolbar button %ﬂ:g

Design Guidelines: The Java Foundation Classes

I | JToolBar Toolbar Click here
JToolTip Tool tip Click here
TE JTree Treeview Click here
JWindow Pain (unadorned) window Click here

EE=" Inthe JFC, the typical primary windows that users work with are based on the JFrame
component. Unadorned windows that consist of a rectangular region without any title bar, close
control, or other window controls are based on the IWindow component. Designers and
developers typically use the JWindow component to create windows without title bars, such as
splash screens.

For details on the use of windows, frames, panels, and panes, see Chapter 7.

Look and Feel Options

Y ou, the designer, have the first choice of alook and feel design. Y ou can determine the look and
feel you want users to receive on a specific platform, or you can choose a cr oss-platform look

and fedl.

Java Look and Feel--the Recommended Design

With a cross-platform look and feel, your application will appear and perform the same
everywhere, ssimplifying the application's devel opment and documentation.

L
L7 Specify the Javalook and feel, which is a cross-platform look and feel, explicitly. If you do
not specify alook and feel or if an error occurs while specifying the name of alook and feel, the
Javalook and feel isused by default.

E#=" Thefollowing code can be used to specify the Javalook and feel explicitly:
UlManager.setlL ookAndFeel (
UlManager.getCrossPlatf ormL ook AndFeel ClassName());

Alternative Approaches

If you do not specify the Javalook and feel, you can specify:

0 A particular look and feel--one that ships with the JFC or one that someone else has made.
Note, however, that not all look and feel designs are available on every platform. For
example, the Microsoft Windows look and feel is available only on the Microsoft
Windows platform.

o Anauxiliary look and feel--one that is designed to be used in addition to the primary look

http://java.sun.com/products/jlf/dg/higd.htm (7 sur 8) [05/06/2000 14:14:34]

Design Guidelines: The Java Foundation Classes

and feel. By combining look and feel designs, you can target different ways of perceiving
information.

Because there is far more to the design of an application than the look and feel of components, it
isunwise to give end users the ability to swap look and feel designs while working in your
application. Switching look and feel designsin thisway only swaps the look and feel designs of
the components from one platform to another. The layout and vocabulary used are platform-
specific and do not change. For instance, swapping look and feel designs does not change the
titles of the menus.

L
"7 Makeit possible for your users to specify an auxiliary look and feel design, which provides

alternative methods of information input and output for people with special needs.

Supplied Designs

Thelook and feel designs available in JDK 1.1 and the Java 2 SDK are:

o Javalook and feel. (Called "Metal" in the code.) The Javalook and feel is designed for
use on any platform that supports the JFC. This book provides recommendations on the
use of the Javalook and feel.

0 Microsoft Windows. (Called "Windows' in the code.) The Microsoft Windows style look
and feel can be used only on Microsoft Windows platforms. It follows the behavior of the
components in applications that ship with Windows NT 4.0. For details, see Windows
Interface Guidelines for Software Design.

0 CDE. (Caled "CDE/Matif" in the code.) The CDE style look and feel is designed for use
on UNIX® platforms. It emulates OSF/Motif 1.2.5, which ships with the Solaris™ 2.6
operating system. It can run on any platform. For details, see the CDE 2.1/Motif 2.1--Style
Guide and Glossary.

In addition, you can download the Macintosh style look and feel (called "Mac OS" in the code)
separately. The Macintosh style look and feel can be used only on Macintosh operating systems. It
follows the specification for components under Mac OS 8.1. For details, see the Mac OS 8 Human
Interface Guidelines.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jlf/dg/higd.htm (8 sur 8) [05/06/2000 14:14:34]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Design Considerations

jawa.sun.com: Java Look and Feel Design Guidelines @ @ Contents Index Search

3: Design Considerations

When you begin a software project, ask yourself these three questions:
o How do | want to deliver my software to users?
o How can | design an application that is accessibleto all potential users?
o How can | design an application that suits agloba audience and requires minimal effort to localize?

Choosing an Application or an Applet

At the beginning of the devel opment process, you must decide if you want to create a standalone
application or an applet that is displayed in aweb browser. The following figure shows the different
environments for running applications and applets.

Figure 17 Environments for Applications and Applets

Applet Application

Browsers \ Platforms /

Internet Explorer Microsoft Windows
Metscape Navigator Macintosh
HotJava™ Browser LMY

(Solaris, HPAUX, AIX, Linux)

0542

When deciding between an application and an applet, the two main issues you need to consider are
distribution and security, including read and write permissions. If you decide to use an applet, you must
also decide whether to display your applet in the user's current browser window or in a separate browser
window.

For an example of an application that uses the Javalook and feel, see MetalEdit Application. For an
example of an applet, see Retirement Savings Calculator Applet. For alist of additional reading on applets,
see Design for Applets.

http://java.sun.com/products/jlf/dg/higf.htm (1 sur 9) [05/06/2000 14:14:42]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Design Considerations

Distribution

When deciding how to distribute your software, weigh the needs of both end users and administrators.
Don't forget to consider ease-of-use issues for:

o Initia distribution and installation of the software
o Maintenance of the software

o Updates to the software

o Daily accessto the software

At one extreme is the standal one application, distributed on a CD-ROM disc or afloppy disk and installed
on the end user'slocal hard disk. Once the application isinstalled, users can easily accessit. In an
enterprise environment, however, maintenance can be complicated because separate copies of the
application exist on each user's local computer. Distribution of the original application and subsequent
updates require shipment of the software to, and installation by, multiple users.

In contrast, applets are simpler to distribute and maintain because they are installed on a central web server.
Using aweb browser on their local machines, users can access the latest version of the applet from
anywhere on the intranet or Internet. Users, however, must download the applet over the network each time
they start the applet.

If you are creating an applet, make sure that your users have a browser that contains the JFC or that they
are using Java™ Plug-In. That way, users will not have to download the JFC every time they run the
applet.

Security Issues

Another issue to consider is whether your software needs to read and write files. Standalone Java
applications can read or write files on the user's hard disk just as other applications do. For example, the
Metal Edit application reads and writes documents on the user's local disk.

In contrast, applets usually cannot access a user's hard disk because they are intended for display on aweb
page, which might come from an unknown source. Applets are better suited for tasks that do not require
access to a user's hard disk. For example, aweb page for a bank might offer an applet that cal culates home
mortgage payments and prints results, but does not save files on the customer's hard disk.

Y ou can also use applets as afront end to a central database. For example, the Retirement Savings
Calculator applet enables company employees to select funds for their retirement contribution and update
the amount of their contribution in the company database.

Placement of Applets

If you decide to design an applet, you can display your applet in the user's current browser window or in a
separate browser window.

Applets in the User's Current Browser Window

The current browser window is well suited for displaying applets in which users perform asingle task. This
approach enables users to perform the task and then resume other activities in the browser, such as surfing
the web.

An applet displayed in the current browser window should not include a menu bar--having amenu bar in
both the applet and the browser might confuse users. The mnemonics assigned in the applet must also be
different from the mnemonics used to control the browser window; otherwise, the mnemonics might
conflict.

http://java.sun.com/products/jlf/dg/higf.htm (2 sur 9) [05/06/2000 14:14:42]

Design Guidelines: Design Considerations

A disadvantage of using the current browser window is that the applet terminates when users navigate to
another web page. The current settings and datain the applet are lost. To use the applet again, users must
navigate back to the page that contains the applet and reload the page.

Applets in Separate Browser Windows

If your applet involves more than one task or if users might visit other web pages before completing the
task, launch a separate browser window and display the applet there. This approach enables users to
interact with the applet and maintain the original browser window for other activities. Navigating to
another web page in the original browser window does not affect the applet in the separate browser
window.

Designing an applet for a separate browser window is simpler if you remove the browser's normal menu
and navigation controls. Doing so avoids confusion between the browser's menu and controls and the
applet's menus and controls. Y ou also avoid potential conflicts between mnemonics in the two windows.

Designing for Accessibility

Accessibility refers to the removal of barriers that prevent people with disabilities from participating in
social, professional, and practical life activities. In software design, accessibility requires taking into
account the needs of people with functional differences. for example, users who are unable to operate a
conventional mouse or keyboard or users who cannot process information using traditional output methods.

Benefits of Accessibility

Providing computer access to users with disabilities offers social, economic, and legal benefits. Accessible
software increases the opportunities for employment, independence, and productivity for the approximately
750 million people worldwide with disabilities.

Building accessibility into an application makes it easier to use for awide range of people, not only those
with disabilities. For example, mnemonics, which provide an aternate keyboard method for accomplishing
tasksin an application, aid users with physical disabilities aswell as blind and low-vision users.
Mnemonics are also broadly employed by "power" users.

Many countries are instituting legislation that makes access to information, products, and services
mandatory for individuals with special needs. In these countries, government and academic institutions are
required to purchase and support technologies that maximize accessibility. For example, in the United
States, Section 508 of the Federal Rehabilitation Act requires all federal contracts to include solutions for
employees with disabilities. The international community of people with disabilitiesis also successfully
pressuring companies to sell accessible software.

Accessible Design

Five stepswill put you on a path to an accessible product:
o Follow the standards in this book
o Provide accessible names and descriptions for your components
o Employ mnemonics and keyboard shortcuts throughout your application
o Provide proper keyboard navigation and activation
o Perform usability tests

For alist of additional reading, see Design for Accessibility.

http://java.sun.com/products/jlf/dg/higf.htm (3 sur 9) [05/06/2000 14:14:42]

Design Guidelines: Design Considerations

Java Look and Feel Standards

The Javalook and feel standards in this book take into account the needs of users with functional
limitations. The standards cover how to use colors, fonts, animation, and graphics. By following these
standards, you will be able to meet the needs of most of your users.

27 Javalook and feel standards are identified throughout the book by this symbol.

Accessible Names and Descriptions

Y ou should provide an accessible name and description for each component in your application. These
properties enable an assistive technology, such as a screen reader, to interact with the component.

EB="= The accessibleName property provides a name for acomponent and distinguishesit from other
components of the same type.

EB=" The accessibleDescription property provides additional information about a component, such as
how it works. Setting a component's accessibleDescription property is equivalent to providing atool tip for
the component.

EE="" The Ferret utility tool can be used to check that an accessibleName and other API information are
properly implemented in your application. Ferret is part of the Java Accessibility Utilities package.

For more information on the Java Accessibility API and the Java Accessibility Utilities package, see
Support for Accessibility.

Mnemonics

Y ou should provide mnemonics throughout your application. A mnemonic is an underlined letter that
shows users which key to press (in conjunction with the Alt key) to activate a command or navigate to a
component. The following dialog box shows the use of mnemonics for atext field, checkboxes, radio
buttons, and command buttons. For example, if keyboard focus iswithin the dialog box, pressing Alt-W
moves keyboard focus to the Whole Word checkbox.

Figure 18 Mnemonicsin a Dialog Box

MetalEdit: Find]|

Find: | |

vl Match Case () Start at Top
| WholeWord ® \Wrap Around
1

Find Close

MInEnnonics

In cases where you can't add a mnemonic to the component itself, asin the text field in the preceding
figure, you can place the mnemonic in the component's label. For more information on mnemonics, see
Mnemonics.

EE= ThelabelFor property can be used to associate a label with another component so that the
component becomes active when the label's mnemonic is activated.

http://java.sun.com/products/jlf/dg/higf.htm (4 sur 9) [05/06/2000 14:14:42]

Design Guidelines: Design Considerations

Keyboard Focus and Tab Traversal

Y ou can also assist users who navigate via the keyboard by assigning initial keyboard focus and by
specifying atab traversal order. Keyboard focus indicates where the next keystrokes will take effect. For
more information, see Keyboard Focus.

Tab traversal order is the sequence in which components receive keyboard focus on successive presses of
the Tab key. In most cases, the traversal order follows the reading order of the users' locale. For more
information on tab traversal order, see Tab Traversal Order.

Make sure you test your application to seeif users can access all functions and interactive components
from the keyboard. Unplug the mouse and use only the keyboard when you perform your test.

Usability Testing

Y ou should test the application with avariety of usersto see how well it provides for accessibility.
Low-vision users, for example, are sensitive to font sizes and color, as well as layout and context problems.
Blind users are affected by interface flow, tab order, layout, and terminology. Users with mobility

impai rments can be sensitive to tasks that require an excessive number of steps or a wide range of
movement.

Planning for Internationalization and Localization

In software devel opment, internationalization is the process of writing an application that is suitable for the

global marketplace, taking into account variations in regions, languages, and cultures. A related term,
localization, refersto the process of customizing an application for a particular language or region. The

language, meaning, or format of the following types of data can vary with locale:
o Colors
o Currency formats
o Date and time formats
o Graphics
o lcons

o Labels

o Messages

o Number formats

o Online help

o Page layouts

o Personal titles

o Phone numbers

o Postal addresses

o Sounds

o Units of measurement

The following figure shows a notification dialog box in both English and Japanese. Much of the
localization of this dialog box involves the trandation of text. The Japanese dialog box is bigger than the
English dialog box because some text strings are longer. Note the differences in the way that mnemonics
are displayed. In English, the mnemonic for the Sound Filetext field is S. In Japanese, the same mnemonic
(S) is placed at the end of the label.

Figure 19 English and Japanese Notification Dialog Boxes

http://java.sun.com/products/jlf/dg/higf.htm (5 sur 9) [05/06/2000 14:14:42]

Design Guidelines: Design Considerations

MetalMail: Motification

Signal Hew Mail With:

Beeps: 2|
Flashes: 0w
Sound File: Select ...

0K Cancel Help

Mn ermonics
MetalMail: 1870
R A — Lo EEDRE:
E— BB 2|
=P ()} 0w
Tt F7 7 LB EERL)..
THE HEAL LR (H)
Min ermon ics

Benefits of Global Planning

The main benefit of designing an application for the global marketplace is more customers. Many countries
require that companies purchase applications that support their language and culture. Global planning
ensures that your application is easier to trandate and maintain (because it has asingle sourcefile). A
well-designed application will function the same way in all locales.

Global Design

Y ou can incorporate support for localization into your design by using JFC-supplied layout managers and
resource bundles. In addition, you should take into account that differences exist around the world in
reading order, text, mnemonics, graphics, formats, sorting orders, and fonts.

@ Internationalization guidelines are identified throughout the book by this symbol. For alist of
additional reading, see Design for I nternationalization.

Layout Managers

Y ou can use a layout manager to control the size and location of the componentsin your application. For

http://java.sun.com/products/jlf/dg/higf.htm (6 sur 9) [05/06/2000 14:14:42]

Design Guidelines: Design Considerations

example, Figure 19 shows that the Sound File label becomes longer when it istranslated from English to
Japanese. The spacing between the Sound File label and its text field, however, is the samein both dialog
boxes. For more information on layout managers, see The Java Tutorial at
http://java.sun.com/docs/books/tutorial.

Resource Bundles

Y ou should use resource bundles to store |ocal e-specific data, such as text, colors, graphics, fonts, and
mnemonics. A resource bundle makes your application easier to localize because it provides locale-specific
datawithout changing the application source code. If your application has a Cancel button, for example,
the resource bundlesin English, German, and Chinese would include the text shown in the following
figure.

Figure 20 Cancel Buttons in English, German, and Chinese

Cancel Abbrechen il

For more information on creating resource bundles, see The Java Tutorial.

Reading Order

When you lay out your application, place the components according to your users reading order. This
order will help users understand the components quickly as they read through them. Reading orders vary
among locales. The reading order in English, for example, isleft to right and top to bottom. The reading
order in Middle Eastern languages, on the other hand, is from right to left and top to bottom.

In this book, you will find standards such as "put labels before the component they describe." The term
"before” is determined by the reading order of the user's language. For example, in English, labels appear
to the left of the component they describe.

EE== In the Java 2 SDK, the layout managers FlowLayout and BorderLayout are sensitive to the reading
order of the locale.

Word Order

Keep in mind that word order varies among languages, as shown in the following figure. A noneditable
combo box that appears in the middle of an English sentence does not tranglate properly in French, where
the adjective should come after the noun. (The correct French sentence is "Utilisez une Fléche Rouge.")

Figure 21 Correct Word Order in English But Not in French

Usea Flllad w | Arrow Utilisez une Ruluge w | Fléche

L Adjective Moun L Adjective L Moun

The following figure corrects the problem by using alabel before the noneditable combo box. This format
works well in both English and French.

Figure 22 Correct Word Order in Both English and French

http://java.sun.com/products/jlf/dg/higf.htm (7 sur 9) [05/06/2000 14:14:42]

http://java.sun.com/docs/books/tutorial

Design Guidelines: Design Considerations

Arrow Color: | Red .- Couleur de la Fleche: | Rouge | -
Property L setting Property L setting
Mnemonics

Y ou must be careful when choosing mnemonics, which might change in different languages. Make sure
that the characters you choose for your mnemonics are available on international keyboards. In addition,
store mnemonics in resource bundles with the rest of the application's text.

Graphics

Y ou can make localization easier by using globally understood graphics whenever possible. Many graphics
that are easily understood in one locale are puzzling in another locale. For example, using amailbox to
represent an email application is problematic because the shape and size of mailboxes vary by locale.
Graphics that represent everyday objects, holidays, and seasons are difficult to localize, as are graphics that
include text.

Avoid using graphics that might be offensive in some locales. For example, many hand positions are
considered obscene gestures. Other graphics that sometimes cause offense are pictures of animals and
people. An example of a symbol that workswell in al culturesisthe use of an airplane to denote an
airport.

Like text, you can place graphicsin resource bundles so that the translators can change them without
changing the application source code. The ability to change graphics aso benefits users with visua
impairments.

Formats

Y ou can use the formatting classes provided in the Java 2 SDK to automatically format numbers,
currencies, dates, and times for a specific locale. For example, in English, adate might appear as July 26,
1987, and thetime as 3:17 p.m. In German, the same date is written as 26. Juli 1987 and the timeis 15:17
uhr.

BEB== For numbers and currencies, the classis NumberFormat; for dates and times, the classis

DateFormat; and for strings that contain variable data, the class is MessageFormat. The formatting classes
are part of the java.text package.

Sort Order

Y ou can use the collator classes provided in the Java 2 SDK to enable the sorting of strings by locale. For
example, in Roman languages, sorting is commonly based on alphabetical order (which might vary from
one language to another). In other languages, sorting might be based on phonetics, character radicals, the
number of character strokes, and so on.

EE== The Collator classin the java.text package enables |ocale-sensitive string sorting.

Fonts

Y ou can place fonts in resource bundles so that they can be changed by the localizers. The ability to change
fonts also benefits users with visual impairments who read print with a magnifier or screen reader.

http://java.sun.com/products/jlf/dg/higf.htm (8 sur 9) [05/06/2000 14:14:42]

Design Guidelines: Design Considerations

Usability Testing

Two tests done early in the design process can show you how well your application worksin the global
marketplace. First, you can send draft designs of your application to your translators. Second, you can test
your application with users from the locales you are targeting (for example, test a Japanese version of the
application with Japanese users). This test will help you to determine whether users understand how to use
the product, if they perceive the graphics and colors as you intended them, and if there is anything

offensive in the product.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jlf/dg/higf.htm (9 sur 9) [05/06/2000 14:14:42]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Visual Design

jawa.sun.com :Java Look and Feel Design Guidelines @ @ Contents Index Search

4: Visual Design

Visual design and aesthetics affect user confidence in and comfort with your application. A polished and professiona
look without excess or oversimplification is not easy to attain. This chapter discusses these high-level, visual aspects
of Javalook and feel applications:

o Use of themesto control and change the colors and fonts of components to suit your requirements
o Capitalization of text in interface elements to ensure consistency and readability

o Layout and alignment of interface elements to enhance clarity, ease of use, and aesthetic appeal

o Use of animation to provide progress and status feedback

Themes

Y ou can use the theme mechanism to control many of the fundamental attributes of the Javalook and feel design,
including colors and fonts. Y ou might want to change the colors to match your corporate identity, or you might
increase color contrast and font size to enable users with visual impairments to use your application. The theme
mechanism enabl es you to specify aternative colors and fonts across an entire Java look and fedl application.

E#=" Thetechnical documentation for the class javax.swing.plaf.metal.DefaultMetal Theme is available at the
Swing Connection web site at http://java.sun.com/products/jfc/tsc.

Colors

If you want to change the color theme of your application, be sure that your interface elements remain visually
coherent. The Javalook and feel usesa simple color model so that it can run on avariety of platforms and on devices
capable of displaying various depths of color. Eight colors are defined for the interface:

o Three primary colorsto give the theme a color identity and to emphasize selected items
o Three secondary colors, typically shades of gray, for neutral drawing and inactive items
o Two additiona colors, usually defined as black and white, for the display of text and highlights

Within the primary and secondary color groups in the default theme, there is a gradation from dark (primary 1 and
secondary 1) to lighter (primary 2 and secondary 2) to lightest (primary 3 and secondary 3).

Primary Colors

The visual elements of Javalook and feel applications use the primary colors as follows:
o Primary 1 for active window borders, shadows of selected items, and labels
o Primary 2 for selected menu titles and items, active scroll boxes, and progress bar fill
o Primary 3 for large colored areas, such as the title bar of active internal frames and selected text

The usage isillustrated in the following figure.
Figure 23 Primary Colorsin Default Color Theme

http://java.sun.com/products/jlf/dg/higg.htm (1 sur 11) [05/06/2000 14:16:32]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/products/jfc/tsc

Design Guidelines: Visual Design

A Java Look and Feel | o

——4lser Hame: | Chris Ryan » Primary

Primary 1
Primary 2
Primary 2

Primany 1

Secondary Colors

The visual elements of Javalook and feel applications use the secondary colors as follows:
o Secondary 1 for the dark border that creates flush 3D effects for items such as command buttons
o Secondary 2 for inactive window borders, shadows, pressed buttons, and dimmed command button text
o Secondary 3 for the background canvas and inactive title bars for internal frames

The usage is shown in the following figure.

Figure 24 Secondary Colorsin Default Color Theme

Java Look and Feel , 00000

Secondany 2

Secondary 1 4 EIHEE ‘

Secondany 2 —

Tﬂh E - Secondary 3

— Secondany 2

% Close 1,432,274+

Black and White

Black and white have defined rolesin the Javalook and feel color model. In particular, black appears in:

http://java.sun.com/products/jlif/dg/higg.htm (2 sur 11) [05/06/2000 14:16:32]

Design Guidelines:

o

o

Visual Design

User text, such asthe entry in an editable text field

Control text, such as menu titles and menu items
Titletext in theinternal frame as well as the button text in command buttons
Tab text in tabbed panes

Text in noneditable text fields

Whiteis used for:

o Highlighting the flush 3D appearance of such components as command buttons

o Highlighting in menus

Default Java Look and Feel Theme

The following table summarizes the eight colors defined in the Javalook and fedl. It provides swatches and values
representing each color in the default theme. It also gives details about the roles each color playsin basic drawing,
three-dimensional effects, and text.

Table 2 Colors of the Default Java Look and Feel Theme

Name Basic Drawing 3D Effects Text
. Primary 1 Active window borders Shadows of selected items | System text (for example,
RGB 102-102-153 labels)
Hex #666699
Primary 2 Highlighting and selection | Shadows (color)
RGB 153-153-204 | (for example, of menu titles
Hex #9999CC and menu items); indication
of keyboard focus
Primary 3 Large colored areas (for Text selection
RGB 204-204-255 | example, the active title
Hex #CCCCFF bar)
. Secondary 1 Dark border for flush 3D
RGB 102-102-102 style
Hex #666666
Secondary 2 I nactive window borders Shadows; button Dimmed text (for
RGB 153-153-153 mousedown example, inactive menu
Hex #999999 items or labels)
Secondary 3 Canvas color (that is,
RGB 204-204-204 | normal background color);
Hex #CCCCCC inactive title bar
. Black User text and control text
RGB 000-000-000 (including items such as
Hex #000000 menu titles)
White Highlights Background for user text
RGB 255-255-255 entry area
Hex #FFFFFF

“_&7 Unlessyou are defining a reverse-video theme, maintain a dark-to-light gradation like the one in the default
theme so that interface objects are properly rendered. To reproduce three-dimensional effects correctly, make your
secondary 1 color darker than secondary 3 (the background color); make secondary 2 (used for highlights) lighter

than the background color.

7 Ensure that primary 1 (used for labels) has enough contrast with the background color (secondary 3) to make
text labels easily readable.

http://java.sun.com/products/jlf/dg/higg.htm (3 sur 11) [05/06/2000 14:16:32]

Design Guidelines: Visual Design

Redefinition of Colors

The simplest modification you can make to the color theme is to redefine the primary colors. For instance, you can
substitute greens for the purple-blues used in the default theme, as shown in the following figure.

Figure 25 Green Color Theme

B cl=ck

Wi ite

B Frimary 1
I Frimary 2
Primary 3

B secondarya
Secondary 2 rrl-X
Secondary 3 L Crrl-C

Finud... _trl-F
Select Al Cirl-&

Y ou can use the same value for more than one of the eight colors--for instance, a high-contrast theme might use only
black, white, and grays. The following figure shows a theme that uses the same grays for primary 2 and secondary 2.
White functions as primary 3 and secondary 3 aswell asin its normal role.

Figure 26 High-Contrast Color Theme

. Black = - i

White Metal : S ol vl
W Frirany 1 Java Look and Feel 55555

Primary 2 File | Edit | Settings Help

Primary 3 & 3| Undo Ctl-Z

Redo

B secondanya e-3] =

Secondary 2 o3| Ccut trl-X

Secondary 3 e 7 Copy Zrrl-C

Paste el

Find... Ctrl-F
Select All Crrl-4

-

Fonts

As part of the theme mechanism and parallel to the color model, the Javalook and feel provides a default font style
model for a consistent look. Y ou can use themes to redefine font typefaces, sizes, and stylesin your application. The
default Javalook and feel theme defines four type styles: the control font, the system font, the user font, and the
small font. The actual fonts used vary across platforms.

The following table shows the mappings to Java look and feel components for the default theme.

Table 3 Type Styles Defined by the Java Look and Feel

Type Style | Default Theme | Uses

Control 12-point bold Buttons, checkboxes, menu titles, and window titles

Small 10-point plain | Keyboard shortcuts in menus and tool tips

http://java.sun.com/products/jlf/dg/higg.htm (4 sur 11) [05/06/2000 14:16:32]

Design Guidelines: Visual Design

System 12-point plain | Tree views and tool tips

User 12-point plain | Text fields and tables

To ensure consistency, ease of use, and visual appeal, use the supplied default fonts unless there is compelling reason
for an application-wide change (such as higher readability). Use the theme mechanism if you do make modifications.

111
27 Do not write font sizes or styles directly into your application source code. Some users might be able to read

print only with a screen reader or a magnifier.

111
&7 Usethe appropriate layout manager to ensure that the layout of your application can handle different font sizes.

ZH Ensure that the font settings you choose are legible and can be rendered well on your target systems.

EE=" |n the default theme, six methods are used to return references to the four type styles. The

getControl TextFont, getMenuTextFont, and getWindowTitleFont methods return the control font;
getSystemTextFont returns the system font; getUserTextFont returns the user font; and getSubTextFont returns the
small font.

E#="> All fontsin the Javalook and feel are defined in the default Javalook and feel theme as Dialog, which maps
to a platform-specific font.

Capitalization of Text in the Interface

This section describes standards for the capitalization of text in the Javalook and feel. Text is an important design
element and appears throughout your application in such components as command buttons, checkboxes, radio
buttons, alert box messages, and labels for groups of interface elements. Strive to be concise and consistent with
language.

111
&7 For al text that appears in the interface elements of your application, follow one of two capitalization

conventions: headline capitalization or sentence capitalization. Use headline capitalization for most names, titles,
labels, and short text. Use sentence capitalization for lengthy text messages.

111
&7 Do not capitalize words automatically. Y ou might encounter situations in your interface when capitalization is

not appropriate, as in window titles for documents users have named without using capitalization.

@ Use standard typographical conventions for sentences and headlines in your application components. Let
trand ators determine the standards in your target locales.

@ Place al text in resource bundles so that |ocalization experts don't have to change your application's source code
to accommodate trand ation.

Headline Capitalization in English

Most itemsin your application interface should use headline capitalization, which isthe style traditionally used for
book titles (and the section titles in this book). Capitalize every word except articles ("a," "an," and "the"),
coordinating conjunctions (for example, "and," "or," "but," "so," "yet," and "nor"), and prepositions with fewer than
four letters (like "in"). The first and last words are always capitalized, regardless of what they are.
Use headline capitalization for the following interface elements (examples are in parentheses):

o Checkbox text (Automatic Save Every Five Minutes)

o Combo box labels and text (Ruler Units:, Centimeters)

o Command button text (Don't Save)

o lcon names (Trash Can)

o Labelsfor groups of buttons or controls (New Contribution To:)

o Menu items (Save As...)

http://java.sun.com/products/jlf/dg/higg.htm (5 sur 11) [05/06/2000 14:16:32]

Design Guidelines: Visual Design

o Menutitles (View)

o Radio button text (Start at Top)

o Slider text (Left)

o Tab names (RGB Color)

o Text field labels (Appreciation Rate:)

o Titles of windows, panes, and dialog boxes (Color Chooser)
o Tool tips (Cut Selection)

If your tool tips are longer than afew words, sentence capitalization is acceptable. Be consistent within your
application.

Sentence Capitalization in English

When text isin the form of full sentences, capitalize only the first word of each sentence (unless the text contains
proper nouns, proper adjectives, or acronyms that are always capitalized). Avoid the use of long phrases that are not
full sentences.

Use sentence capitalization in the following interface elements (examples are in parentheses):
o Dialog box text (The document you are closing has unsaved changes.)
o Error or help messages (The printer is out of paper.)
o Labelsthat indicate changes in status (Operation is 75% complete.)

Layout and Visual Alignment

Give careful consideration to the layout of components in your windows and dialog boxes. A clear and consistent
layout streamlines the way users move through an application and helps them utilize its features efficiently. The best
designs are aesthetically pleasing and easy to understand. They orient components in the direction in which people
read them, and they group together logically related components.

Note - Throughout this book, the spacing illustrations for all user interface elements use pixels as the unit of
measurement. A screen at approximately 72 to 100 pixels per inch is assumed.

111
27 When you lay out your components, remember that users might use the mouse, keyboard, or an assistive

technology to navigate through them; therefore, use alogical order (for instance, place the most important el ements
within adialog box first in reading order).

Between-Component Padding and Spacing Guidelines

Use multiples of 6 pixelsfor perceived spacing between components. If the measurement involves a component edge
with awhite border, subtract 1 pixel to arrive at the actual measurement between components (because the white
border on active componentsis less visualy significant than the dark border). In these cases, you should specify the
actual measurement as 1 pixel less--that is, 5 pixels between components within a group and 11 pixels between
groups of components.

Note - Exceptions to these spacing guidelines are noted in the relevant component chaptersin Part I11. For instance,
the perceived spacing between toolbar buttonsis 3 pixels, whereas the actual spacing is 2 pixels.

In the following figure, a perceived 6-pixel vertical spaceis actually 5 pixels between checkbox components. The
figure a so shows how the perceived spacing between inactive objects is preserved. Note that the dimensions of
inactive components are the same as active objects, although the white border of active objectsis replaced by an
invisible 1-pixel border on the bottom and right side of inactive objects.

Figure 27 Perceived and Actual Spacing of Active and Inactive Components

http://java.sun.com/products/jlf/dg/higg.htm (6 sur 11) [05/06/2000 14:16:32]

Design Guidelines: Visual Design

. |v¥| Bold

Perce ived 6 Actual

Meazure ment 3 Fheasurernent

—

—»

Perceived E— Actual
measurerment -~ 7 reazurerment

111
W7 Insert 5 pixels (6 minus 1) between closely related items such as grouped checkboxes. Insert 11 pixels (12
minus 1) for greater separation between sets of components (such as between a group of radio buttons and a group of
checkboxes). Insert 12 pixels between items that don't have the flush 3D border highlight (for instance, text |abels,
titled borders, and padding at the top and left edges of a pane).

For guidelines on the spacing of individual JFC components with the Javalook and feel, see Toolbar Button Spacing
and Padding, Command Button Spacing, Radio Button Spacing, and Checkbox Spacing.

Design Grids

The most effective method of laying out user interface elementsisto use a design grid with blank space to set apart
logically related sets of components. A grid divides the available space into areas that can help you to arrange and
align components in a pleasing layout. Grids make it easy for users to see the logical sequence of tasks and to
understand the relationships between sets of components.

The following illustration shows a sample grid that provides standard margins and divides the remaining space into
five columns. Horizontal divisions aid in scanning and interpreting the components and sets of related options.

@ Use the appropriate layout manager to control horizontal space for the variable width of internationalized text
strings.

Figure 28 Grid With Horizontal Divisions

Horizontal division

Y ou can use the number and width of components and their associated |abels to determine the number of columnsin
agrid. At the beginning of the design process, vertical divisions are more difficult to set because they depend on the
depth of components and sets of components, which are not yet placed.

Developing agrid is an ongoing process. If you know how much space is available, you can start working with the

http://java.sun.com/products/jlf/dg/higg.htm (7 sur 11) [05/06/2000 14:16:32]

Design Guidelines: Visual Design

components to determine the most effective use of space. A grid can also help you to determine how much space to
allocate to agiven set of components. If you can define a grid that will work for a number of layouts, your
application will have a more consistent appearance.

For spacing between rows and columns, use multiples of 6 pixels minus 1, to allow for the flush 3D border (see
Between-Component Padding and Spacing Guidelines).

EE=2 Design grids are not to be confused with the AWT Grid Layout Manager.

Layout of a Simple Dialog Box

The following illustrations show steps in the process of using a grid to lay out a simple find dialog box.

First, determine the functional requirements. Then add the components according to the Javalook and feel placement
and spacing standards. For instance, you must right-align command buttons in dialog boxes at the bottom and
separate them vertically from the rest of the components by 17 pixels.

Figure 29 Vertical Separation of Command Buttons

L I_ Separate command
buttonsz wertically
17 . from rest of contents
T || Find Close |

Right-align buttons
to right column guide

Using the grid as a guide, add the rest of the components. Place the most important options, or those you expect users
to complete first, prior to othersin reading order.

In the following illustration, the most important option--the text field for the search string--has been placed first.
Related options are aligned with it along one of the column guides. Spacing between components and groups of
components follows the Javalook and feel standards.

Figure 30 Vertical Separation of Component Groups

l Firud e Place most
11 iFportant option
+ ¥| Match [Case i Etaﬂall Top near top
+ | Whole Word % Wrap Around
17 A
T =i Close

Align related aptions
along colurmn guides

Titled Borders for Panels

The JFC enables you to specify atitled border for panels, which you can use as containers for componentsinside
your application's windows.

Figure 31 Spacing for a Panel With Titled Border

http://java.sun.com/products/jlf/dg/higg.htm (8 sur 11) [05/06/2000 14:16:32]

Design Guidelines: Visual Design

12 12 Titled bard er
12 b Options —TH
T Checkboxes | || Check 1
[¥| Check 2
] Check 3 !
11
Radio Buttuns] ® Radio 1 T
' Radio 2
|) Radio 3 i
11
12 T
T —| (4

12

111
27 Sincetitled borders take up considerable space, do not use them to supply titles for components; use labels

instead.

"7 Useatitled border in a panel to group two or more sets of related components, but do not draw titled borders
around a single set of checkboxes or radio buttons.

111
"7 Usetitled borders sparingly: they are best when you must emphasize one group of components or separate one

group of components from other components in the same window. Do not use multiple rows and columns of titled
borders; they can be distracting and more confusing than simply grouping the elements with adesign grid.

111
47 Never nest titled borders. It becomes difficult to see the organizational structure of the panel and too many

lines cause distracting optical effects.

W47 Insert 12 pixels between the edges of the panel and the titled border. Insert 12 pixels between the bottom of the
title and the top of thefirst 1abel (aswell as between the label and the components) in the panel. Insert 11 pixels
between component groups and between the bottom of the last component and the lower border.

@ Allow for internationalized titles and labels in panels that use titled borders.

E#=" A titled border can be created as follows:
myPanel .setBorder(new TitledBorder(new LineBorder
(Metal L ookAndFedl .getControl Shadow()),

"<< Your Text Here >>"));

Text Layout

Text isan important design element in your layouts. The way you aign and lay out text is vital to the appearance and
ease of use of your application. The most significant layout issues with respect to text are label orientation and
alignment.

111
47 Uselanguage that is clear, consistent, and concise throughout your application text. Moreover, ensure that the
wording of your labels, component text, and instructionsis legible and grammatically correct.

Label Orientation

You indicate a label's association with a component when you specify its relative position. Hence, consistency and
clarity are essential. In the following figure, the label appears before and at the top of the list in reading order.

Figure 32 Label Orientation

http://java.sun.com/products/jlf/dg/higg.htm (9 sur 11) [05/06/2000 14:16:32]

Design Guidelines: Visual Design

Label

Month: | January |~
Fehruany
harch
Aqril

hl ayy
June -

111
&7 In general, orient labels before the component to which they refer, in reading order for the current locale. For

instance, in the U.S. locale, place |abels above or to the left of the component. Positioning to the left is preferable,
sinceit alows for separation of text and components into discrete columns. This practice helps users read and
understand the options.

Label Alignment

Between components, alignment of multiple labels becomes an issue. Aligning labels to aleft margin can make them
easier to scan and read. It also helpsto give visua structure to ablock of components, particularly if thereis no
immediate border (such as awindow frame) surrounding them. If labels vary greatly in length, the use of right
alignment can make it easier to determine the associated component; however, this practice also introduces large
areas of negative space, which can be unattractive. The use of concise wording in labels can help to aleviate such
difficulties. For an example of right-aligned labelsin an applet, see Figure 12.

&7 Align labels with the top of associated components.

&7 Avoid the use of titled borders as organizing elements. They add clutter reduce readability, and compound
alignment problems by introducing the title as an additional text label. Instead, use design grids and careful
alignment of labelsto give visua structure to your layouts.

@ To accommodate differences in languages, decide on the behavior you want to occur during resize operations.
Be specific about layout, spacing, and ordering. Use the layout managers to accommodate these differences.

@ Since the length and height of translated text varies, use layout managers properly to allow for differencesin
labels.

Animation

If used appropriately, animation has great potential to be a useful and attractive part of a user interface. Y ou can use
animation to let users know that the system is busy with atask or to draw attention to important events.

111
27 Do not overuse animation since it distracts users and draws attention away from other elements of your

application.

BEB=" Screen readers, which are used by people with visual impairments, do not recognize images that move. Use
the accessibleDescription field to describe what is represented by the animation.

Progress and Delay Indication

Animation is especially useful when you want to communicate that the system is busy. Progress indication shows
users the state of an operation; delay indication lets users know that an application or a part of an application is not
available until an operation is done.

Properly used, animation can be of minimal disruption to the user. Feedback lets users know the application has
received their input and is operating on it.

http://java.sun.com/products/jlf/dg/higg.htm (10 sur 11) [05/06/2000 14:16:32]

Design Guidelines: Visual Design

111
&7 When the application is processing along operation and users can continue to work in other areas of the

application, provide them with information regarding the state of the process.

111
&7 During along operation, when users must wait until the operation is complete, change the shape of the pointer.

For example, an application's pointer might change to the wait pointer after the user selects afile and before thefile
opens. For information on the JFC-supplied pointer shapes available in the Javalook and feel, see Table 7.

111
"2 |If you know the estimated length of an operation (for example, if the user is copying files) or the number of

operations, use the Javalook and feel progress bar. This bar fills from left to right as the operation progresses, as
shown in the following figure.

Figure 33 Animation in a Progress Dialog Box

MetalPix: Copy in Progress =——

Progress bar

hiroshige.qgif
I | Stop

About 25 seconds remaining

For more on progress bars, see Progress Bars.

Another way to indicate delay isto use animated pointers, which are supported by the Java 2 platform. Instead of just
changing to await pointer, you can go one step further by animating the pointer image while the system is busy.

System Status Animation

Animation is useful when you want to call attention to events. For instance, in amail application, you might use
animation to indicate that new mail has arrived. Another example is a monitoring system that uses animation to alert
users when failures occur.

111
&7 When creating system status animation, consider the target users and their environment. If the animation needs

to be visible from across the room, a bolder animation coupled with sound might be just the right thing. On the other
hand, that same animation viewed by a user sitting at the workstation would be annoying.

111
“_Z7 When feasible, let users configure system status animation, so they can adapt their systems to the environment.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jlf/dg/higg.htm (11 sur 11) [05/06/2000 14:16:32]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Application Graphics

java.sun.com: Java Look and Feel Design Guidelings @ @ Contents Index Search

5: Application Graphics

This chapter provides details on:
o Theuse of cross-platform color
o Thedesign of application graphics, such as button graphics, icons, and symbols
o The use of graphics to enhance your product and corporate identity

Because the quality of your graphics can affect user confidence and even the perceived stability of your application, it iswiseto
seek the advice of a professional visual designer.

Working With Cross-Platform Color

In a cross-platform delivery environment, you need to ensure that the visual components of your application reproduce legibly
and aesthetically on all your target systems. In many cases, you might not know which platforms will be used to run your
software or what display capabilities they might have.

Online graphics consist of the visual representations of JFC components in the Javalook and feel, which are drawn for you by
the toolkit, and application graphics such as icons and splash screens, which you supply.

The Javalook and feel components use a simple color model that reproduces well even on displays with arelatively small
number of available colors. Y ou can use the theme mechanism to change the colors of the components. For details, see Themes.

11
&7 Usethemesto control the colors of Javalook and feel components--for instance, to provide support for display devices
with minimal available colors (fewer than 16 colors).

Y ou need to supply icons, button graphics, pictures and logos for splash screens, and About boxes. Since these graphics might
be displayed on anumber of different platforms and configurations, you must develop a strategy for ensuring a high quality of
reproduction.

111
"_#? Usecolor only as a secondary means of representing important information. Make use of other characteristics (shape,
texture, size, or intensity contrast) that do not require color vision or a color monitor.

The colors available on your users' systems, along with graphic file formats, determine how accurately the colors you choose are
displayed on screen. Judging color availability is difficult, especially when you are designing applications to be delivered on
multiple configurations or platforms.

Working With Available Colors

The number of colors available on asystem is determined by the bit depth, which is the number of bits of information used to
represent a single pixel on the monitor. The lowest number of bits used for modern desktop color monitorsis usually 8 bits (256
colors); 16 hits provide for thousands of colors (65,536, to be exact); and 24 bits, common on newer systems, provide for
millions of colors (16,777,216). The specific colors available on a system are determined by the way in which the target
platform allocates colors. Available colors might differ from application to application.

Designers sometimes use predefined color pal ettes when producing images. For example, some web designers work within a set
of 216 "web-safe" colors. These colors reproduce in many web browsers without dithering (aslong as the system is capable of
displaying at least 256 colors). Dithering occurs when a system or application attempts to simulate an unavailable color by using
apattern of two or more colors or shades from the system palette.

Outside web browsers, available colors are not so predictable. Individual platforms have different standard colors or deal with
palettesin adynamic way. The web-safe colors might dither when running in a standal one application, or even in an applet
within a browser that usually does not dither these colors. Since the colors available to a Java application can differ each time it
isrun, especialy across platforms, you cannot always avoid dithering in your images.

24 Identify and understand the way that your target platforms handle colors at different bit depths. To achieve your desired
effect, test your graphics on al target platforms at depths less than 16 bits.

Choosing Graphic File Formats

http://java.sun.com/products/jlf/dg/high.htm (1 sur 16) [05/06/2000 14:13:37]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Application Graphics

Y ou can use two graphic file formats for images on the Java platform: GIF (Graphics Interchange Format) and JPEG (named
after its developers, the Joint Photographic Experts Group).

GIF isthe common format for application graphics in the Javalook and feel. GIF files tend to be smaller on disk and in memory
than JPEG files. Each GIF imageis limited to 256 colors, or 8 bits of color information per pixel. A GIF fileincludes alist (or
palette) of the colors (256 or fewer) used in the image. The number of colorsin the palette and the complexity of the image are
two factors that affect the size of the graphic file.

On 8-hit systems, some of the colors specified in a GIF file will be unavailable if they are not part of the system'’s current color
palette. These unavailable colors will be dithered by the system. On 16-bit and 24-bit systems, more colors are available and
different sets of colors can be used in different GIF files. Each GIF image, however, is still restricted to a set of 256 colors.

JPEG graphics are generally better suited for photographs than for the more symbolic style of icons, button graphics, and
corporate type and logos. JPEG graphics use a compression algorithm that yields varying image quality depending on the
compression setting, whereas GIF graphics use lossless compression that preserves the appearance of the original 8-bit image.

Choosing Colors

At monitor depths greater than 8 bits, most concerns about how any particular color reproduces become less significant. Any
system capable of displaying thousands (16 bits) or millions (24 bits) of colors can find a color very close to, or exactly the
same as, each value defined in agiven image. Newer systems typically display a minimum of thousands of colors. Different
monitors and different platforms might display the same color differently, however. For instance, a given color in one GIF file
might look different to the eye from one system to another.

Many monitors or systems still display only 256 colors. For users with these systems, it might be advantageous to use colors
known to exist in the system palette of the target platforms. Most platforms include a small set of "reserved” colorsthat are
aways available. Unfortunately, these reserved colors are often not useful for visual design purposes or for interface elements
because they are highly saturated (the overpowering hues one might expect to find in abasic box of magic markers).
Furthermore, there is little overlap between the reserved color sets of different platforms, so reserved colors are not guaranteed
to reproduce without dithering across platforms.

11
&7 Select colorsthat do not overwhelm the content of your application or distract users from their tasks. Stay away from

saturated hues. For the sake of visual appeal and ease of use, choose groups of muted tones for your interface elements.

Since there is no lowest-common-denominator solution for choosing common colors across platforms (or even colors that are
guaranteed to reproduce on a single platform), some of the colors in your application graphicswill dither when running in 8-bit
color. The best strategy is to design images that dither gracefully, as described in the following section.

Maximizing Color Quality

Images with fine color detail often reproduce better on 8-bit systems than those images that are mapped to a predefined palette
(such as the web-safe palette) and use large areas of solid colors. Dithering in small areasis less noticeable than it is over larger
areas, and, for isolated pixels of agiven color, dithering simply becomes color substitution. Often colorsin the system palette
can provide afair-to-good match with those specified in a GIF file. The overall effect of color substitution in small areas can be
preferable to the dithering patterns produced for single colors, or to the limited number of colors resulting from pre-mapping to
agiven color palette.

The following table shows a graphic with ablur effect that contains a large number of grays. Remapping this graphic to the
web-safe pal ette reduces the number of grays to two and results in an unpleasing approximation of the original graphic.
However, the original GIF file displays acceptably in a Java application running in 8-bit color on various operating systems,
even though the systems might not have available the exact colorsin the image.

Table 4 Remappings of aBlurred Graphic
Original Graphic | Microsoft Windows | Macintosh CDE

Original colors

http://java.sun.com/products/jlf/dg/high.htm (2 sur 16) [05/06/2000 14:13:37]

Design Guidelines: Application Graphics

Remapped to web-safe palette

There are no absolutely safe cross-platform colors. Areas of solid color often dither, producing distracting patterns. One
effective way to avoid coarse dithering patternsis to "pre-dither” your artwork intentionally. This approach minimizes obvious
patterned dithering on 8-bit systems while still permitting very pleasing effects on systems capable of displaying more than 256
colors.

To achieve this effect, overlay a semitransparent checkerboard pattern on your graphics. The following figure shows how to
build a graphic using this technique.

Figure 34 Adding a Pattern to Avoid Coarse Dithering Patterns

Colar detail

To build the graphic:

1. Useagraphics application with layers.

2. Apply the pattern only to areas that might dither badly. Leave borders and other detail lines as solid
colors.

3. Play with the transparency setting for the pattern layer until the pattern is dark enough to mix with
the color detail without overwhelming it visually. A 25% transparency with the default secondary 2
color (RGB 153-153-153) produces a good result for most graphics.

4. Test your results on your target 8-bit platforms.

The following table shows the variabl e results of graphic reproduction in 8-bit color, using different styles for various operating

systems.
Table 5 Variationsin Reproduction of 8-Bit Color
- . | Windows 95 | MacOS85 | CDE
Styles Original Graphic | g o) (8 bits) (8 bits)
Plain
Dithering added
Gradient

http://java.sun.com/products/jlif/dg/high.htm (3 sur 16) [05/06/2000 14:13:37]

Design Guidelines: Application Graphics

Dithering added to gradient

il

The plain graphic in the preceding table, which uses alarge area of a single web-safe color, dithers badly on Windows 95 and
CDE. Adding a pattern to the plain color improves the appearance only slightly. A gradient effect is added to the graphic to add
some visual interest; this produces a banding effect on Mac OS 8.5. Adding the dithered pattern produces good results on all
three platforms with 8-bit color. In 16-bit and 24-bit color, the graphic reproduction is very close to, or exactly the same as, the
originals.

Designing Graphics in the Java Look and Feel Style

Application graphics that you design fall into three broad categories:
o lcons, which represent objects that users can select, open, or drag
o Button graphics, which identify actions, settings, and tools (modes of the application)
o Symbols, which are used for general identification and labeling (for instance, asindicators of conditions or states)

Table 6 Examples of Application Graphics

Graphic Type | Examples Basic 3D Style | Pre-Dithered
S R —

Icons :

Button graphics

Symbols

I
L_&* Usethe GIF file format for iconic and symbolic graphics. It usually resultsin asmaller file size than the JPEG format and
uses |ossless compression.

&7 Put al application graphicsin resource bundles.

@ Where possible, use globally understood icons, button graphics, and symbols. Where none exist, create them with input
from international sources. If you can't create a single symbol that worksin al cultures, define appropriate graphics for different
locales (but try to minimize this task).

Designing Icons

Icons typically represent containers, documents, network objects, or other data that users can open or manipulate within an
application. Anicon usually appears with identifying text.

The two standard sizes for icons are 16 x 16 pixels and 32 x 32 pixels. The smaller sizeis more common and is used in JFC
components such asthe internal frame (to identify the contents of the window or minimized internal frame) and tree view (for
container and leaf nodes). Y ou can use 32 x 32 icons for applications designed for users with visual impairments or for objects
in adiagram, such as a network topology.

"“_I* Designiconsto identify clearly the objects or concepts they represent. Keep the drawing style symbolic, as opposed to

http://java.sun.com/products/jlf/dg/high.htm (4 sur 16) [05/06/2000 14:13:37]

Design Guidelines: Application Graphics

photo-realistic. Too much detail can make it more difficult for users to recognize what the icon represents.

I
_&* When designing large and small icons that represent the same object, make sure that they have similar shape, color, and
detail.

111
&7 Specify values for the accessibleDescription and accessibleName properties for each icon so that assistive technologies
can find out what it is and how to useit.

Working With Icon Styles

The following figure shows sample 32 x 32 and 16 x 16 icons for files and folders drawn in two different styles. Note that many
objects are difficult to draw in aflush 3D style, particularly at the smaller 16 x 16 size. Three visual elements appear in the
sampleicons. an interior highlight (to preserve the flush style used throughout the Javalook and feel), a pattern to minimize
dithering (described in Working With Available Colors), and a dark border.

Figure 35 Two Families of Icons

30 styla

p—t .
ﬁ‘-‘
':
| I : o % Flat styla

I
- Useasingle styleto create a"family" of icons that utilize common visual elementsto reflect similar concepts, roles, and
identity. Iconsin families might use asimilar palette, size, and style.

111
&7 Don't mix two- and three-dimensional stylesin the sameicon family.

111
=& For satisfactory display on awide range of background colors and textures, use a clear, dark exterior border and ensure
that there is no anti-aliasing or other detail around the perimeter of the graphic.

Drawing Icons

The following section uses a simple folder as an example of how to draw an icon. Before you start, decide on ageneral design
for the object. In this example, a hanging file folder is used to represent a directory.

1. Draw a basic outline shapefir st.

Icons can use as much of the available space as
possible, since they are displayed without borders.

Icons should usually be centered horizontally in the o
available space. For vertical spacing, consider =I=I=IIllIIIII=IIIIIIIIIIIIII=I=
aligning to the baseline of other iconsin the set, or u =
aligning with text (for instance, in atree).]]
u u
If both sizes are required, work on them at the same _.::::::_“““. E E
time rather than trying to scale down a detailed 32 x a H - H
32 icon later; both sizes then can evolve into designs B H B -
that are recognizable as the same object. E E E E
=IIIIIIIIIIII= =IIIIIIIIIIIIIIIIIIIIIIIIII=

http://java.sun.com/products/jlf/dg/high.htm (5 sur 16) [05/06/2000 14:13:37]

Design Guidelines: Application Graphics

2. Add some basic color (green isused here).

3. Draw a highlight on theinside top and left.
This practice creates the flush 3D style of the Java

look and feel.
.IIIIIII.

u H
ENESSSSSEEEESEEESEEEEEEEEEEEEEEE
| = = [|

u
u | |
u [
u [
HEEE u [
H u [
HNEEEEEEEEEEEEEE u [
a | a
H . Ll | u [|
H . | u [|
H . | u [|
| B | | u | |
[B | [| u [
[B | [| u [
H EEE [|] HE [
HEEER | [1 []]]

4. Add some detail to theicon.

In this case, the crease or "fold" mark in the hanging
folder isdrawn.
.lllllll.

5. Try agradient that producesa" shining" effect
instead of the flat green.

Here adark green has replaced the black border on

the right and bottom; black is not a requirement as [
long as there is awell-defined border. =I=I=IIllIIIII=IIIIIIIIIIIIII=I=
u [|
H W [|
N u
N]
N]
mEEm N]
n N]
ENENEENEENEEEEEE |]
n] N]
H = u
H = H N [|
H = [B | m
] n m
o] n]
1] n 1]
] o]
1] SEEEEENEEEEEEENEENENEENNEEEE

http://java.sun.com/products/jif/dg/high.htm (6 sur 16) [05/06/2000 14:13:37]

Design Guidelines: Application Graphics

6. Add a pattern to prevent coarse dithering. This
technique minimizes banding and dithering on
displays with 256 or fewer colors (see Maximizing

Color Quality).

Thefirst graphic is an exploded view of an icon that
shows how the pattern is added.

#—— Pattern

Zolor
detail

Line

The next graphic shows an icon in which a pattern
has been added to the color detail.

7. Define the empty area around the icon graphic
(in which you have not drawn anything) as
transparent pixelsin the GIF file.

This practice ensures that the background color
shows through; if the icon is dragged to or displayed
on adifferent background, the area surrounding it
matches the color or pattern of the rest of the
background.

Transparent pivals

Designing Button Graphics

Button graphics appear inside buttons--most often in toolbar buttons. Such graphics identify the action, setting, mode, or other
function represented by the button. For instance, clicking the button might carry out an action (creating anew file) or set a state
(boldfaced text).

The two standard sizes for button graphics are 16 x 16 pixels and 24 x 24 pixels. Either size (but not both at the same time) can
be used in toolbars or tool palettes, depending on the amount of space available. For details on toolbars, see Toolbars. For more

on palette windows, see Palettes.

If you include both text and graphics in a button, the size of the button will exceed 16 x 16 or 24 x 24 pixels. If the button sizeis
an issue, consider using tool tips instead.

@ Do not include text as part of your button graphics (GIF files). Use button text instead. Keep the button text in a resource
bundle to facilitate localization.

Note, however, that toolbar buttons can display text instead of graphics, particularly if your usability testing establishes that the
action, state, or mode represented by the button graphic is difficult for users to comprehend. Tool tips for toolbar buttons can
help clarify the meaning of a button. For details, see Tool Tips for Toolbar Buttons.

1
&7 When designing your button graphics, clearly show the action, state, or mode that the button initiates.

http://java.sun.com/products/jlif/dg/high.htm (7 sur 16) [05/06/2000 14:13:37]

Design Guidelines: Application Graphics

111
&7 Keep the drawing style symbolic; too much detail can make it more difficult for users to understand what a button does.

%17 Useaflush 3D border to indicate that a button is clickable.

I
"_Z* Draw aclear, dark border without anti-aliasing or other exterior detail (except the flush 3D highlight) around the outside
of abutton graphic.

Using Button Graphic Styles

The following figure shows sampl e button graphics designed for toolbars and for the contents of atool palette.

Figure 36 Button Graphics for a Toolbar and a Tool Palette

Bl

111
&7 Useasingle styleto create a"family" of button graphics with common visual elements. Y ou might use asimilar palette,
size, and style for different button groups, such as toolbar buttons, toggle buttons, or command buttons. Review the graphicsin
context before finalizing them.

Producing the Flush 3D Effect

To produce the flush 3D effect, add an exterior white highlight on the outside right and bottom of the graphic and an interior
highlight on the inside left and top.

Figure 37 Flush 3D Effect in a Button Graphic

= Exterior flush 3D baorder

Interior flush 30 border

Working With Button Borders

The size of abutton graphic includes all the pixels within the border. As shown in the following illustration, horizontal and
vertical dimensions are both either 24 or 16 pixels. The border abuts the button graphic (that is, there are no pixels between the
border and the graphic).

Figur e 38 Button Graphics With Borders

http://java.sun.com/products/jlf/dg/high.htm (8 sur 16) [05/06/2000 14:13:37]

Design Guidelines: Application Graphics

16

16 24

Determining the Primary Drawing Area

Because the white pixelsin both the button border and the button graphic are less visualy significant than the darker borders,
the area used for most of the drawing is offset within the 16 x 16 or 24 x 24 space. The following illustration shows the standard
drawing areafor both button sizes. Note that the white highlight used to produce the flush 3D style in the button graphic might

fall outside this area.

Figure 39 Primary Drawing Areain Buttons

21

13

b - -
13 21

The following illustrations show 16 x 16 and 24 x 24 button graphics that use the maximum recommended drawing area. Notice
that on all sidesthere are 2 pixels between the dark border of the button graphic and the dark portion of the button border.

Figure 40 Maximum-Size Button Graphics

http://java.sun.com/products/jlif/dg/high.htm (9 sur 16) [05/06/2000 14:13:37]

Design Guidelines: Application Graphics

Drawing the Button Graphic

When drawing a button graphic, first decide on a general design that represents the action or setting activated by the button. In
the following examples, a clipboard suggests the Paste command.

1. Decide which size you want to use for the button or toolbar graphic.

21

13

13 21

2. Draw a basic outline shape, taking careto remain within the primary drawing ar ea.

http://java.sun.com/products/jif/dg/high.htm (10 sur 16) [05/06/2000 14:13:37]

Design Guidelines: Application Graphics

21

13

3. Add some basic color.

4. Add theflush 3D effect by drawing highlights on theinside left and top, and on the outside bottom and right of the
outline.

Thisisagood basic design, but because of the large area using a single color, the graphic lacks visual interest and might not
reproduce well on some systems.

5. Try agradient instead of theflat color.

http://java.sun.com/products/jif/dg/high.htm (11 sur 16) [05/06/2000 14:13:37]

Design Guidelines: Application Graphics

6. Add a pattern. Thistechnique minimizes banding and dithering on displays with 256 or fewer colors (see Maximizing

Color Quality).

Thefirst figure shows an exploded view of the button graphic without flush 3D highlights. The next figure shows the effect of
the pattern on the color detail of the button graphic.

= Pattern

Color detail

Lines

7. Define the empty area around your button graphic (in which you have not drawn anything) as transparent pixelsin
the GIF file.

This practice ensures that the background color shows through; if the theme changes, the area around the button graphic will
match the rest of the background canvasin the interface.

http://java.sun.com/products/jif/dg/high.htm (12 sur 16) [05/06/2000 14:13:37]

Design Guidelines: Application Graphics

Tranzparent pixels

Designing Symbols

Symbolsinclude any small graphic (typically 48 x 48 pixels or smaller) that stands for a state or a concept but has no directly
associated action or object. Symbols might appear within dialog boxes, system status alert boxes, and event logs. Saturated
colors might be useful for status or warning symbols.

The examplesin the following figure show the graphic from an Info aert box and a caution symbol superimposed on afolder
icon to indicate a hypothetical state. The style for symbolsis not as narrowly defined as that for icons and button graphics. The
examplesin the following figure use a flush or etched effect for interior detail but not for the border of the graphic.

Figure 41 Symbols

Information symbal Caution symbal

1
&7 Ensure adequate contrast between awarning symbol and the icon or background it appears against.

Designing Graphics for Corporate and Product Identity

Application graphics present an excellent opportunity for you to enhance your corporate or product identity. This section
presents information about installation screens, splash screens, About boxes, and login splash screens.

Note - The examples presented in this section use the sampl e text-editing and mail applications, Metal Edit and MetalMail. They
are not appropriate for third-party use.

i
&7 Usethe JPEG file format for any photographic elementsin your installation screens, splash screens, and About boxes.

Designing Installation Screens

An installation screen is awindow containing images that are displayed in an application installer. Often the first glimpse users
have of your application isthe installer. Consequently, an installation screen introduces and reinforces your corporate and
product identity. The number of screensin an installer can vary.

1
& Useaplain window for installation screens, and draw any desired border inside the window.

1
& Provide aclearcut way for your users to move through the steps required to perform the installation, and enable them to
cancel or stop the installation at any point.

E#== The JWindow component is typically used to implement plain windows.

http://java.sun.com/products/jif/dg/high.htm (13 sur 16) [05/06/2000 14:13:37]

Design Guidelines: Application Graphics

See Layout and Visua Alignment for general guidelines on how to arrange and align items.

Designing Splash Screens
A splash screen is aplain window that appears briefly in the time between the launch of a program and the appearance of its
main application window. Nothing other than a blank space isincluded with a JFC-supplied plain window; you must provide the

border and the contents of the splash screen. For instance, the black border on the window in the following figure is part of the
GIFfile supplied by the splash screen designer.

Figure 42 Splash Screen for Metal Edit

& 117 EE—

M CrasysTems

METALEDIT [

f!f/_ﬂ/

/ / / : . Wisual identifier of product
ST .f../.._ N

fff///__//

Although not required, splash screens are included in most commercial products. Splash screens typically have the following
elements:

o Company logo
o Product name (trademarked, if appropriate)
o Visua identifier of the product or product logo

Check with your legal adviser about requirements for placing copyright notices or other legal information in your splash
screens.

i
“_2&* To get the black border that is recommended for splash screens, you must include a 1-pixel black border as part of the
image you create.

E#=" The JWindow component, not the JFrame component, is typically used to implement the plain window that provides the
basis for splash screens.

Designing Login Splash Screens

If your application requires usersto log in, you might consider replacing the traditional splash screen with alogin splash screen.
Figure 43 Login Splash Screen for MetalMail

http://java.sun.com/products/jif/dg/high.htm (14 sur 16) [05/06/2000 14:13:37]

Design Guidelines: Application Graphics

MetalMail Log In

METALMAIL

Login Name: || - Login Name text field
Password: | —+— Password field
Mail Server: |Berus |v—|—— Editable combo bosx
for systerm-required data
Log In Cancel Help

Cancel hutton (ta exit lagin

Log In hutton

The elements of this screen might include:
o Label and text field for alogin user name
o Label and password field
o Label and editable combo box for any other information required by the system
o Buttonsfor logging in and canceling the login splash screen

To save time and to increase the chance of users viewing a splash screen, it is agood idea to combine your login screen and
your splash screen.

111
=& Provide away for usersto exit the login splash screen without first logging in.

EB== The JDialog component, not the JWindow component, is typically used to implement a login splash screen.

Designing About Boxes
An About box is adialog box that contains basic information about your application.

Figure 44 About Box for Metal Edit

Ahout MetalEdit

M ET}&I LED |T Product narme

Copyright @ 1333 Your Qrganization, The sbout dialog bax should
includ e woyr arganization's standard copyright and tradem ark notices,

of course wou should alsa include the praduct natme and version number,
This dialog box is agood place for arganizational contact information and
credits for the developers, If thereis toa much material for asingle dialog
box, add buttons at the bottorn that take the yser to other dialog boxes,

Camparny logos

Close Close button

An About box might contain the following elements:

http://java.sun.com/products/jlf/dg/high.htm (15 sur 16) [05/06/2000 14:13:37]

Design Guidelines: Application Graphics

o Product name (trademarked, if appropriate)

o Version number

o Company logo

o Product logo or avisual reminder of the product logo
o Copyright, trademarks, and other legal notices

o Names of contributors to the product

11
&7 Because userstypically display About boxes by choosing the About Application item from the Help menu, be sure that
the About box is accessible while your application is running.

&4 Because the dialog box title bar might not include a Close button on all platforms, include a Close button in your About
boxes so that users can dismiss them after reading them. Follow the guidelines for button placement described in Spacing in

Dialog Boxes.

javasun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jlf/dg/high.htm (16 sur 16) [05/06/2000 14:13:37]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Behavior

java sun.com: Java Look and Feel Design Guidelings @ @ Contents Index Search

6: Behavior

Users interact with the computer via the mouse, the keyboard, and the screen. Such interaction isthe "feel" portion of
the Javalook and feel. This chapter provides input guidelines and recommendations for interaction techniques. It
describes mouse operations, including information on pointers, and drag-and-drop operations. It also discusses
keyboard operations, including the use of mnemonics, keyboard shortcuts, and keyboard focus in Javalook and feel
applications.

Mouse Operations

In Javalook and feel applications, the following common mouse operations are available to users:
o Moving the mouse changes the position of the onscreen pointer (often called the "cursor”).

o Clicking (pressing and releasing a mouse button) selects or activates the object beneath the pointer. The object
is usualy highlighted when the mouse button is pressed and then selected or activated when the mouse button
isreleased. For example, aclick is used to activate acommand button, to select anitem from alist, or to set an
insertion point in atext area.

o Double-clicking (clicking a mouse button twice in rapid succession without moving the mouse) is used to
select larger units (for example, to select aword in atext field) or to select and open an object.

o Triple-clicking (clicking a mouse button three times in rapid succession without moving the mouse) is used to
select even larger units (for instance, to select an entireline in atext field).

o Dragging (pressing a mouse button, moving the mouse, and releasing the mouse button) is used to select a
range of objects, to choose items from drop-down menus, or to move objects in the interface.

111
& Inyour design, assume a two-button mouse. Use mouse button 1 (usually the left button) for selection,
activation of components, dragging, and the display of drop-down menus. Use mouse button 2 (usually the right
button) to display contextual menus. Do not use the middle mouse button; it is not available on most target
platforms.

=H Be aware that Macintosh systems usually have a one-button mouse, other personal computers and network
computers usually have atwo-button mouse, and UNIX systems usually have a three-button mouse.

11
%47 Restrict interaction to the use of mouse button 1 and mouse button 2. Macintosh users can simulate mouse
button 2 by holding down the Control key while using mouse button 1.

The following figure shows the relative placement of mouse buttons 1 and 2 on Macintosh, PC, and UNIX mouse
devices.

Figure 45 Cross-Platform Mouse Buttons and Their Default Assignments

http://java.sun.com/products/jlf/dg/higi.htm (1 sur 10) [05/06/2000 14:15:33)]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Behavior

Macintozh P IMIE

Pointer Feedback

The pointer can assume avariety of shapes. For instance, in atext-editing application, the pointer might assume an
I-beam shape (called a"text pointer" in the JDK) to indicate where the insertion point will be if the user presses the
mouse button. The insertion point is the location where typed text or adragged or pasted selection will appear. When
the pointer moves out of the editor pane, it returnstoitsinitial appearance as a default pointer.

The Javalook and feel defines a set of pointer types that map to the corresponding native platform pointers; therefore,
the appearance of pointers can vary from platform to platform, as shown in the following table. When no
corresponding pointer exists in the native platform toolkit, the pointer is supplied by the JFC.

Table 7 Pointer Types Availablein JDK 1.1 and the Java 2 SDK

Pointer Macintosh | Windows 95 | CDE | Usagein Java L ook and Feel Applications

Default h [% h Pointing, selecting, or moving

Crosshair + —I— -+ | Interacting with graphic objects

Hand rErrF' q‘ﬂ:'} E& | Panning objects by direct manipulation

Move i -+ "I" Moving objects

Text I i | | Selecting or inserting text

Wait E} o) Idlz)di)iﬁatérn? agzt an operation isin progress and the user cannot
SResize =+ I =} | Adjusting the lower (southern) border of an object

N Resize = I ? Adjusting the upper (northern) border of an object

E Resize | — %,+| Adjusting the right (eastern) border of an object

W Resize | — |r’¢ Adjusting the |eft (western) border of an object

NW Resize F '\‘ [~ | Adjusting the upper-left (northwest) corner of an object
NE Resize = ./' 1 | Adjusting the upper-right (northeast) corner of an object

http://java.sun.com/products/jlf/dg/higi.htm (2 sur 10) [05/06/2000 14:15:33]

Design Guidelines: Behavior

SE Resize dl, '\ =J] | Adjusting the lower-right (southeast) corner of an object

SW Resize J ./' |= | Adjusting the lower-left (southwest) corner of an object

EE="> In addition to the shapes in Table 7, a pointer graphic can be defined as an image and created using
Toolkit.createCustomCursor if you are using the Java 2 platform.

Mouse-over Feedback

Mouse-over feedback isavisual effect that occurs when users move the pointer over an area of an application
window.

In the Javalook and feel, mouse-over feedback can be used to show borders on toolbar buttons when the pointer
moves over them. A dightly different effect is used to display tool tips. For details, see Toolbars and Tool Tips.

Clicking and Selecting Objects

In the Javalook and feel, the selection of objects with the mouseis similar to the standard practice for other graphical
user interfaces. Users select an object by clicking it. Clicking an unselected object also deselects any previous
selection.
JFC-provided text selection follows these general rules:

o A singleclick deselects any existing selection and sets the insertion point.

o A double click on aword deselects any existing selection and selects the word.

o Atripleclick inaline of text deselects any existing selection and selects the line.

Dragging (that is, moving the mouse while holding down mouse button 1) through arange of text deselects
any existing selection and selects the range.

O

JFC-provided selection in lists and tables follows these general rules:
o A click on an object deselects any existing selection and selects the object.
o A Shift-click on an object extends the selection from the most recently selected object to the current object.
o A Control-click on an object toggles its selection without affecting the selection of any other objects.

Displaying Contextual Menus

It can be difficult for usersto find and access desired features given all the commands in the menus and submenus of a
complex application. Contextual menus (sometimes called "pop-up menus') enable you to make such functions
available throughout the graphical interface and to associate menu items with relevant objects.

Users can access contextual menus in two ways:

o To pull down the menu, users can press and hold mouse button 2 over arelevant object. Then they can drag to
the desired menu item and release the mouse button to choose the item.

o To post the menu, users can click mouse button 2 over arelevant object. Then they can click the desired menu
item to choose it.

Figure 46 Contextual Menu for a Text Selection

http://java.sun.com/products/jlf/dg/higi.htm (3 sur 10) [05/06/2000 14:15:33]

Design Guidelines: Behavior

Figure 1, the engiteering model has
the uzer interfage cotizizts of knobs
cofitrast, the faetltjt ofi the rightin E
model — mowitg . Al T
left or right cof CUE Ctrl-2 by
these movemery Copy Ctrl-c |0

cold water supL
the engineerin EaSte Chlwi

al
humat interfa - N
choosing one Spelling ... :
modelz that underlie human-machir

111
& Since users often have difficulty knowing whether contextual menus are available and what is in them, ensure

that the itemsin your contextual menu also appear in the menu bar or toolbar of the primary windows in your
application.

&7 Be surethat the commandsin your contextual menu apply only to a selected object or group of objects. For
instance, a contextual menu might include cut, copy, and paste commands limited to a selected text range, as shownin
the preceding figure.

25 Remember that users on the Microsoft Windows and UNIX platforms display a contextual menu by clicking or
pressing mouse button 2. Macintosh users hold down the Control key while clicking.

Drag-and-Drop Operations

Drag-and-drop operations include moving, copying, or linking selected objects by dragging them from one location
and dropping them over another. These operations provide a convenient and intuitive way to perform many tasks
using direct manipulation. Common examples of drag and drop in the user interface are moving files by dragging
file icons between folders or dragging selected text from one document to another. The Java 2 platform supports drag
and drop between two Java applications or between a Java application and a native application. For example, on a
Microsoft Windows system, users can drag atext selection from a Java application and drop it into a Microsoft Word
document.

Typical Drag and Drop

Drag and drop in Java applicationsis similar to standard behavior on other platforms. Users press mouse button 1
while the pointer is over a source object and then drag the abject by moving the pointer while holding down the
mouse button. To drop the object, users release the button when the pointer is over a suitable destination. A successful
drop triggers an action that depends on the nature of the source and destination. If the drag source is part of arange
selection, the entire selection (for example, several fileicons or arange of text) is dragged.

Pointer and Destination Feedback

During any drag-and-drop operation, your Javalook and feel application needs to give visual feedback using the
pointer and the destination.

"% Provide the user with feedback that a drag operation isin progress by changing the shape of the pointer when
the drag isinitiated.

& Provide destination feedback so users know where the dragged object can be dropped. Use one or both of the
following methods to provide destination feedback:

o Change the pointer shape to reflect whether the object is over a possible drop target.
o Highlight drop targets when the pointer is over them to indicate that they can accept the target.

EB== Java objects are specified by their MIME (Multipurpose Internet Mail Extensions) types, and the Java™
runtime environment automatically translates back and forth between MIME types and system-native types as needed.
Asan object is dragged over potential targets, each potential target can query the drag source to obtain alist of
available data types and then compare that with the list of data types that it can accept. For example, when dragging a
range of text, the source might be able to deliver the text in a number of different encodings or as plain text, styled

http://java.sun.com/products/jlf/dg/higi.htm (4 sur 10) [05/06/2000 14:15:33]

Design Guidelines: Behavior

text, or HTML text. If thereis amatch in data types, potential targets should be highlighted as the pointer passes over
them to indicate that they can accept the dragged object.

Keyboard Operations

The Javalook and feel assumes a PC-style keyboard. The standard ASCII keys are used, along with the following
modifier keys: Shift, Control, and Alt (Option on the Macintosh); the function keys F1 through F12; the four arrow
keys; Delete, Backspace, Home, End, Page Up, and Page Down. Enter and Return are equivalent. (Return does not
appear on PC keyboards.)

A modifier key isakey that does not produce an alphanumeric character but can be used in combination with other
keysto ater an action. Typical modifier keysin Javalook and feel applications are Shift, Control, and Alt.

This section describes and provides recommendations for the use of keyboar d oper ations, which include keyboard
shortcuts, mnemonics, and other forms of navigation, selection, and activation that utilize the keyboard instead of the
mouse. A mnemonic is an underlined letter that typically appearsin a menu title, menu item, or the text of a button or

other component. The underlined letter reminds users how to activate the equivalent command by pressing the Alt key
and the character key that corresponds to the underlined letter. For instance, you could use a mnemonic to give
keyboard focus to atext area or to activate acommand button. A keyboard shortcut is a sequence of keys (such as

Control-A) that activates a menu command.

Keyboard Focus

The keyboar d focus (sometimes called "input focus') designates the active window or component where the user's
next keystrokes will take effect. Focus typically moves when users click a component with a pointing device, but
users can a so control focus from the keyboard. Either way, users designate the window, or component within a
window, that receives input. (There are exceptions: for instance, aleft-alignment button on atoolbar should not take
focus away from the text area where the actual work is taking place.)

111
& When awindow isfirst opened, assign initial keyboard focus to the component that would normally be used
first. Often, this is the component appearing in the upper-left portion of the window. If keyboard focusis not assigned
to a component in the active window, the keyboard navigation and control mechanisms cannot be used. The
assignment of initial keyboard focus is especially important for people who use only a keyboard to navigate through
your application--for instance, those with visual or mobility impairments.

In the Javalook and feel, many components (including command buttons, checkboxes, radio buttons, toggle buttons,
lists, combo boxes, tabbed panes, editable cells, and tree views) indicate keyboard focus by displaying a rectangular
border (blue, in the default color theme).

Figure 47 Keyboard Focus Indicated by Rectangular Border

http://java.sun.com/products/jlf/dg/higi.htm (5 sur 10) [05/06/2000 14:15:33]

Design Guidelines: Behavior

[Images -) Two Open

Moneditable combo box Fadio button Comrmand button

| Color | Sound rlmage| Bell Fepper

Qlive
Fepperani
Smoked Ham

Tabbed pane Lizt
FirgtMarme | LastMame |Employes D] Froject | @ [Classical
Jakoh Lehn a3Z | Butler il @] Beethoven
Peter Winter 27 | FireDog @] Brahms
Sophia Amanm 377 | Krakatoa 7 @'g Mfa};t
Bl B Schubert
Samuel Stewart 452 | Butler i
— @] Jaz=
Eva Kidney 1273 | Moonheam @ [Rock
hira Brooks 192 | Moonbeam -
Table Tre e wiew

Editable text components, such as text fields, indicate keyboard focus by displaying ablinking bar at the insertion
point.

Figur e 48 Keyboard Focus Indicated by Blinking Bar at Insertion Point

swing—64.gifl-

Blinking bar at inzertion point

Menus indicate focus with a colored background for menu titles or menu items (blue, in the default color theme).

Figur e 49 Keyboard Focus Indicated by Colored Background

Edit |
Undo Ctrl-Z
Redo Ctrl-r
Cut Ctrl-,
Co py Ctrl-C
Paste Ctrl-n

Drop-dowen rmenu

Split panes and dliders indicate focus by darkening the drag-textured areas (blue, in the default color theme).
Figure 50 Keyboard Focus Indicated by Drag Texture

http://java.sun.com/products/jlf/dg/higi.htm (6 sur 10) [05/06/2000 14:15:33)]

Design Guidelines: Behavior

splitpane

Keyboard Navigation and Activation

Keyboard navigation and activation enable users to move keyboard focus from one user interface component to
another viathe keyboard.

In general, pressing the Tab key moves focus through the major components; Shift-Tab moves through the
componentsin the reverse direction. Control-Tab and Control-Shift-Tab work in a similar fashion and are particularly
useful when keyboard focusisin an element that accepts tabs, such as atext area or atable. Arrow keys are often used
to move within groups of components--for example, Tab puts focusin a set of radio buttons and then the arrow keys
move focus among the radio buttons. However, the Tab key is used to move among checkboxes.

Once an element has focus, pressing the spacebar typically activatesit or selectsit. In alist, pressing Shift-spacebar
extends the selection; pressing Control-spacebar makes another selection without affecting the current selections.

Some components do not need explicit keyboard focus to be operated. For example, the default button in a dialog box
can be operated by pressing the Enter or Return key without the default button having keyboard focus. Similarly,
scrollbars can be operated from the keyboard if focus is anywhere within the scroll pane.

Keyboard navigation can be useful not only for accessibility purposes, but also for power users, users who prefer the
keyboard over the mouse, or users who choose alternative input methods like voice input or onscreen keyboards.

111
%7 Ensurethat all application functions are accessible from the keyboard by unplugging the mouse and testing the

application's keyboard operations.

EBE=" Some of the keyboard operations in the tables in Appendix A are temporarily incomplete or unimplemented.

However, the key sequences listed in this appendix should be reserved for future versions of the JFC and the Java 2
platform.

EE=" The setNextFocusableComponent method from JComponent can be used to set the order for tabbing by
chaining components together--specifying for each component what the next component in the sequence is.

The common operations for keyboard navigation and activation in the Javalook and feel are summarized in the
following table. Within the table, the term "group” refers to agroup of toolbar buttons, menu titles, text, or table cells.

Table 8 Common Navigation and Activation Keys

Action Keyboard Operation
Navigates in, navigates out Tabl

Navigates out of a component that accepts tabs Control-Tab!

Moves focus |eft one character or component within a group Left arrow

Moves focus right one character or component within a group Right arrow

Moves focus up one line or component within a group Up arrow

Moves focus down one line or component within a group Down arrow

Moves up one view Page Up

Moves down one view Page Down

http://java.sun.com/products/jlf/dg/higi.htm (7 sur 10) [05/06/2000 14:15:33]

Design Guidelines: Behavior

Moves to the beginning of data; in atable, moves to the beginning of aline | Home

Moves to the end of data; in atable, movesto thelast cell in arow End

Activates the default command button Enter or Return
Dismisses amenu or dialog box without changes Escape
Activates or selects the component (with keyboard focus) Spacebar

1 With Shift key, reverses direction

Keyboard Shortcuts

Keyboard shortcuts are keystroke combinations (consisting of a modifier key and a character key, like Control-Z) that
activate amenu item from the keyboard even if the menu for that command is not currently displayed. Unlike
mnemonics, keyboard shortcuts do not post menus; rather, they perform the indicated actions directly.

Figure 51 Edit Menu With Keyboard Shortcuts and Mnemonics

Edit |
Undo Crl-Z- Prezs CtrlZ to Undo
Redo Chil-7
Cut Ctrl-x
Copy Ctrl-C
Paste Ctrl-W
Find... Ctrl-F
Find Again ctl-¢
Select All cila

To use akeyboard shortcut in Javalook and feel applications, users hold down the Control key (and optionally, an
additional modifier key, such as Shift) and press the character key that is shown after the menu item. Typing the
keyboard shortcut has the same effect as choosing the menu item. For instance, to undo an action, users can either
choose the Undo item from the Edit menu or hold down the Control key and press Z.

% Do not use the Meta key (the Command key on the Macintosh platform) for a keyboard shortcut, except as an
aternate for Control. It is not available on many target platforms.

111
&7 Specify keyboard shortcuts for frequently used menu items to provide an alternative to mouse operation. The

Javalook and feel displays keyboard shortcuts using standard abbreviations for key names, separated by hyphens.

11
“_I7 Beaware of and use the common shortcuts across platforms that are summarized in the following table.

Table 9 Common Keyboard Shortcuts

Sequence | Equivalent

Ctrl-N New (File menu)

Ctrl-O Open (File menu)

Ctrl-S Save (File menu)

Ctrl-P Print (File menu)

Ctrl-wW Close (File menu)

Ctrl-z Undo (Edit menu)

http://java.sun.com/products/jlf/dg/higi.htm (8 sur 10) [05/06/2000 14:15:33)]

Design Guidelines: Behavior

Ctrl-Y Redo (Edit menu)

Ctrl-X Cut (Edit menu)

Ctrl-C Copy (Edit menu)

Ctrl-v Paste (Edit menu)

Ctrl-F Find (Edit menu)

Ctrl-G Find Again (Edit menu)

Ctrl-A Select All (Edit menu)

2H Since keyboard shortcuts are not always equivalent on different platforms, ensure that any new keyboard
shortcuts you have created are compatible with existing shortcuts on all your target platforms.

Mnemonics

Mnemonics provide yet another keyboard aternative to the mouse. A mnemonic is an underlined letter in amenu title,
menu item, or other interface component. It reminds the user how to activate the equivalent command by
simultaneously pressing the Alt key and the character key that corresponds to the underlined letter.

Figure 52 File Menu With Mnemonics and Keyboard Shortcuts

Press Alt-F to display menu
|_ play
File |

Hew Ctrl-M
Open... Ctil-0
Close Ctrl-vir
Save Ctrl-5
Save As..
Page Setup
Print... Ctrl-F
Preferences
Exit

|

| Then press X 1o exit

When keyboard focusis not in atext element, the Alt modifier is not always required. Menus are an example. For
instance, to choose the Exit command from the File menu, the user can hold down the Alt key and press F to post the
File menu, and then press X.

Once users have displayed a menu with a keyboard sequence, the subsequent key they press will activate acommand
only from that menu. Hence, users can press Alt-F to display the File menu and then type A to activate the Save As
command, or press Alt-E to display the Edit menu, and then type A to activate the Select All command.

Y ou can & so provide mnemonics for components within the dialog boxes in your applications. However, itis
important to note that this situation requires that you use a modifier key. For instance, within adialog box, you might
want to provide a mnemonic for the Help button. Once keyboard focus has moved within the dialog box, users press
Alt, and then H to activate the Help button.

111
& Do not associate mnemonics with the default button or the Cancel button in adialog box. Use Enter or Return

for the default button and Escape for the Cancel button instead.

111
& Choose mnemonics that avoid conflicts. For instance, you cannot use the letter P as the mnemonic for both the

Print and Page Setup commands.

http://java.sun.com/products/jlf/dg/higi.htm (9 sur 10) [05/06/2000 14:15:33)]

Design Guidelines: Behavior

& When you assign mnemonics, follow these guidelines in the specified order.

1
2.

Use common mnemonics as they appear in Table 10 below.

If the mnemonic does not appear in the table of common mnemonics (Table 10), choose the first
letter of the menu item. (For instance, choose Jfor Justify.)

If thefirst letter of the menu item conflicts with those of other items, choose a prominent consonant.
(For instance, the letter S may have already been designated as the mnemonic for the Style
command. Therefore, choose the letter Z as the mnemonic for the Size command.)

If the first letter of the menu item and the prominent consonant conflict with those of other menu
items, choose a prominent vowel.

Table 10 Common Mnemonics

Menu Titles | Menu Items

File New, Open, Close, Save, Save As, Page Setup, Print, Preferences, Exit
Edit Undo, Redo, Cut, Copy, Paste, Find, Find Again, Select All

Help Contents, Tutorial, Index, Search, About Application

EE== The setMnemonic method can be used to specify mnemonics on buttons, checkboxes, radio buttons, toggle
buttons, and menu titles. The setDisplayedMnemonic method can be used for 1abels, and the setAccel erator method
for menu items.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jlf/dg/higi.htm (10 sur 10) [05/06/2000 14:15:33]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Windows, Panes, and Frames

java.sun.com: Java Look and Feel Design Guidelines @ @ Contents Index Search

7: Windows, Panes, and Frames

Primary windows, secondary windows, utility windows, and plain windows provide the top-level containers for your
application. A primary window is awindow in which users main interaction with the data or document takes place. An
application can use any number of primary windows, which can be opened, closed, minimized, or resized independently. A
secondary window is a supportive window that is dependent on a primary window (or another secondary window). In the
secondary window, users can view and provide additional information about actions or objectsin a primary window. A
utility window is awindow whose contents affect an active primary window. Unlike secondary windows, utility windows
remain open when primary windows are closed or minimized. An example of a utility window is atool palette that is used
to select agraphic tool. A plain window is awindow with no title bar or window controls, typically used for splash
screens.

Figure 53 Primary, Utility, Plain, and Secondary Windows

Pritrary
File Edit Font Format Help

I EEENEREEREREREEEE

Sorme might argue that the optimal user interface is usually one that ol
directly corresponds to & task model. But basing the user interface on a Q :l[s
task is not always the correct answer either, for two reasons. First, the i
user's task has been shaped by the tools that were used for it in the past,
and blindly adapting the interfa
into cheolete behavior, Second,

different work contexts and be 2 esun @

microsystems

Utility

iting new
In 1901 the Phelps tractor was i
horse in farm work, The Phelp

wagon, and farmers used a pair
wrould contrel a horse, The trac

[0 =———— MetalEdit: Warning "c0—————

Save Changes?
The document you are closing has unsaved changes.
Secondary 2 dD;ﬁgLnrgExr;?St to zave the changes hefare closing the

Save Don't Save Cancel

Similarly, as a designer you can use panels, panes, and internal frames as lower-level containers within primary and
secondary windows. A panel isa container for organizing the contents of awindow, dialog box, or applet. (Y ou can place

panelsin panes or panesin panels.) A paneisacollective term for scroll panes, split panes, and tabbed panes, which are
described in this chapter. An internal frameisacontainer used in MDI applications to create windows that users cannot
drag outside of the desktop pane.

Figure 54 Scroll Pane, Tabbed Pane, Split Pane, and Internal Frame

http://java.sun.com/products/jlf/dg/higk.htm (1 sur 14) [05/06/2000 14:18:42]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Windows, Panes, and Frames

into chselete behavior, Secand, different users may oy a| Scroll pane
different work contexts and be served better by differer

iting new
In 1901 the Phelps tractor was introduced as a direct re
horse in farm work. The Phelps tractor could be hitch
wagon, and farmers nead a nair af reine tr romtral the
wrould -:f:ntml Metal|Fix Calor Chooser
appropriate re:

Tabbed pane
dizplaved ina
dialog box

Although the
for a farmer to
other contemy split
not the Phelps pane
: i R q
|) I N 3
I s
S T
ST P
Int | CEEEr
fr:airzzg HEEEEEEEEEEL

Java Look & Feel -

Anatomy of a Primary Window

Primary windows act astop-level containers for the user interface elements that appear inside them. A primary window

might hold a series of embedded containers. For example, a primary window in your application could have this

organization, as shown in the following figure:

o Thewindow frame contains a menu bar and a panel

0 The menu bar contains menus

o The panel contains atoolbar and a scroll pane and scrollbar

o Thetoolbar contains toolbar buttons

o The scroll pane contains an editor pane with a plug-in editor kit for styled text
Figure 55 Components Contained in a Primary Window

http://java.sun.com/products/jif/dg/higk.htm (2 sur 14) [05/06/2000 14:18:42]

Design Guidelines: Windows, Panes, and Frames

Wiindow frame

Menu bar Panel

Menus 1, 2, 3 ... Toolbar scroll pane and scrollbar
Toolbar butt ons Editor pane with styled text
1,2, % ... plug-in kit

Note the appearance of the embedded containersin an actual primary window and their relationship to the underlying
structure, as shown in the following figure:

Figure 56 Anatomy of a Primary Window

Wiindow frame

Me nubar

and menus—pf_.??_[.j-@'-@

Toolbar and —;rﬁ.] =
toolbar buttons 'sﬂme

Editar pane
with ztyled
text plug-in kit

eroll pane and
zcrollbars

Wi ndow frame ——@

me nubar
and menus

Toalbar and
toalbar buttans

Panel

scroll pane
Editor pane

styvled et
plug-in kit

scrallbars in T
zcroll pane

http://java.sun.com/products/jif/dg/higk.htm (3 sur 14) [05/06/2000 14:18:42]

Design Guidelines: Windows, Panes, and Frames

Constructing Windows

Primary windows, secondary windows, utility windows, and plain windows serve as the top-level containersfor al the
interface elements of your application.

Figure 57 Top-Level Containers

gg Untitled 2 100 Prirmary window

Seeondary winde

Plain window

Utility window

B Primary windows are implemented using the JFrame component. Secondary windows and utility windows are
implemented using the JDialog component. Plain windows are implemented using the IWindow component.

Primary Windows

JFC applications display information such as documents inside primary windows. Such windows are provided by the native

operating system of the platform on which the application is running--for instance, UNIX, Microsoft Windows, OS/2, or
Macintosh.

Specifically, you cannot alter the appearance of the window border and title bar, including the window controls, which are

provided by the native operating system. Window behavior, such asresizing, dragging, minimizing, positioning, and
layering, is controlled by the native operating system.

The content provided by your application, however, assumes the Java look and feel, as shown in the following illustration
of aMetalEdit document window as it appears on the Microsoft Windows platform.

Figure 58 Primary Window on the Microsoft Windows Platform

' W ol ooy
Title bar |_|: controls

=3 MetalEdit: Untitled

File Edit Font Format Help
AEE = ENE R

Although the human interface designer and the software developer might well be the
same persan, the two jobs require different tasks, skills, and tools. Primarily, this book
addresszes the designerwho chooses the interface components, lays them out in a set
of wiews, and designs the user interaction madel far an application. This baok shauld
also prove useful for developers, technical writers, graphic arists, production and
marketing specialists, and testers who participate in the creation of Java applications
and applets.

&— Border

http://java.sun.com/products/jlf/dg/higk.htm (4 sur 14) [05/06/2000 14:18:42]

Design Guidelines: Windows, Panes, and Frames

Typically, when users close or minimize awindow, the operating system closes any associated secondary windows as well.
However, the operating system does not take care of this behavior automatically for JFC applications.

11
_&7 Keep track of the secondary windowsin your application; close them if the primary window is closed or hide them if
their primary window is minimized.

11
_£7 Although native operating systems display aclose control on the title bar of typical windows, provide a Close item or
Exit item in your File menu as well.

EE== In the JFC, primary windows are created using the JFrame component. This component appears with the border,
title bar, and window controls of the platform on which it is running. Thisis the JFC component you are most likely to use
as the top-level container for a primary window.

Secondary Windows

Secondary windows, such as dialog boxes and alert boxes, are displayed in awindow supplied by the native operating
system. In the JFC, this component is called JDialog. It appears with the border and title bar of the platform onwhichitis
running. Chapter 8 provides more guidelines for the design of dialog boxes and alert boxes. The following figure shows a

JFC-supplied Warning alert box for the sample text-editing application, Metal Edit.
Figure 59 Alert Box on the Macintosh Platform

I—TiﬂE bar
[=——— MetalEdit: Warning s @

Save Changes?
The document wau are closing has unsaved changes.

© %% Doyouwantto save the changes hefore closing the g Border
document?
Save Don't Save Cancel

Diaog and alert box behavior, such as dragging and closing, is controlled by the native operating system. For keyboard
operations that are appropriate to dialog and alert boxes, see Table 17.

= Keep in mind that some platforms do not provide close controls in the title bar for dialog boxes. Always provide a
way to close the window in the dialog box or aert box itself.

EE=" The JOptionPane component is used to implement an alert box. If the box supplied by the JFC does not suit your
needs, you can use the JDialog component.

Plain Windows

Y ou can create awindow that is ablank plain rectangle. The window contains no title bar or window controls, as shown in
the following figure. (Note that the black border shown around this plain window is not provided by the JFC.)

Figure 60 Plain Window Used as the Basis for a Splash Screen

http://java.sun.com/products/jlf/dg/higk.htm (5 sur 14) [05/06/2000 14:18:42]

Design Guidelines: Windows, Panes, and Frames

@Sun.

MHCrEsysiems

METALEDIT

oo o oL LALCL

o '
Ol RO 7

20T > 4
” 'f T e e

A plain window does not provide dragging, closing, minimizing, or maximizing. Y ou can use a plain window asthe
container for a splash screen, which appears and disappears without user interaction, as shown in the preceding figure.

B The JWindow component is used to implement plain windows. The JFrame component is used to implement
primary windows.

Utility Windows

In anon-MDI application with the Javalook and feel, a utility window is often used to display a collection of tools, colors,
or patterns. Unlike the pal ette windows provided for MDI applications, utility windows do not float above all the other
windows. The following figure shows a utility window that displays a collection of tools.

Figure 61 Utility Window

Platforrm-zpecific title bar and border

m] = o

LA EL Java look and feel window contents

=] [T] | [EE]

Unlike secondary windows, which should be closed automatically when their associated windows are closed, utility
windows should not be closed when primary windows are closed.

User choices made in a utility window refer to and affect the active primary window. A utility window remains on screen
for an extended period of time while users go back and forth between the utility window and primary windows. In contrast,
a secondary window is designed to enable users to resolve an issue in an associated primary window and is usually
dismissed once users have resolved the issue.

For information on keyboard operations appropriate for utility windows, see Table 17.

1l
_27 Since utility windows are not dependent on a primary window, do not automatically dismiss utility windows when
primary windows are closed.

BEE=" Utility windowsin your application are implemented using the JDialog component. Palettes to be used within MDI
applications are implemented as aform of the Jinternal Frame component.

http://java.sun.com/products/jif/dg/higk.htm (6 sur 14) [05/06/2000 14:18:42]

Design Guidelines: Windows, Panes, and Frames

Organizing Windows

The JFC provides a number of user interface elements you can use for the organization of windows: panels, tabbed panes,
split panes, and scroll panes. Panels and panes can be used to organize windows into one or more viewing areas. A panel is
a JFC component that you can use for grouping other components inside windows or other panels. A paneisacollective
term for scroll panes, split panes, and tabbed panes.

Figure 62 Lower-Level Containers

Panel
scroll pane
Tabbed
pane
4
T
4
split pane
Panels

In contrast to scroll panes and tabbed panes, which typically play an interactive role in an application, a panel simply
groups components within awindow or another panel. Layout managers enable you to position components visually within
apanel. For athorough treatment of the visual layout and alignment of components, see Layout and Visual Alignment. For

more information on layout managers, see The Java Tutorial at http://java.sun.com/docs/books/tutorial .

Scroll Panes

A scroll paneis a specialized container offering vertical and horizontal scrollbars that enable users to change the visible
portion of the window contents.

Hereisan example of ascroll pane with avertical scrollbar. The size of the scroll box indicates the proportion of the
content currently displayed.

Figure 63 Scroll Panein a Document Window

http://java.sun.com/products/jlf/dg/higk.htm (7 sur 14) [05/06/2000 14:18:42]

http://java.sun.com/docs/books/tutorial

Design Guidelines: Windows, Panes, and Frames

File Edit Font Format Help

DeEE [enfEe by EEEE

Sorme might argue that the optimal user interface is usually one that sl
directly corresponds to a task model. But basing the user interface on a
task is not always the correct answer either, for two reasons, First, the

user's task has been shaped by the tools that were used for it in the past, L
and blindly adapting the interface to the existing task can lock the user
into chsolete behavior, Second, different users may operate in quite .
different work contexts and be served better by different interfaces.

iting new
In 1901 the Phelps tractor was introduced as a direct replacernent for the
horse in farm work, The Phelps tractor could be hitched to a carriage or
wagon, and farmers used a pair of reins to control the tractor just as they
would control & horse, The tractor was steered by pulling on the —

Y ou can choose whether scrollbars are always displayed in the scroll pane or whether they appear only when needed.

11
L& Unless otherwise indicated, use the default setting for horizontal scrollbars, which specifies that they appear only

when needed.

11
L& If thedatain alist is known and appears to fit in the available space (for example, a predetermined set of colors),
specify that a vertical scrollbar should appear only if needed. For instance, if users change the font, the list items might
become too large to fit in the available space, and a vertical scrollbar would be required.

11
_I7 If the datain ascroll pane sometimes requires a vertical scrollbar, specify that the vertical scrollbar always be

present. Otherwise, the data must be reformatted whenever the vertical scrollbar appears or disappears.

EB== Scrollbars are obtained by placing the component, such as atext area, inside a scroll pane.

Scrollbars

A scrollbar isacomponent that enables users to control what portion of a document or list (or similar information) is

visible on screen. In locales with | eft-to-right writing systems, scrollbars appear along the bottom and the right sides of a

scroll pane, alist, acombo box, atext area, or an editor pane. In locales with right-to-left writing systems, such as Hebrew
and Arabic, scrollbars appear along the bottom and Ieft sides of the relevant component. By default, scrollbars appear only
when needed to view information that is not currently visible, although you can specify that the scrollbar is always present.

The size of the scroll box represents the proportion of the window content that is currently visible. The position of the

scroll box within the scrollbar represents the position of the visible material within the document. As users move the scroll
box, the view of the document changes accordingly. If the entire document is visible, the scroll box fills the entire channel.

Both horizontal and vertical scroll boxes have aminimum size of 16 x 16 pixels so that users can still manipulate them
when viewing very long documents or lists.

At either end of the scrollbar isascroll arrow, which is used for controlling small movements of the data.

The following figure shows horizontal and vertical scrollbars. Each scrollbar is arectangle consisting of atextured scroll
box, arecessed channel, and scroll arrows.

Figure 64 Vertical and Horizontal Scrollbars

http://java.sun.com/products/jlf/dg/higk.htm (8 sur 14) [05/06/2000 14:18:42]

Design Guidelines: Windows, Panes, and Frames

—
scroll b —-
Wertical
scrollbar
scrall channel L
scrall arrow ul
-
4 I |

Horizantal scrallbar

Do not confuse the scrollbar with a dlider, which is used to select avalue. For details on sliders, see here.

Users drag the scroll box, click the scroll arrows, or click in the channel to change the contents of the viewing area. When
users click a scroll arrow, more of the document or list scrolls into view. The contents of the pane or list movein
increments based on the type of data. When users hold down the mouse button, the pane or list scrolls continuously.

For a description of keyboard operations for scrollbars, see Table 22.

11
_27 Scrall the content approximately one view at atime when users click in the scrollbar's channel. For instance, in a
document, a view might represent a page of text. Leave one small unit of overlap from the previous view to provide context
for the user. For instance, in scrolling through along document, help users become oriented to the new page by providing
one line of text from the previous page.

11
_27 Scrall the content one small unit at atime when users click a scroll arrow. (A small unit might be one line of text, one

row in atable, or 10 to 20 pixels of agraphic.)

11
_£7 Display ahorizontal scrollbar if the view cannot show everything that isimportant--for instance, in aword-processing

application that prepares printed pages, users might want to look at the margins as well as the text.

@ If you are using the Java 2 SDK, place scrollbars in the orientation that is suitable for the writing system of your target
locale. For example, in the U.S. locale, the scrollbars appear along the right side of the scroll pane or other component. In
other locales, they might appear along the |eft side of the scroll pane.

Tabbed Panes

A tabbed paneisacontainer that enables users to switch between several content panes (usually JPanel components) that
appear to share the same space on screen.

The tabs themselves can contain text or images or both. A typical tabbed pane appears with tabs displayed at the top.
Alternatively, the tabs can be displayed on one of the other three sides. If the tabs cannot fit in a single row, additional rows
are created automatically. Note that tabs do not change position when they are selected. For the first row of tabs, thereisno
separator line between the selected tab and the pane.

The following figure shows the initial content pane in the JFC-supplied color chooser. Note that the tabbed paneis
displayed within adialog box that uses the borders, title bar, and window controls of the platform on which its associated
application is running.

Figure 65 Swatches Content Pane in the JFC Color Chooser

http://java.sun.com/products/jlf/dg/higk.htm (9 sur 14) [05/06/2000 14:18:42]

Design Guidelines: Windows, Panes, and Frames

MetalPiw Color Chooser

swtches 1150 | RGo | - T
Cwith

FANErmanics)

— Swatches
content pane

0OK Cancel Reset

Users choose which content pane to view by clicking the corresponding tab. The content pane changes accordingly, as
shown in the following figure of the content pane associated with the third tab in the color chooser.

For alist of keyboard operations appropriate for tabbed panes, see Table 25.

Figure 66 RGB Content Pane in the JFC Color Chooser

MetalFix: Color Chooser

— RLCB
content
pane

0K Cancel Reset

Y ou can use tabbed panes to good advantage in dialog boxes, such as a preferences dialog box, that require you to fit alot
of information into asmall area

Y ou can also use tabbed panes to provide away for users to switch between content panes that represent:
o Different waysto view the same information, like a color chooser's RGB and HSB panes
o Different parts of an informational unit, like worksheets that are part of aworkbook in a spreadsheet application

i
L& Use headline capitalization for tab names.
i
_27 Provide mnemonics so users can navigate from tab to tab and from tabs to associated content panes using keyboard
operations.
i
27 Do not nest tabbed panes.

i
_£7 If your tabbed pane requires multiple rows of tabs, consider dividing the content among several dialog boxes or
components. Multiple rows of tabs can be confusing.

http://java.sun.com/products/jlif/dg/higk.htm (10 sur 14) [05/06/2000 14:18:42]

Design Guidelines: Windows, Panes, and Frames

Split Panes

A split paneis acontainer that divides a pane into resizable panes. Split panes enable users to adjust the relative sizes of
two adjacent panes. The Javalook and feel drag texture (along with a pointer change) indicates that users can resize split
panes.

To adjust the size of the split panes, users drag the splitter bar, as shown in the following figure.

Figure 67 Split Pane (Horizontal Orientation)

4
§

I splitter bar

Users can also control the splitter bar by clicking one of the optional zoom buttons shown in the following figure. Clicking
abutton moves the splitter bar to its extreme upper or lower position. If the splitter bar is already at its extreme, clicking
restores the panes to the size they were before the zoom operation (or before the user dragged the splitter bar to close one of
the panes).

For alist of keyboard operations appropriate for split panes, see Table 24.

Figure 68 Zoom Buttons in a Split Pane (Vertical Orientation)

| Foam buttons

11
“_27 Include zoom buttons in split panes because they are very convenient for users.

Nested Split Panes

In addition to splitting panes either horizontally or vertically, you can nest one split pane inside another. The following
figure portrays a mail application in which the top pane of avertically split pane has another split pane embedded in it.

Figure 69 Nested Split Panes

http://java.sun.com/products/jlf/dg/higk.htm (11 sur 14) [05/06/2000 14:18:42]

Design Guidelines: Windows, Panes, and Frames

Mested panes (zplit horizontally)
I | [

- (=9 Inbox ': Date [From [Subject 717
=9 Sent Wail g Tue Feb 15 Kathy Menno The Swing Connection: 1.2.2 update =
T Trash il Tue Feb 15 Michael Lux projec! schadules
=3 admin MonFeb 16 Paul Emerling Rethinking the Enterprize
=3 benefits MonFeb 16 Keilh Brooks mouse double clicks in swing contrals —
@ EF customers MonFeb 16 Catherine Cowinglo lef's gef together far lunch Wednesday Q
(=3 Boydsiun A I ¥ed Fel 17 Richard Gentner suggeston for woochsarking project i
(=9 M ayer | WedFeb17 Michael Lux Re: project schedules
=3 Wagenhan ™ ThuFeh 18 HERZOG Re:Weizentaler Ahnengalerie
e ™ Verticaly
Date: Wed, Feh 17, 1900 24:57:23 PST split panes
Tm Judith Stewart <jstevwart@watercolor.org=>

Frome: Michael Lux <uxg@@studiodesign.oom>
Subject: Re: project schedules

Judich,

| b

Thanka for you comments and revisions to the project schedule, I like a lot of your
gugyeacions and we can definitely w3e the new Layouc.

Overall the timpe line makes sense, but I wonder about the short tine between alpha
and beta, Will we really have time to get feedback from our users and incorporate
what we learn into the deaign. Inscead, i€ we could eliminace zome of the seldom-
uzed features, we could mowe ih the alpha date and have tine .o INCOrpOLats usek ||
Leedback. Az an added borus, the systen would be much 2asiefg to leacn and wuse. -

Working With Multiple Document Interfaces

A multiple document interface (MDI) provides away to manage multiple windows that are confined inside a main window.
A limitation to using the MDI application model isthat users cannot drag the application’'s windows outside the main
window. To support MDI designers, the JFC provides the internal frame and pal ette window.

EE== 1f you are working with an MDI using the Java look and feel, the JDialog component can be used to create
secondary windows.

Internal Frames

To get standard window features in an MDI, you must put an internal frame inside the desktop pane. A desktop paneisa
component placed inside awindow that holds internal frames for an MDI application.

Theinternal frameisacontainer used in MDI applications to create windows that users cannot drag outside of the desktop

pane. In an MDI application that uses the Javalook and feel, internal frames have a window border, title bar, and standard
window controls with the Javalook and feel. However, the window that contains the desktop pane is a native platform
window with the native look and feel, as shown in the following figure.

Figure 70 Internal Framesin an MDI Application

http://java.sun.com/products/jlif/dg/higk.htm (12 sur 14) [05/06/2000 14:18:42]

Design Guidelines: Windows, Panes, and Frames

Application-specific icon

. i pi iz
|_ Title bar |— Drag area ’_‘_‘ Fmaximize
I = = and close

E Metal2 controlz

Java Look and Feel :

Rezize from
amy corner
ar side

Users can use the mouse to:
o Activate awindow (and deactivate the previoudly activated window) by clicking anywhere in the window
o Adjust the size of aresizable internal frame by dragging from any side or corner
o Dragtheinterna frame by the title bar within the desktop pane
o Minimize, maximize, restore, and close the internal frame by clicking the appropriate window controls

For keyboard operations appropriate to internal frames, see Table 16.

A minimized internal frame is ahorizontally oriented component (shown in the following figure) that represents an
internal frame that has been minimized. The width of these minimized internal framesis sized to accommodate the window
title. Minimized internal frames consist of a drag area followed by an area containing an application-specific icon and text,
which displays the name of the internal frame.

Figure 71 Minimized Internal Frame

Drag area — Text

‘ * Java Look anil Feel

Users can rearrange minimized internal frames by dragging the textured area. Users can click the icon and text areain a
minimized internal frame to restore the frame to its previous location and size.

For details on the keyboard operations appropriate for minimized internal frames, see Table 16.

Palettes

A palette window is atype of internal frame that can float above other internal frames within the desktop pane for an MDI
application. The close control is optional.

The following figure shows a pal ette window from a hypothetical graphical interface builder with a set of buttons that lets
Users construct menus.

Figure 72 Palette Window

http://java.sun.com/products/jlf/dg/higk.htm (13 sur 14) [05/06/2000 14:18:42]

Design Guidelines: Windows, Panes, and Frames

Title har:l_l_— Close cantrol

Pal ette windows often contain toggle buttons; users can click the toggle buttons to select them. However, pal ette windows
can contain any component. Users can close palette windows (if you provide a close control), but they cannot resize,
minimize, or maximize them.

For keyboard operations for palette windows, see Table 16.

11
“_£7 If you are writing anon-MDI application, use utility windows instead of palette windows so that the user can drag
them anywhere on the screen.

EE=> A palette window is a specific style of Jinternal Frame and, therefore, can be used only within a desktop pane. Use
the client properties mechanism to set the Jinternal Frame.isPalette to true.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jlf/dg/higk.htm (14 sur 14) [05/06/2000 14:18:42]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Dialog Boxes

java.sun.com: Java Look and Feel Design Guidelines @ @ Contents Index Search

8: Dialog Boxes

A dialog box is atemporary, secondary window in which users perform atask that is supplemental to the task in the primary

window. For example, adialog box might enable users to set preferences or choose afile from the hard disk. A dialog box
can contain panes and panels, text, graphics, controls (such as checkboxes, radio buttons, or sliders), and one or more
command buttons. Dialog boxes use the native window frame of the platform on which they are running.

Analert box isadiaog box that provides for brief interaction with users. Alert boxes present error messages, warn of

potentially harmful actions, obtain information from users, and display informational messages. The basic aert box hasa
symbol that identifies the type of the alert, atextual message, and one or more command buttons. The layout of these
componentsis supplied by the Javalook and feel.

Figure 73 Dialog Box and Alert Box

MetalFix<: Color Chooser Dialeg box
[Swatches HSE | RGE |

Alert box
L1
MetalEdit: Error 87 |
1 5 5 1 S
| 1 Out of Paper
ii‘==============l To continue printing, add more paper to the printer
SR and press Continue.
LR g
EEEREEEREEEREREEEN

C ontinue Cancel Help

Preview

n - H Sample Text Sample Text

. | . Sample Text Sample Text

OK Cancel Help

111
7 If your application is based on a multiple document interface (MDI), use the dialog boxes and alert boxes presented in
this chapter. Because these secondary windows use the platform's native windows (and not the JFC-supplied internal frame),
they are free to move outside the desktop pane.

Modal and Modeless Dialog Boxes

Dialog boxes can be modal or modeless. A modal dialog box prevents users from interacting with the application until the

dialog box is dismissed. However, users can move amodal dialog box and interact with other applications while the modal
dialog box is open. This behavior is sometimes called " application-modal."

A modeless dialog box does not prevent users from interacting with the application they are in or with any other
application. Users can go back and forth between a model ess dialog box and other application windows.

http://java.sun.com/products/jlf/dg/higl.htm (1 sur 12) [05/06/2000 14:16:11]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Dialog Boxes

111
_& Use modeless dialog boxes whenever possible. The order in which users perform tasks might vary, or users might
want to check information in other windows before dismissing the dialog box. Users might also want to go back and forth
between the dialog box and the primary window.

111
%7 Use moda dialog boxes when interaction with the application cannot proceed while the dialog box is displayed. For
example, aprogress dialog box that appears while your application is loading its data should be amodal dialog box.

Dialog Box Design

The following figure illustrates dialog box design guidelines for the Java look and feel. The dialog box has atitlein the
window's title bar, a series of user interface elements, and arow of command buttons. The default command button is the
OK button, indicated by its heavy border. The underlined letters are mnemonics, which remind users how to activate
components by pressing the Alt key and the appropriate character key. The noneditable Ruler Units combo box hasiinitial
keyboard focus, indicating that the user's next keystrokes will take effect in that component.

Figure 74 Sample Dialog Box

Application name

| ’ , : Dialog box title

[J = MetalEdit: Preferences
, Initial keyboard focus
Ruler Units: Centimeters Uzer imerface elements
Left Margin: 2.5 cm Right Margin: | 2.5cm
Show: (] Hidden Text |

[v| Margins]

Default Font: | Palatino - Size: 12 |-

Date Format:) 11398 ‘|
® Nov 3, 1998 J

) November 3, 1998

Stationery: gramsil etalEditiStationery Browse ... Standalone cormimand butt on

OK Cancel Help :I-— Comtnand button row

Default cammand buttan

pinermonic

&7 Usetheform "Application Name: Title" for thetitle of the dialog box (which is displayed in the title bar).

111
" Include mnemonics for all user interface elements except the default button and the Cancel button.

111
27 When opening a dialog box, provideinitial keyboard focus to the component that you expect users to operate first.
Thisfocusis especially important for users who must use a keyboard to navigate your application (for example, users with
visual and mobility impairments).

@ Consider the effect of internationalization on your design. Use alayout manager, which allows for text strings to
become bigger or smaller when translated to another language.

For more information on internationalization, see Planning for Internationalization and L ocalization. For details on keyboard
support for navigating through dialog boxes, see Table 17. For information on how to capitalize text in dialog boxes, see
Capitalization of Text in the Interface.

Tab Traversal Order

http://java.sun.com/products/jlf/dg/higl.htm (2 sur 12) [05/06/2000 14:16:11]

Design Guidelines: Dialog Boxes

Thetab traversal order is the order in which the components in the dialog box receive keyboard focus on successive presses
of the Tab key. If users press the Tab key when keyboard focusis on the last component in the dialog box, you should return
keyboard focus to the first component. The following figure shows the tab traversal order that the designer has set for this
preferences dialog box.

Figure 75 Tab Traversal Order in the Sample Dialog Box

[0 = MetalEdit: Preferences
, Tab traverzal begins here

Ruler Units: Centijtlers w || 4
Left Margin: 2Ahcm Right Maroin: Aom
Show: Hidden Text

Margins
Default Font: | Palatino = Size: || 12|+
Date Format: 11/3908

Hov 3, 1008

November 3, 1998) Key.hnard focus returnz
Stationeny: dramsik etalEditiStationerny + Browse ... to first component

|
-
| OK I Cancel Help

111
"7 Specify alogical tab traversal order for the user interface elements. The traversal order should match the reading order
for your application's specified locale. For example, in English, the traversal order isleft to right, top to bottom. By default,
the traversal order is the sequence in which you added the components to the dialog box.

EE== The setNextFocusableComponent method from JComponent can be used to specify the next component to receive
keyboard focus.

Spacing in Dialog Boxes

The following figure shows the spacing you must provide between the borders of the dialog box and the componentsin the
diaog box.

Figure 76 Spacing Between the Border and Components of a Dialog Box

12 pixels
iaile

3 Find: | |

12

lv| Match Case () Start at Top
[_] Whole Word s Wrap Around

Find Close I

B

11

11

111
“_2 Include 12 pixels between the top and left borders of the dialog box and its components. Include 11 pixels between the
bottom and right borders of the dialog box and its components. (To the eye, the 11-pixel spacing appears to be 12 pixels
because the white borders on the lower and right edges of the components are not visually significant.)

http://java.sun.com/products/jlf/dg/higl.htm (3 sur 12) [05/06/2000 14:16:11]

Design Guidelines: Dialog Boxes

See Design Grids for a general description of how to place text and components in a dialog box.

Command Buttons in Dialog Boxes

In dialog boxes, you can place command buttons alone or in a command button row at the bottom of the dialog box, as
shown in Figure 74. The most common command buttons that you might use in a command button row are the Help, Close,
OK, Cancel, Apply, and Reset buttons. If you use other command buttons, make sure their labels describe the action they
perform.

111
%7 Place command buttons that apply to the dialog box as a whole in the command button row at the bottom of the dialog

box. Thisincludes all buttons that dismiss the dialog box as one of their actions.

111
" _I7 Align buttonsin the command button row along the lower-right edge of the dialog box. (The alignment of the

command button row in JFC-supplied alert boxesis different from the alignment in dialog boxes.)

For consistency in the look and spacing of command buttons, follow the guidelines on Command Buttons. For keyboard
operations appropriate to command buttons, see Table 15.

Help Buttons

Y ou can use a Help button in any dialog box. A Help button enables users to obtain additional information about the dialog
box. For example, when users click Help in the Error alert box on page 125, the application opens a window with additional

information on the cause of the error.

27 When users click the Help button, open a secondary or utility window that displays the help information.

I Placethe Help button last in agroup of command buttons. For languages that read from left to right, the Help button
should be the rightmost button.

Close Buttons

The Close button is commonly used to dismiss simple dialog boxes, such as an Info aert box. The Close button is aso
commonly used to dismiss dialog boxes in which user actions take effect immediately. In these dialog boxes, users do not
need to press an OK button for the settings to take effect. A Close button is appropriate in both modal and modeless dialog
boxes.

The following dialog box, which contains a schedule reminder, includes a Close button that users can click to dismiss the
dialog box.

Figure 77 Diadlog Box With a Close Button

MetalButler: Appointment |

Reminder

11:00 arm- 12:00 noon
Human Interface Staff meeting
Corthout conference room

Close

111
%7 When users click the Close button, dismiss the dialog box and do not make additional changes to the system.

OK and Cancel Buttons

The OK and Cancel buttons work well in dialog boxes in which users specify options or settings. OK enables users to save
the settings, whereas Cancel enables usersto ignore any changed settings. In most cases, OK is the default button. OK and
Cancel are appropriate in both modal and modeless dialog boxes. The following figure shows a preferences dialog box with
OK, Cancdl, and Help buttons.

http://java.sun.com/products/jlf/dg/higl.htm (4 sur 12) [05/06/2000 14:16:11]

Design Guidelines: Dialog Boxes

Figure 78 Dialog Box With OK, Cancel, and Help Buttons

Browser: Preferences |
Display Toolbar: ' Image
Language _ Text
Fonts @ Image & Text
Security Links Expire: ' Newer Mew Link: -|
Cookies @ After | 1wWeek ¥ | UsedLink: [N
gaclfe Initial Page: @ Java Developer Connection
Proxies ' Home Page | hitp:fhwn metaldyne.com |
Download
Java

0K Cancel Help

111
& When users click the OK button, save the settings or carry out the commands specified in the dialog box and close the
dialog box. Whenever possible, use acommand name that describes the action (such as Print or Find) instead of OK.

111
7 When users click the Cancel button, close the dialog box and restore the settings in the dialog box to the state they
were in when the dialog box was opened.

111
_I7 Activate the Cancel button when users press the Escape key. The Cancel button does not need keyboard focus for this
interaction; only the dialog box must have focus. The Cancel button and its keyboard equivalent are not built into the JFC;
you must implement them yourself.

[
%_Z7 Do not add amnemonic to the Cancel button.

111
27 Do not use the Cancel button in a dialog box where settings become persistent before the dialog box is closed (for
example, in adialog box that has an Apply button). Users might be confused about whether the changes will be undone
when they press Cancel. In dialog boxes where you want users to be able to view changes without committing to them, use
Preview, OK, and Cancel buttons. Use Preview to show the effects of the changes in the document window without
dismissing the dialog box. Use OK to make the changes persistent, and use Cancel to undo the changes. OK and Cancel
should dismiss the dialog box as usual.

Apply and Reset Buttons

The Apply and Reset buttons work well in dialog boxes that remain open for repeated use, as shown in the properties dialog
box in the following figure. Apply and Reset often appear together in model ess dialog boxes.

Figure 79 Dialog Box With Apply, Reset, and Close Buttons

MetalEdit: Text Properties _I

F ont: Helvetica -
Size: | 18 | hd
Style: [v] Bold _ Normal
[ralic) Superscript

[_] Underline ® Subscript

Apphy Reset Close

http://java.sun.com/products/jlf/dg/higl.htm (5 sur 12) [05/06/2000 14:16:11]

Design Guidelines: Dialog Boxes

&7 Usethe Apply button to carry out the changes users specify in the dialog box without closing the dialog box.

111
7 Usethe Reset button to restore the values in the dialog box to the values specified by the last Apply command. If users
have not activated Apply, restore the values in effect when the dialog box was opened. Do not close the dialog box when
users choose Reset.

" If you include the Close button in a dialog box with Apply and Reset buttons, make Close dismiss the dialog box
without applying changes.

Default Command Buttons

The default command button is the button that the application activates when users press Enter or Return. The JFC givesthe
default command button a heavier border than other command buttons. In most cases, you should assign the default button
the action that users are most likely to perform, as shown with the OK button in the following figure. The default button
does not need to have keyboard focus when users press Enter or Return.

Figure 80 Dialog Box With a Default Command Button

MetalPix: Scale |

Scale: 129% |-
| Cefault cammand

button
oK Cancel

In cases where keyboard focus is on a component that accepts the Enter or Return key, such as a multiline text area, the
default button is not activated when users press the key. Instead, the insertion point moves to the beginning of anew line. To
operate the default button, users must move focus to a component that does not accept Enter or Return.

111
"7 If the dialog box has adefault button, make it the first command button in the group. For example, in languages that

read from left to right, the default button is the leftmost button.

(]
%_47 Do not add amnemonic for the default command button.

Y ou are not required to have a default command button in every dialog box and alert box. A command that might cause
users to lose data should never be the default button, even if it is the action that users are most likely to perform. The
following alert box asks usersif they want to replace an existing file. The alert box has Replace and Cancel buttons, neither
of which isthe default command button.

Figure 81 Alert Box Without a Default Button

MetalPix: Warning —I

File Exists
A file named "patience.qif already exists.
2% Replace exigting fila?

Replace Cancel

Common Dialog Boxes

The find, login, preferences, print, and progress dialog boxes are common in many applications. These dialog boxes are not
supplied by the Java Foundation Classes. The following sections show simple versions of these dialog boxes that are
consistent with the Javalook and feel. Y ou can adapt the designs for these dialog boxes to suit your needs.

http://java.sun.com/products/jlf/dg/higl.htm (6 sur 12) [05/06/2000 14:16:11]

Design Guidelines: Dialog Boxes

Find Dialog Boxes

A find dialog box enables users to search for a specified text string. In most cases, you should make this dialog box
modeless. An example is shown in the following figure.

Figure 82 Sample Find Dialog Box

MetalEdit: Find]|
Find: || — || Editable text field

[v| Match Case) Start at Top
[Whole Word @ Wrap Around

Find Close

Login Dialog Boxes

A login dialog box (shown in the following figure) enables users to identify themselves and enter a password. Depending on
where you use this dialog box in your application, you can make it modal or modeless.

Figure 83 Sample Login Dialog Box

O

Metalhdail: Log In

Login Name: | phyllis3

Password: [=y | Pazsword field with
default rmasking character

Log In Cancel Help

Preferences Dialog Boxes

A preferences dialog box (shown in the following figure) enables usersto view and modify the characteristics of an
application. In most cases, you should make this dialog box modeless.

Figur e 84 Sample Preferences Dialog Box

http://java.sun.com/products/jlf/dg/higl.htm (7 sur 12) [05/06/2000 14:16:11]

Design Guidelines: Dialog Boxes

[0 == MetalEdit: Preferences

Ruler Units: Centimeters

Left Margin: 25h5cm Right Margin: | 2.5 cm
Show: [] Hidden Text

[v| Margins
Default Font: | Palatino - Size: 12 |«

Date Format: ' 11/3198
s Nov 3, 1008
_) Nowember 3, 1008

Stationeny: dramsikl etalEditiStationerny Browse ...

OK Cancel Help

If your preferences dialog box is very complex, you can simplify it by using a tabbed pane to organize the options, as shown
in Figure 78.

Print Dialog Boxes

A print dialog box enables users to print and to specify print settings (such as the number of copies).

&7 Usethe print dialog box available from the AWT. On Microsoft Windows and Macintosh platforms, the AWT uses
the native print dialog box. For other environments, the AWT uses the print dialog box supplied with the JDK.

Progress Dialog Boxes

A progress dialog box provides feedback for long operations and lets users know that the system is working on the previous
command. The following progress dialog box monitors the progress of afile copy operation. The diaog box includes the
JFC progress bar, acommand button that users can click to stop the process, and labels to further explain the progress of the
operation. In most cases, you should make a progress dialog box modeless.

Figure 85 Sample Progress Dialog Box

MetalPix: Copy in Progress ===

Progress har

Labels hiroshige.qgif
l | Stop Cormmand button

About 25 seconds remaining

111
& Display a progress dialog box (or supply aprogress bar elsewhere in your application) if an operation takes longer
than two seconds.

111
& If you include a button to stop the process, place it after the progress bar. (In languages that read from left to right, the

button appears to the right of the progress bar.) If the state will remain asit was before the process started, use a Cancel
button. If the process might alter the state as it progresses (for example, deleted records will not be restored), use a Stop
button. If stopping the process could |ead to data loss, give users a chance to confirm the Stop command by displaying a
Warning alert box.

111
"I Close the progress dialog box automatically when the operation is complete.

http://java.sun.com/products/jlf/dg/higl.htm (8 sur 12) [05/06/2000 14:16:11]

Design Guidelines: Dialog Boxes

111
"I If delays are acommon occurrence in your application (for example, in aweb browser), build a progress bar into the
primary window so that you don't have to keep displaying a progress dialog box.

@ Because trandation of the word "Stop" can result in words with subtly different meanings, point out to your translators

the specialized meaning of the Stop button in a progress dialog box. Stop indicates that the process might leave the systemin
an dtered state.

Alert Boxes

An dert box, which conveys a message or warning to users, provides an easy way for you to create a dialog box. The JFC
provides four types of aert boxes: Info, Warning, Error, and Question. Each alert box is provided with a symbol that
indicates its type. Y ou provide the title, the message, and the command buttons and their labels.

The layout of an alert box is provided in the JFC, so you don't have to worry about the spacing and aignment of the
message, symbol, and command buttons. If you provide additional components, such as atext field, follow the layout
guidelines for that component. Y ou can make an alert box modal or model ess.

Figure 86 Standard Componentsin an Alert Box

AppMame: Alert Title |

Brief Header " th bold
The rermainder of the message goes here in plain font. h:;dsiang; with bo

Syrmbol that indicates
alert box type

Button 1 Button 2 —| Comimand buttons
J aligned with left edge
of rmezsage text

=& Inan aert box, begin your message with a brief heading in boldface. Start the body of the message on a separate line.

EE== In the message for an alert box, the ... tags can be used to render a heading in boldface. The
 tag can
be used to create aline break between the heading and the message body.

EE=" Analert box is created using the JOptionPane component.

Info Alert Boxes

An Info alert box presents general information to users. The symbol in the Info alert box is ablue circle with the letter i. The
following Info aert box from an encyclopedia application provides information about a sponge.

Figure 87 Info Alert Box

[==—— Sedlife: Sponije =—————

) Sponge

Llﬁ The sponge is a member of the phylum Potifera,
characteristically having a porous skeleton composed
of filrous material or siliceous or calcareous spicules.

Close

111
27 Provide a Close button to dismiss the Info alert box. Provide additional command buttons, such as a Help button, if
needed.

http://java.sun.com/products/jlf/dg/higl.htm (9 sur 12) [05/06/2000 14:16:11]

Design Guidelines: Dialog Boxes

Warning Alert Boxes

A Warning aert box warns users about the possible consequences of an action and asks users for aresponse. The symbol in
the Warning alert box is ayellow triangle with an exclamation point. The following alert box warns users that afile save
operation will replace an existing file.

Figure 88 Warning Alert Box

MetalPix: Warning _I

File Exists
A file named "patience. qif already exists.
S Replace existing file?

Replace Cancel

_Z" Keep the message in the Warning alert box brief, and use terms that are familiar to users.

111
"I Include at least two buttonsin a Warning alert box: one button to perform the action and the other to cancel the action.
Provide the command buttons with labels that describe the action they perform.

111
" If appropriate, provide a Help button that opens a secondary or utility window that gives background information
about the warning. Do not close the aert box when users click the Help button.

111
" Do not make a command button whose action might cause loss of data the default button. Users might press the Enter
or Return key without reading the message. In such a case, you might not provide a default button.

Error Alert Boxes

An Error aert box reports system and application errorsto users. The symbol in the Error alert box isared octagon with a
rectangle. The following Error alert box reports that a printer is out of paper and provides users with three options. Clicking
the Continue button resumes printing and dismisses the alert box. Clicking the Cancel button terminates the print job and
dismisses the alert box. Clicking the Help button opens a secondary window that gives background information about the
error.

Figure 89 Error Alert Box

| Error number
- intitle
MetalEdit: Error 87 |

Out of Paper
To continue printing, add more paper to the printer
and press Continue.

C ontinue Cancel Help

111
“_2 Include an error number in the title bar of an Error aert box. The error number is helpful for usersin obtaining
technical assistance, especialy if the error message is localized in alanguage not spoken by the technical support personnel.

111
I In the message of an Error alert box, explain what happened, the cause of the problem, and what the user can do about

http://java.sun.com/products/jlf/dg/higl.htm (10 sur 12) [05/06/2000 14:16:11]

Design Guidelines: Dialog Boxes

it. Keep the message brief and use terms that are familiar to users.

111
I |If appropriate, provide a Help button to open a separate online help window that gives background information about

the error. Do not close the aert box when users click the Help button.
111

" If possible, provide buttons or other controls to resolve the error noted in the Error alert box. Label the buttons
according to the action they perform. If users cannot resolve the error from the alert box, provide a Close button.

Question Alert Boxes

A Question alert box requests information from users. Y ou can add components to this alert box (for example, atext field,
list, or combo box) in which users can type a value or make a selection. The layout of the standard components (the symbol,
message, and command buttons) is provided by the JFC. If you add components, follow the layout guidelines for that
component. The symbol in the Question aert box is a green rectangle with a question mark.

The following Question alert box includes alabel and text field in addition to the standard components.

Figure 90 Question Alert Box

MetalDB: Name |
% Please enter ¥our name.
Label
Mame: || | Text field

0K Cancel Help

111
%7 When you add components to a Question alert box, align them with the leading edge of the message. For languages

that read from left to right, the leading edge is the | eft edge.

Color Choosers

A color chooser provides one or more content panes from which users can select colors and a preview panel from which

users can view the selected colorsin context. Y ou can display a color chooser in adialog box, as shown in the following
figure. The three command buttons (OK, Cancel, and Help) are part of the dialog box, not the color chooser.

Figure 91 Standard Color Chooser

http://java.sun.com/products/jlf/dg/higl.htm (11 sur 12) [05/06/2000 14:16:11]

Design Guidelines: Dialog Boxes

Dialog box
| title bar
MetalFix: Color Chooser
Recent:
1 T || =
AT o [Ll [[T u—
{5 o A5 o[==
51 1 1 O e s S oz
5 e calar
5 1 e v v chonser
EEEEESEEEEEEEEEEEEEEEEEEEEEEEEE
Preview —
0 - H Sample Text Sample Text 3
Sarnple Text Sample Text EE
. B . sample Text Sample Text i
Cormmand
OK Cancel Help buttan row
(part of
dialag baox)

As supplied by the JFC, the color chooser offers users three methods for selecting a color:
o Swatches. Users can select a color from a palette (as shown in the preceding figure).
o HSB. Users can choose the hue, saturation, and brightness values for a color.
o RGB. Users can choose the red, green, and blue values for acolor.
If your application requires a different method for choosing colors, you can add a content pane with that feature. Y ou can

also remove existing content panes. If you use only one content pane, the tab disappears. In addition, you can specify your
own preview panel.

EE=" The color chooser isapanel. The color panel can be inserted in adialog box by using the JDialog container.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jif/dg/higl.htm (12 sur 12) [05/06/2000 14:16:11]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Menus and Toolbars

java.sun.com :Java Look and Feel Design Guidelines @ @ Contenis Index Search

O: Menus and Toolbars

A menu displays alist of choices (menu items) for users to choose or browse through. Typically, menus are
logically grouped and displayed by an application so that a user need not memorize all available commands or
options. Menus in the Javalook and feel are "sticky"--that is, they remain posted on screen after users click the
menu title. Usually the primary means to access your application's features, menus also provide a quick way for
users to see what those features are.

A toolbar isacollection of frequently used commands or options that appear as arow of toolbar buttons.

Toolbars normally appear horizontally beneath a primary window's menu bar, but they can be dragged
anywhere in the window or into a separate window. Toolbars typically contain buttons, but you can provide
other components (such as text fields and combo boxes) as well.

In Javalook and feel applications, you can provide three kinds of menus: drop-down menus, submenus, and
contextual menus. A drop-down menu is a menu whose titles appear in the menu bar. A submenu appears
adjacent to a menu item in a drop-down menu; its presence isindicated by an arrow next to the item. A
contextual menu displays lists of commands, settings, or attributes that apply to the item or selected items
under the pointer.

Figure 92 Drop-down Menu, Submenu, Contextual Menu, and Toolbar

Cirop-down e nu Submenu
File : : :
File Edit 5Settings | Text | Help
Hew Ctrl-H Font R
g:m"“' Sl Style ¥ ¥ Bold CirlB
1058 Ch Size ¥ [T Halic Ctri
Save Crl-5 ® Align Left 0 Underline cirl-u
S o Align Middle
Page Setup 1 Align Right
Print... Ctrl-F]
Preferences
Exit
Toolbar Contextual menu
Figure 1, the engitieerinig model has
i E = B \EEI [|E EI % the uger interfage consists of knots
o - | contrazt, the f%t of1 the rightin E
model — movwin 1 = o
left or right cof CUE Ctrl-X by
theze movemets Copy Ctrl-c O
cold water supn o i
the engineerin Paste BV e
human interfa, A oy
choosing one spelling .. d
models that underlie humat-machir

Menu Elements

http://java.sun.com/products/jlf/dg/higm.htm (1 sur 14) [05/06/2000 14:13:59]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Menus and Toolbars

In the Javalook and feel, menus use a highlight color (primary 2) for the background of selected menu titles and
menu items. The following figure shows an example of a drop-down menu that is selected and displayed.
Within the Text menu, the Style item is selected; a submenu appears that includes the Bold, Italic, and
Underline checkbox menu items. (The Italic checkbox menu item is highlighted.)

A separator divides the menu items for specifying font, style, and size from the alignment radio button items.
Keyboard shortcuts appear to the right of the frequently used menu items, and mnemonics are included for each
menu title and menu item.

Figure 93 Menu Elements

Mlenu title
File Edit S5Settings | Text | Help]— Menu bar
Menuitern ——— Font b | Checkbox menu iterm
Style ¥ ¥ Bold Ctrl-B
SEparator — Size ¢ O Halic Ctrl-l
Radio button —— @ Align Left [J Underline ci-u
FIEnU iterm A
Cr Align Middle L Keyboard shortcut
) Align Right Mrermonic
D |
Unawvailable |
rrenu iterm
Menu Bars

The menu bar appears at the top of a primary window and contains menu titles, which describe the content of
each menu. Menu titles usually appear as text; however, it is possible to use agraphic or agraphic with text asa
menu title. Menu titles in the Javalook and feel contain mnemonics only if they are explicitly set by the
developer. See Mnemonics for details.

A drop-down menu appears when users choose a menu title in the menu bar.

11
& |f the primary window has a menu bar, display it as a single line across the top of the window.

111
“_Z7 Do nat display menu bars in secondary windows unless you have a compelling reason to do so (such asa
complex set of activitiesin the secondary window).

11
%7 Besuretoinclude mnemonics for every menutitle in your menu bar.

111
27 If your applet runsin the user's current browser window (with the browser menu bar), do not display your

own menu bar in the applet. Although applets displayed inside a browser window can theoretically have their
own menu bars, users are often confused when both the browser window and the applet have menu bars. If your
applet requires amenu bar, display the applet in a separate browser window without its own menu bar or
navigation controls.

El Even on Macintosh systems, which ordinarily place a menu bar only at the top of the screen, display
menu bars in windows for a Javalook and feel application. On the Macintosh, the screen-top menu bar remains,
but, since all the application menus are in the windows, the only command in the screen-top menu bar should be
Quit in the File menu.

Drop-down Menus

The menu bar contains all of the drop-down menus and submenus in your application. Each menu in the menu

http://java.sun.com/products/jlf/dg/higm.htm (2 sur 14) [05/06/2000 14:13:59]

Design Guidelines: Menus and Toolbars

bar is represented by its menu title. The titles describe the content of each menu. (Thetitle for asubmenu isits
menu item in the drop-down menu.)

Users can display menus in two ways:

o To post amenu (that is, to display it and have it stay up until the next click even though the mouse
button has been released), users click the menu title. Users can then move the pointer over other menu
titles to view other menus.

o To pull down amenu, users press the mouse button over the menu title. The menu title is highlighted,
and the menu drops down. When users choose a command and release the mouse button, the menu
closes.

For details on keyboard navigation, selection, and activation in menus, see Table 20.

11
_47 Usesingle words for your menu titles.

111
& Use menu titles that help users guess which menu contains the item of particular interest at a given

moment. For example, the Edit menu typically contains commands that enable users to change or edit the
contents of their documents or data.

111
"I Include mnemonicsin all your menu titles.

Submenus

A submenu is amenu that users open by highlighting a menu item in a higher-level menu. Sometimes you can
shorten a menu by moving related choices to a submenu. Submenus (such as the Style submenu shown in the
following figure) appear adjacent to the submenu indicator. For instance, the Style item opens a submenu
consisting of threeitems: Bold, Italic, and Underline. Note that the items in the Style submenu include both
keyboard shortcuts and mnemonics.

Users display submenus by clicking or by dragging over the corresponding menu item. The first item in the
submenu aligns with the submenu indicator, slightly overlapping the main menu. Just asin other menus, items
in the submenu are highlighted when the user moves the pointer over them.

For alist of keyboard operations in submenus, see Table 20.

Figure 94 Menu Item With Its Submenu

Text Submenu title
Font 2 I Subrnenu indicator
Shyle] ¢ ¥ Bold Ctrl-B
Size » [0 Halic Ctrl- Submenu

® Align Left (1 Underline ct-0

© Align Middle L Keyboard shortcut

) Align Right Wlrerronic

i

111
%27 Since many people find submenus difficult to use, avoid the use of a second level of submenus. If you
want to present alarge or complex set of choices, display them in adialog box.

E#=" Submenus are created using the JMenu component.

Menu ltems

A simple menu item consists of the command name, such as Undo. When amenu item is available for use, its
text isdisplayed in black, as shown in the following figure.

http://java.sun.com/products/jlf/dg/higm.htm (3 sur 14) [05/06/2000 14:13:59]

Design Guidelines: Menus and Toolbars

Figure 95 Typical Menu Items

Edit
Available item ——— Undo Ctrl-Z
Redo Ctrl-v
cCut Ctrl-
Highlighted itern —= Copy Ctrl-C
Paste Ctrl-f
Eind... Ctrl-F
Urawvailable itern
Select All cinn

When users position the pointer over an individual item within a menu, the menu item (if available) is
highlighted.

Users can choose menu items in two ways.
o Inaposted menu, users click a menu item to choose it and close the menu.
o Inapulled-down menu, users drag over amenu item to highlight it. Releasing the mouse button chooses
the command and closes the menu.

For alist of keyboard operations for menu items, see Table 20.

Available and Unavailable ltems

Here are some guidelines for handling available and unavailable menu items in your application.

11
“_Z |If an application feature is not currently available in awindow, but users can do something to make it

available, make the corresponding menu item unavailable and dim its text. For example, the Undo command
might not be available until the user has made a change in a document window.

111
"_I7 If dl theitemsin amenu are unavailable, do not make the menu unavailable. In thisway, users can still

display the menu and view al its (inactive) items. Similarly, if al the itemsin a submenu are currently not
available, do not make the original menu item unavailable.

11
"7 |f thereis nothing users can do to make a menu item available, omit the item entirely rather than just

making it unavailable. Making an item unavailable implies that users can do something to make the item
available. A similar rule applies to submenu items and contextual menus.

Composition and Construction of Items

Here are some recommendations for the use of concise language, consistent capitalization, and keyboard
operations in menu items.

111
27 Make your menu items brief, and confine them to asingleline.

111
47 Use headline capitalization in menu titles and menu items.

1
%7 Include mnemonics for all menu items.

I Offer keyboard shortcuts for frequently used menu items.

111
_Z7 Usethe same keyboard shortcut if a menu item appearsin several menus--for instance, if a Cut item

appears in a contextual menu as well asin a drop-down Edit menu, use Ctrl-X for both.

http://java.sun.com/products/jlf/dg/higm.htm (4 sur 14) [05/06/2000 14:13:59]

Design Guidelines: Menus and Toolbars

Commonly used keyboard shortcuts are described in Typical File Menu, Typical Edit Menu, and Typical Help
Menu.

Ellipses in Items

Ellipses (...) are punctuation marks that indicate the omission of one or more words that must be supplied in
order to make a construction complete. In your menus, you can use ellipses in asimilar way: to indicate that the
command issued by a menu item needs more specification in order to make it complete.

111
27 If amenu item does not fully specify acommand and users need a dialog box to finish the specification,

use an ellipsis after the menu item. For example, after choosing Save As..., users are presented with afile
chooser to specify afile name and location.

11
“_% Do not use an dlipsis mark simply to indicate that a secondary or utility window will appear. For

example, choosing Preferences displays a dialog box; because that display is the entire effect of the command,
however, Preferencesis not followed by an ellipsis.

Organization of ltems

Y ou can group menu items with separators or, in the case of lengthy extensible menus, with agrid layout. Here
are the guidelines:

111
27 Use separators to group similar menu itemsin away that helps users find items and better understand their

range of choices. For instance, in atypical File menu, the commands that affect saving are separated from those
that are relevant to printing.

B If amenuis or has the potential to become very long (for instance, in menus that present lists of
bookmarks or email recipients), agrid layout should be used to display the menu choices in multiple columns.

Checkbox Menu ltems

A checkbox menu item isamenu item that appears with a checkbox next to it to represent an on or off setting.

A check mark in the adjacent checkbox graphic indicates that the value associated with that menu item is
selected. A dimmed checkbox menu item shows a gray box (checked or unchecked) that indicates that the
setting cannot be changed. The following figure shows checked, unchecked, and unavailable menu items.

Figure 96 Checkbox Menu Items

Checked item -¥T Bold
Unche cked itern —— 2 Halic

[Underline
Uravailable itern ——H

Y ou can use checkbox menu items to present users with a nonexclusive choice.
For alist of keyboard operations for checkbox menu items, see Table 20.

11
&7 For consistency, use the standard checkbox graphic for checkbox menu items.

1
“_47 Aswith all menu items, after users choose a checkbox menu item, the menu is dismissed. To choose

another item, users must reopen the menu. Therefore, use checkbox menu items with restraint. If users must set
more than one or two related preferences, place the checkboxesin a dialog box (or provide a palette or toolbar
buttons for the preferences).

http://java.sun.com/products/jlf/dg/higm.htm (5 sur 14) [05/06/2000 14:13:59]

Design Guidelines: Menus and Toolbars

Radio Button Menu Items

A radio button menu item isamenu item that appears with aradio button next to it to represent an off or on

setting. Each radio button menu item offers users a single choice within a set of radio button menu items, as
illustrated in the following set of alignment options.

Figure 97 Radio Button Menu Items

O itern —— @ Align Left
Off iterm —— 7 Align Center

i Align Right
Unawailable itern ——+5

For alist of keyboard operations for radio button menu items, see Table 20.

111
%_#7 Toindicate that the radio button items are part of a set, group them and use separators to distinguish them

from other menu items.

111
_& Aswith all menu items, after users choose aradio button menu item, the menu is dismissed. To choose

another item, users must reopen the menu. Therefore, use radio button menu items with restraint. If users must
set more than one or two related preferences, place the radio buttons in a dialog box (or provide a palette or
toolbar buttons for the preferences).

Separators

A separator isaline graphic that is used to divide menu itemsinto logical groupings, as shown in the following
figure.

Figure 98 Separatorsin aMenu

Edit
Undo Ctrl-Z
Redo * il Separators
Cut Ctrl-x.
Copy Ctrl-
Paste Ctrl-
- i
Find... Ctrl-F
Select All cion

Users can never choose a separator.

Y ou can use separators to make lengthy menus easier to read.

111
27 While separators serve important functions on menus, avoid using them elsewhere in your application.

Instead, use blank space or an occasional titled border to delineate areas in dialog boxes or other components.

Common Menus

Several drop-down menus, such as File, Edit, and Help, occur in many applications. These menus are not
supplied by the Java Foundation Classes. The following sections show simple versions of these menus that are
consistent with the Java look and feel. Y ou can adapt these menus to suit your needs.

http://java.sun.com/products/jlf/dg/higm.htm (6 sur 14) [05/06/2000 14:13:59]

Design Guidelines: Menus and Toolbars

111
_27 If your application needs these commonly used menus, place the menu titlesin this order: File, Object,
Edit, Format, View, and Help. If needed, insert other menus between the View and Help menus.

Typical File Menu

The first menu displays commands that apply to an entire document or the application as awhole. Typically,
thisis called the File menu, but in some cases another title might be more appropriate. The following figure
illustrates common File menu items in order, with mnemonics and keyboard shortcuts.

Y ou can add or remove menu items as needed.

Figure 99 Typical File Menu

File
Hew Crtrl-M
Open... Ctrl-0
Close Crtrl-ini
Save Ctrl-5
Save As...
Page Setup
Print... Ctrl-F
Preferences
Exit

111
% Place commands that apply to the document (or another object) or application as awhole in the File menu.

11
&7 |f your application manipulates objects that your users might not think of as "files," give the first menu
another name. Ensure that the name corresponds to the type of object or procedure represented by the entire
window in your application. For example, a project management application could have Project asitsfirst
menu, or amail application could have a Mailbox menu.

11
& Since the Close item dismisses the active window, close any dependent windows at the same time.

111
27 |If you provide an Exit item, have it close all associated windows and terminate the application. (Be sure to
use the term Exit, not Quit.)

Object Menu

Object menu items provide actions that users can perform on an object or objects. An object might be almost
anything--for instance, an icon representing a person for whom you want to add an email alias.

Typical Edit Menu

The Edit menu displays items that enable users to change or edit the contents of their documents or other data.
These items give userstypical text-editing features. The following figure shows common Edit menu itemsin
order, with mnemonics and keyboard shortcuts.

Figure 100 Typical Edit Menu

http://java.sun.com/products/jlf/dg/higm.htm (7 sur 14) [05/06/2000 14:13:59]

Design Guidelines: Menus and Toolbars

Edit
Undo Crl-Z
Redo Crl-r
Cut Ctrl-
Copy Ctrl-
Paste Crtrl-
Find... Ctrl-F
Find Again cCtl-=
Select All cios

11
% Place commands that modify the contents of documents or other data in the Edit menu, including Undo,
Redo, Cut, Copy, Paste, and Find.

B The Swing Undo package can be used to provide the Undo and Redo commands.

Typical Format Menu

The Format menu displays items that enable users to change such formatting el ementsin their documents as
font, size, styles, characters, and paragraphs. The following figure shows common Format menu items with their
mnemonics.

Figure 101 Typical Format Menu

Format
Documennt
Section
Paragraph
Font]
Shde]
Size b

w Align Left

Z Align Center

Z Adign Right

View Menu

View menu items provide ways for users to adjust the view of datain the active window. For instance, the View
menu in a network management application might have items that enable users to view large or small iconsfor
network objects.

Typical Help Menu

Help menu items provide access to online information about the features of an application. This menu also
provides access to the application's About box, which displays basic information about the application. For
details, see Designing About Boxes. The following figure shows common Help menu items (in the typical
order) with their mnemonics.

These menu items will vary according to the needs of your application.

http://java.sun.com/products/jlf/dg/higm.htm (8 sur 14) [05/06/2000 14:13:59]

Design Guidelines: Menus and Toolbars

Figure 102 Typical Help Menu

Help
Contents
Tutorial
Index
Search...

A bo ut MetalE dit

111
_Z7 Inyour Help menu, allow access to online information about the features of the application.

“_Z7 Place a separator before an About Application item that displays a dialog box with the product name,
version number, company logo, product logo, legal notices, and names of contributors to the product.

B> JavaHelp™, a standard extension to the Java Development Kit and the Java 2 SDK, can be used to build
ahelp system for your applications.

Contextual Menus

Sometimes called a " pop-up menu," a contextual menu offers only menu items that are applicable or relevant to
the object or region at the location of the pointer. The appearance of contextual menus in the Javalook and feel
issimilar to that of drop-down menus, including the display of mnemonics and keyboard shortcuts. Contextual
menus do not have a menu title. The following figure shows a contextual menu offering editing commands.

Figure 103 Contextual Menu

Cut cirl-x
Copy Cil-C
Paste ci-w
Clear

Users can display a contextual menu by clicking or pressing mouse button 2 while the pointer is over an object
or areathat is associated with that menu. (On the Macintosh platform, users click while holding down the
Control key.)

For keyboard operations appropriate to contextual menus, see Table 20.

111
"_Z7 Ensure that any features you present in contextual menus are also available in more visible and accessible

places, like drop-down menus. Users might not know contextual menus are available, especialy if your
application does not use this kind of menu consistently throughout the application.

11
%7 Display keyboard shortcuts and mnemonicsin contextual menus that are consistent with their usage in

corresponding drop-down menus.

B Contextual menus are created using the JPopupMenu component.

Toolbars

A toolbar provides quick and convenient access to a set of frequently used commands or options. Toolbars
typically contain buttons, but other components (such as text fields and combo boxes) can be placed in the
toolbar aswell. An optional, textured "drag area" on the toolbar indicates that users can drag the toolbar
anywhere in the window or into a separate window. The drag area is on the leading edge when the toolbar is
horizontal and on the top when it is vertical.

http://java.sun.com/products/jlf/dg/higm.htm (9 sur 14) [05/06/2000 14:13:59]

Design Guidelines: Menus and Toolbars

The following figure shows atoolbar with a drag area on the leading edge. For another example, see Figure 8.

Figure 104 Horizontal Toolbar
Dragarea—gg E {ﬂr E ‘JEI E |E El @%

Userstypically access the components in the toolbar by clicking. For information on the keyboard operations
that are appropriate for toolbars, see Table 31.

111
"% Include commonly used menu items as buttons or components in your toolbar.

11
“_Z7 Make special provisions for toolbar accessibility if your window does not have menus. Such provisions

might include a text identifier, either as button text or in text below the button. Be sure to provide a mnemonic
for such text.

Toolbar Placement

In general, atoolbar islocated at the edge of the window or area on which it operates.

111
27 If your window has a menu bar, place the toolbar horizontally immediately under the menu bar.

11
& Limit your window to asingle toolbar with a single row of buttons or components. Multiple toolbar rows

create clutter and make the features harder to find.

Draggable Toolbars

Y ou can specify that your toolbar be draggable. Users can then move it or display it in a separate window. Users
drag the toolbar by holding the mouse button down over the drag area. An outline of the toolbar moves as the
user moves the pointer. The outline provides an indication of where the toolbar will appear when the user
releases the mouse button. When the pointer is over a"hot spot," the outline has a dark border, indicating the
toolbar will anchor to an edge of the container, as shown in the following figure. The toolbar automatically
changes its orientation between horizontal and vertical depending on the edge of the window where it anchors.

Figure 105 Outline of a Toolbar Being Dragged

E ﬂ B % E EIE ﬂ 'Eg :I—Currentlncatinn of toolbar
N

A

— Black baorder around toolbar outline indicates that
toalbar will dock along thiz edge if dropped

http://java.sun.com/products/jlf/dg/higm.htm (10 sur 14) [05/06/2000 14:13:59]

Design Guidelines: Menus and Toolbars

If the pointer is outside a hot spot, the outline has alight border, indicating that the toolbar will be displayed in a
separate window. The following figure shows the toolbar in a separate window. When the user closes the
window, the toolbar returnsto its original location.

Figure 106 Toolbar in a Separate Window

MEEEEREE

E#=" A toolbar can dock (attach) along the top, bottom, left, or right edge of a container.

Toolbar Buttons

A toolbar button isacommand button or toggle button that appearsin atoolbar, typically as part of a set of

such buttons. Toolbar buttons can also act astitles to display menus. In other contexts, command buttons
typically usetext to specify the operation or state they represent, but toolbar buttons typically use graphics.

Toolbar graphics can be difficult for users to understand. Weigh the comprehensibility of your graphics against
the space taken up by button text before deciding whether to use button text in addition to the button graphics.

27 Use hutton graphics that are either 16 x 16 or 24 x 24 pixels (but not bath in the same toolbar), depending
on the space available in your application.

111
"7 If you use text on the toolbar buttons, provide a user setting to display only the graphics. Using this mode,

you can conserve space and display more commands and settings in the toolbar.

11
& Tofacilitate keyboard access, define a mnemonic for each toolbar button (or other component) that has

text.

Toolbar Button Spacing and Padding

This section contains the vertical (padding) and horizontal (spacing) measurements for toolbar buttonsin
toolbars. The following figure shows the padding and spacing between individual toolbar buttons and groups of
toolbar buttons.

27 Space individual toolbar buttons 2 pixels apart. Space groups of toolbar buttons 11 pixels apart.

"% Include 3 pixels of padding above and below toolbar buttons. This actually means 2 pixels of padding
below the toolbar because of the white border on the buttons.

Figure 107 Toolbar Button Spacing

2 11

NEIEEREN

EB=> Theinset on toolbar buttons should be 0.

http://java.sun.com/products/jlf/dg/higm.htm (11 sur 14) [05/06/2000 14:13:59]

Design Guidelines: Menus and Toolbars

Mouse-over Borders

To conserve space, you can use mouse-over borders (also called "rollover borders") on toolbar buttons. This
border appears around a button when users move the pointer over it; otherwise, the border isinvisible.

The following figure shows atoolbar button with a mouse-over border activated for the Open button.

Figure 108 Mouse-over Border on a Toolbar Button

Mouse-over barder

ﬁaﬂqggﬁﬂ%

Mo spacing between individual buttans

111
%7 When you use mouse-over borders, space individual toolbar buttons zero pixels apart within a group.

EE=" The JToolBar.isRollover client property is set to true to enable mouse-over borders.

Drop-down Menus in Toolbar Buttons

Y ou can attach a drop-down menu to atoolbar button. The menu appears when the user clicks (or presses and
holds the mouse button over) the toolbar button. The following figure shows a drop-down menu indicated by a
drop-down arrow on the Open button. The menu provides alist of filesto open.

Figure 109 Toolbar Button With a Drop-down Menu

r Button with drop-down arrow

mEIEEREEE

Pelican -
Jay'Blue

Jay'Scrub

Bluehird

Red-Winged Blackhird

Crther Folder...

11
"% Provide adrop-down arrow in the graphic for any toolbar button that has a drop-down menu.

Tool Tips for Toolbar Buttons

Y ou can provide tool tips for the toolbar components. The tool tip displays information about the component
when the user rests the pointer on it. If you specify akeyboard shortcut for atoolbar component, the JFC
displaysit in thetoal tip. The following figure shows atool tip that describes the Cut button.

Figure 110 Tool Tip for a Toolbar Button

NEEE EnER
5

Cut Selection cti-x [—— Tool tip

111
27 Keyboard shortcuts for toolbar buttons should match the keyboard shortcuts for the corresponding menu

http://java.sun.com/products/jlf/dg/higm.htm (12 sur 14) [05/06/2000 14:13:59]

Design Guidelines: Menus and Toolbars

items.

11
"I Attach tool tipsto al toolbar components that do not include text identifiers. Tool tips are valuable for al
toolbar components because they display keyboard shortcuts.

111
_27 If your application does not have menus, attach tool tips to the toolbar buttonsin order to display
keyboard shortcuts.

Tool Tips

A tool tip provides information about a component or areawhen the user rests the pointer on it (and does not

press a mouse button). These small rectangles of text can be used anywhere in your application. A tool tipis
commonly associated with an interface element, where it provides a short description of the component's
function. If acomponent has a keyboard shortcut, the shortcut is automatically displayed in the tool tip.

The following figure shows a tool tip that describes a dlider.
Figure 111 Tool Tip for a Slider

Tool tip

Salary Contribution: 1 T I

0% 2H 4‘}5|Set3 your annual contribution as a percentage of gross sa]arl,||

Y ou can also use tool tips with graphics. A graphic might have one tool tip that provides the name and size of
the graphic or severa tool tips that describe different areas of the graphic.

The following figure shows atool tip on an area of the bar chart in the sample applet, Retirement Savings
Calculator.

Figure 112 Tool Tip on an Area Within a Graphic

$120,000

. Actual

$100,000 [[l Prejected

50,000

$E|:| ,-l:":”:l

N

$40,000 A B
74 649 in 2003

5 Tool tip
$2D,DDD T

Fi0 -

Q5 97 98 99 00 01 0z O0F 04 05

Y ou can adjust the timing of the tool tipsin your application. By default, atool tip appears after the user rests
the pointer on the component or areafor 750 milliseconds. It disappears after four seconds or when the user
activates the component or moves the pointer off the component.

For keyboard operationsin tool tips, see Table 30.

111
“_Z7 Maketool tips active by default, but provide users away to turn them off. For example, you might provide
acheckbox in either amenu or in a preferences dialog box.

http://java.sun.com/products/jlf/dg/higm.htm (13 sur 14) [05/06/2000 14:13:59]

Design Guidelines: Menus and Toolbars

EB== A tool tip is specified in its associated component (and not by calling the JTool Tip class directly).

EE=" All components need to have an AccessibleName set. However, interactive components that provide a
descriptive tool tip don't need to have an AccessibleDescription set.

For details on the Java 2 Accessibility API, see Support for Accessibility.

javasun.com : Design Guidelines

Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jlf/dg/higm.htm (14 sur 14) [05/06/2000 14:13:59]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Basic Controls

java.sun.com : Java Look and Feel Design Guidelings ® @ Contents Index Search

10: Basic Controls

Buttons, combo boxes, and sliders are examples of controls--interface elements users can manipulate to perform an
action, select an option, or set avalue. A button isa control that users click to perform an action, set or toggle a state,

or set an option. In the Javalook and feel, buttons include command and toggle buttons, toolbar buttons, checkboxes,
and radio buttons. A combo box is a control that enables users to select one option from an associated list; users can

also type a choice into an editable combo box. A dider isa control that enables usersto set avaluein arange.

A progress bar isan interface element that indicates one or more operations are in progress and shows users what

proportion of the operation has been completed. In contrast to the other components in this chapter, no user
manipulation isinvolved.

Figure 113 Buttons, Combo Box, Slider, and Progress Bar

Command buttaons in toolbar

DeEE EnER B EEEE

Taoggle buttons in toalbar

m - —— Command buttons
&y Print Delete Submit Reset
_' Adventure | .
= — Radio buttons

0.80 |« @ Comedy
0 |
0.25 —

»
0.50 E Bul_d - Checkbo<es

[Halic

Editable combo box

[[} 1 Slider
1] 20 40 60 80 100

Progrezs bar

&7 For text in buttons, diders, and combo boxes, use headline capitalization.

@ Make sure you use the appropriate layout manager to lay out your controls so they allow for the longer text
strings frequently associated with localization.

Command Buttons

A command button is a button with arectangular border that contains text, a graphic, or both. These buttons
typically use button text, often a single word, to identify the action or setting that the button represents. See Command
Buttonsin Dialog Boxes for alist of commonly used command button names and their recommended usage.

http://java.sun.com/products/jlf/dg/hign.htm (1 sur 11) [05/06/2000 14:18:16]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Basic Controls

Command buttons can stand alone or appear in arow, as shown in the following illustration.

Figure 114 Command Buttons

MetalMail: Motification

Signal Hew Mail With:

B eeps: 2|~
Elashes: 0|
Sound File: Select ... Standalone cormmand butt on

Button border

OK Cancel ’_‘ Help Button text

L Command buttan row

Command buttons that appear in toolbars are called "toolbar buttons." The following figure shows toolbar buttons for
atext-editing application. See Toolbar Buttons for details.

Figure 115 Toolbar Buttons
DEEE EaER by EEEE

When a command button is unavailable, the dimmed appearance indicates that it cannot be used. The following figure
shows the appearance of available, pressed, and dimmed command buttons.

Figure 116 Available, Pressed, and Unavailable Command Buttons

Submit Reset

Users can click command buttons to specify a command or initiate an action, such as Save, Cancel, or Submit
Changes.

For alist of keyboard operations for the activation of command buttons, see Table 15.

111
%7 Display mnemonics in button text, with the exception of default command buttons and the Cancel button in

dialog boxes. To make command buttons without text more accessible, set tool tips that describe or name the
functions of the buttons.

For general details on keyboard operations and mnemonics, see Keyboard Operations and Mnemonics. For details on
displaying a command button's tool tip, see Table 30.

For details on layout and spacing of command buttons, see Command Button Spacing.

Default Command Buttons

One of the buttons in any window can be the default command button. The JFC gives default command buttons a
heavier border.

Default command buttons typically appear in dialog boxes. The default command button is activated when users press
Return or Enter. A default command button (such as Save in the following figure) should represent the action most
often performed, assuming that the action will not lead to loss of user data.

Figure 117 Default and Nondefault Command Buttons

Save Cancel

http://java.sun.com/products/jlf/dg/hign.htm (2 sur 11) [05/06/2000 14:18:16]

Design Guidelines: Basic Controls

The Enter and Return equivalents work unless keyboard focus is currently on a component that accepts the Enter or
Return key. For instance, if the insertion point isin amultiline text area and the user presses Return, the insertion
point moves to the beginning of a new line rather than activating a default button. Keyboard focus must be moved to
another component before the default button can be activated with the keyboard.

The JFC does not automatically implement the Escape key as the keyboard equivalent for the Cancel button, so you
must implement this behavior. Aswith the Enter and Return keys for the default command button, the Cancel button
should not require keyboard focus to be activated by the Escape key.

Since you are not required to have a default button in every circumstance, you can use discretion about including
them in your interface elements.

111
%47 Never make an unsafe choice the default button. For instance, a button that would result in discarding unsaved

changes should not be the default command button.

111
%._& Do not supply mnemonics for the default and Cancel buttons.

Combining Graphics With Text in Command Buttons

In some circumstances, you might use a graphic along with text to identify the action or setting represented by a
command button.

Figure 118 Command Buttons Containing Both Text and Graphics

Bl [l

111
&7 Placethetext after or below the image in command buttons containing both text and graphics.

111
%47 Include mnemonicsin your command button text--with the exception of the default and Cancel buttons.

For alist of commonly used mnemonics, see Table 10.

Using Ellipses in Command Buttons

In circumstances in which a command button does not fully specify an action or operation and a dialog box finishes
the specification, you can notify the user that this situation is about to occur by placing an ellipsis mark after the
button text. For example, after clicking a Print... button, users are presented with a dialog box in which to specify
printer location, how many copies to print, and so forth. By contrast, a Print command that prints one copy to the
default printer without displaying a dialog box would not require an ellipsis mark.

111
%47 When users must view adialog box to finish the specification of a command initiated in acommand button, use

an ellipsismark (...) after the button text. When a full specification of the command is made in the button text, do not
use ellipses.

Command Button Spacing

For a consistent appearance, follow the guidelines described in this section to create padding within and space
between command buttons. The following figure shows button text (Help) centered in a command button.

%_147 Center the button text within buttons.

Figure 119 Command Button Text With Centered Text

http://java.sun.com/products/jlf/dg/hign.htm (3 sur 11) [05/06/2000 14:18:16]

Design Guidelines: Basic Controls

Help

@ Since the length and height of translated text varies, use layout managers properly to allow for differences.

Command Button Padding

The blank space between the button text and the button border is referred to as "command button padding." Often
command buttons appear in groups within a dialog box or an applet. In such a case, the button in the group with the
widest text determines the inner padding, as shown in the following figure. Here the Cancel button has the widest text.
The padding is 12 pixels on either side of the button text. The other buttonsin the group (OK and Help) have the same
width as the Cancel button.

111
"_Z7 Determine which button has the widest button text, and insert 12 pixels of padding on either side of the text.
Make all the remaining buttons in the group the same size as the button with the longest text.

111
"7 Space buttonsin agroup 5 pixels apart. (Because of the white border on the right side of a button, the apparent

spacing will be 6 pixels.)
Figure 120 Spacing in Command Button Groups

5 5
—h‘d— —| [+

OK | lcant:eq Help

12 12

Toggle Buttons

A toggle button is abutton that represents a setting with two states--on and off. Toggle buttons look similar to

command buttons and display a graphic or text that identifies the button. The graphic or button text should remain the
same whether the button is in the on or off state.

Users can click toggle buttons to turn a setting on or off--for instance, to toggle between italic and plain stylein
selected text.

Y ou can use toggle buttons to represent an independent choice, like checkboxes (see here), or an exclusive choice
within a set, like radio buttons (see here).

EB=" Toggle buttons can be placed in a button group to get radio button behavior.

Independent Choice

An independent toggle button behaves like a checkbox. Whether it appears alone or with other buttons, its setting is
independent of other controls. An example of an independent toggle button is a Bold button on atoolbar, as shown in
the following illustration.

Figure 121 Independent Toggle Buttonsin a Toolbar

http://java.sun.com/products/jlf/dg/hign.htm (4 sur 11) [05/06/2000 14:18:16]

Design Guidelines: Basic Controls

p‘.q

]
h i 'LI 4 Marmal backaground indicates 'off' setting

Highlight ed background indicates "on" setting

When users click the Bold button, it is highlighted to indicate that the bold style has been applied to the selection or
that text to be entered will be bold. If the button is clicked again, it reverts to the normal button appearance and the
bold style is removed from the selection.

111
%47 Although checkboxes and independent toggle buttons have the same function, as a general rule, use checkboxes

in dialog boxes and toggle buttons with a graphic in toolbars.

%47 When toggle buttons are independent (like checkboxes) and used outside a toolbar, separate them with 5 pixels.
Within atoolbar, separate independent toggle buttons by 2 pixels.

For details on the spacing of toggle buttons, see Command Button Spacing.

Exclusive Choice

A toggle button can also work as part of a group to represent an exclusive choice within the set. A common example
isaset of toolbar toggle buttons representing left, centered, and right text alignment along with justification, as shown
in the following figure.

Figure 122 Standard Separation of Exclusive Toggle Buttons

2
| |—

If users click the button representing left alignment, the button is highlighted to indicate that text is aligned flush with
the left border of the document. If users then click the button representing centered alignment, the appearance of the
Align Left button reverts to the normal button appearance and the Center button is highlighted to indicate centered
alignment of the selected text.

Y ou can use grouped toggle buttons with labels equally well in toolbars or dialog boxes. In the following example, the
label identifies the abbreviations in the button text in a dialog box.

Figure 123 Grouped Toggle Buttons With a Label

2
— | [—

Ruler Units: in it CIn

£

Label

http://java.sun.com/products/jlf/dg/hign.htm (5 sur 11) [05/06/2000 14:18:16]

Design Guidelines: Basic Controls

% &7 When toggle buttons form aradio set, separate them with 2 pixels.

Checkboxes

A checkbox is acontrol that represents a setting or value with an on or off choice. The setting of an individual

checkbox is independent of other checkboxes--that is, more than one checkbox in a set can be checked at any given
time.

A check mark within the checkbox indicates that the setting is selected. The following figure shows both active and
inactive checkboxes in selected and nonsel ected states.

Figure 124 Checkboxes

Check mark
_l Bold

Inactive checkbodes
Checkbox graphic —= | Halic :I_

Checkbox text ;

When the user clicks a checkbox, its setting toggles between off and on. When a checkbox is disabled, the user cannot
change its setting.

For alist of keyboard operations for checkboxes, see Table 13.
111

%47 Use the checkbox graphic that is supplied with the component (the square box with the check mark inside).

@ Display checkbox text to the right of the graphic unless the application is designed for locales with right-to-left
writing systems, such as Arabic and Hebrew. In this case, display the text to the left of the graphic.

111
%47 Although checkboxes and independent toggle buttons have the same function, use checkboxes in dialog boxes
and use toggle buttons with a graphic in toolbars.

B> The setMnemonic method can be used to specify mnemonics in checkboxes.

In addition to standard checkboxes, the JFC includes a component that is the functional equivalent of the checkbox for
use in menus. See Checkbox Menu Items for more information.

Checkbox Spacing

This section provides the spacing guidelines for checkbox components. As shown in the following figure, the height
of the checkbox sguare doesn't change in an inactive checkbox even though the white highlight border is not drawn.
Hence, while the checkbox is the same size, the last row and column of pixels on the bottom and right are the same
color as the background canvas. The apparent spacing is 6 pixels between components; however, the actual spacing is
5 pixels.

Figure 125 Checkbox Spacing

| Check 1 .

.

5

v Check3
| Check 4

%47 Space checkboxes 5 pixels apart.

http://java.sun.com/products/jlf/dg/hign.htm (6 sur 11) [05/06/2000 14:18:16]

Design Guidelines: Basic Controls

BEB="> Use the appropriate layout manager to achieve consistent spacing in checkbox button groups.

Radio Buttons

A radio button represents an exclusive choice within a set of related options. Within a set of radio buttons, only one

button can be on at any given time. The following figure shows active radio buttons and inactive radio buttons in both
on and off states.

Figure 126 Radio Buttons

Radio button graphic — Adventure Inactive radio buttons
‘on’ indicator —— @ Comedy __I_

Radio button text

When users click aradio button, its setting is always set to on. An inner filled circle within the round button indicates
that the setting is selected. If another button in the set has previously been selected, its state changes to off. When a
radio button isinactive, users cannot change its setting.

For alist of keyboard operations for radio buttons, see Table 21.

"7 Use the supplied radio button graphics (the open buttons with inner filled circles).

@ Display radio button text to the right of the graphic unless the application is designed for locales with
right-to-left writing systems, such as Arabic and Hebrew. I1n those local es, place the text to the left of the graphic.

111
%47 Although radio buttons and toggle buttons in aradio set have the same function, use radio buttonsin dialog

boxes and use grouped toggle buttons with graphics in toolbars. Grouped toggle buttons with text identifiers work
well in either situation.

The JFC includes a component that is the functional equivalent of the radio button for use in menus. See Radio Button
Menu Items for more information.

Radio Button Spacing

This section provides guidelines for the spacing of radio buttons. The height of the radio button is 12 pixels, not
counting the white highlight border. Inactive radio buttons do not have white borders. Hence, while the radio button is
the same size, the last row and column of pixels on the bottom and right are the same color as the background canvas.
As shown in the following figure, the apparent spacing is 6 pixels between components; however, the actual spacing
is5 pixels.

Figure 127 Radio Button Spacing

7 Radio1 |

@ Radio3d
' Radio 4

%47 Space radio buttons 5 pixels apart, as shown in the preceding figure.

BEB="> Use the appropriate layout manager to achieve consistent spacing in radio button groups.

http://java.sun.com/products/jlf/dg/hign.htm (7 sur 11) [05/06/2000 14:18:16]

Design Guidelines: Basic Controls

Combo Boxes

A combo box is a component with adrop-down arrow that users click to display an associated list of choices. If the
list istoo long to display fully, avertical scrollbar appears.

The currently selected item appears in the combo box. As users move the pointer over the list, each option under the
pointer is highlighted. An option chosen from the list will replace the current selection. In the following figure, the
currently selected option is Vanilla, and the Guanabana option will replace Vanillawhen the combo box is closed.

Figure 128 Combo Box Display

Label with mnemonic
Combao bod

Flavor: | Wanilla d

Butter Pecan
Chocolate
Guanabana
Mango
Mocha Fudge
Strawherny
Yanilla -

-
F

—— List of options

Users can close either editable or noneditable combo boxes by clicking the drop-down arrow in the combo box again,
choosing an item from the list, or clicking anywhere outside the combo box.

For alist of keyboard operations appropriate for combo boxes, see Table 14.

Y ou can use combo boxes to provide away for usersto indicate a choice from a set of mutually exclusive options.
Noneditable combo boxes enable users to choose one item from alimited set of items. Editable combo boxes provide
users the additional option of typing in an item.

%47 Use headline capitalization for the text in the items in the combo box list.

111
"7 Tofacilitate keyboard access, provide labels with mnemonics for combo boxes.

] In the JFC, the term "combo box" includes both of what Microsoft Windows applications call "list boxes" and
"combo boxes."

Noneditable Combo Boxes

Noneditable combo boxes (sometimes called "list boxes" or "pop-up menus') display alist from which users can
select one item.

The following figure shows a noneditable combo box with a drop-down arrow to the right of the currently selected
item. (Note the gray background in the default Javalook and feel theme, indicating that users cannot edit text.)

Figure 129 Noneditable Combo Box

http://java.sun.com/products/jlf/dg/hign.htm (8 sur 11) [05/06/2000 14:18:16]

Design Guidelines: Basic Controls

Currertly selected itermn

Day: | Friday - Crop-down arrmw

Sunday

Monday

Tuesday
Wednesday
Thursiday

Friday

Saturday

Highlight ed item

To make a selection, users have two options:

o They can click the combo box to display the list, position the pointer over the desired option to highlight it,
and click.

o They can drag through the combo box to the desired choice and release the mouse button.
In either case, the currently selected item changes to reflects the choice.

Y ou can use a honeditable combo box instead of a group of radio buttons or alist if spaceislimited in your
application.

Editable Combo Boxes

Editable combo boxes combine atext field with a drop-down arrow that users click to display an associated list of
options. As shown in the following figure, editable combo boxes initially appear as editable text fields with a
drop-down arrow. The white background of the editable combo box indicates that users can type, select, and edit text.

Figure 130 Editable Combo Box

Text field
Ii

Size: 1"
g
a

10

12

14

16

18 [«

-
FY

To make a choice, users have three options:

o They can click the drop-down arrow to display the list, position the pointer over the desired option to highlight
it, and click.

o They can drag from the drop-down arrow to the desired choice and rel ease the mouse button.
o To make a customized choice, they can type text in the field and press Enter or Return or move focusto
another component. If thelist is open, it will close.

Y ou can use an editable combo box to save users time by making the most likely menu choices available while still
enabling usersto type other values in the text field. An example might be the specification of afont size. The combo
box might initially display the current size, say 12. Users could select from alist of standard sizes (10, 12, 14, 18, or
24 points) or type in their own values--for instance, 22 points.

111
%47 Whenever possible, interpret user input into an editable combo box in a case-insensitive way. For example, it
should not matter whether the user types Blue, blue, or BLUE.

BB Y ou can specify the maximum number of items to be displayed before a scrollbar appears.

http://java.sun.com/products/jlf/dg/hign.htm (9 sur 11) [05/06/2000 14:18:16]

Design Guidelines: Basic Controls

Sliders

A dlider isacontrol that is used to select a value from a continuous or discontinuous range. The position of the
indicator reflects the current value. Mgjor tick marks indicate large divisions along the range of values (for instance,
every ten units); minor tick marks indicate smaller divisions (for instance, every five units).

The default dider in the Javalook and feel isanonfilling slider. An exampleis adider that adjusts left-right balance
in a stereo speaker system, as shown in the following figure.

Figure 131 Nonfilling Slider

| Channel

Major tick mark

Left Center Right

Indicator fwithout keyboard focus) Azzociated text

A filling slider is also available. Thefilled portion of the channel, shown in the following figure, represents the range
of values below the current value.

Figure 132 Filling Slider

Filled partion of channel

Urfilled portion of channel

[| I | ¥ 1

0 20 40 60 80 100

Indicator fwith keyboard focus)

Users can drag the indicator to set a specific value or click the channel to move back and forth by one unit. Sliders can
represent a series of discrete values, in which case the indicator snaps to the value closest to the end point of the drag
operation.

For alist of keyboard operations for dliders, see Table 23.

Y ou can:
o Indicate values along the slider with major and minor tick marks, which can a so have associated text

o Choose afilling or nonfilling slider
111
&7 If the dlider represents a continuous range or alarge number of discrete values and the exact value that is chosen
isimportant, provide atext field where the chosen value can be displayed. For instance, a user might want to specify

an annual retirement savings contribution of 2.35%. In such a situation, consider making the text field editable to give
users the option of typing in the value directly.

EE=> The JSlider.isFilled client property can be used to enable the optional filling slider.

Progress Bars

A progress bar indicates that one or more operations is under way and shows users what proportion of the operation
has been completed. The progress bar consists of arectangular bar that fills as the operation progresses, as shown in
the following figure.

Figure 133 Progress Bar

Users cannot interact with a progress bar. If you would like to enable users to set avalue in arange, use the dlider
component, described here.

http://java.sun.com/products/jlf/dg/hign.htm (10 sur 11) [05/06/2000 14:18:16]

Design Guidelines: Basic Controls

Y ou can orient the progress bar horizontally, so it fills from left to right, or vertically, so it fills from bottom to top.
Within the bounds of the progress bar, you can display atext message that is updated as the bar fills. By default, the
message shows the percentage of the process completed--for example, 25%.

The following figure shows another use of the progress bar. In this example of a process control application, the
progress bar is not used to track the progress of an operation; rather, it is used as a gauge to show the temperature of a
vat in acandy factory. The temperature indicates the proportion of the maximum temperature that has been reached
(more than three-quarters), and the text message within the progress bar specifies the exact value (114 degrees).

Figure 134 Text Inside a Progress Bar

Vat 17 - Chocolate Walmut Fudge
| |

111
"7 If you create your own message to display inside the progress bar, make it concise.

javasun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jlf/dg/hign.htm (11 sur 11) [05/06/2000 14:18:16]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Text Components

java.sun.com: Jawva Look and Feel Desian Guidelines @ @ Contents Index Search

11: Text Components

Text components enable usersto view and edit text in an application. The simplest text component you can provideisa
label, which presents read-only information. A label is usually associated with another component and describesits

function. A text field isarectangular areathat displays asingle line of text, which can be editable or noneditable. A
password field is an editable text field that displays masking charactersin place of the characters that the user types.

Other text components display multiple lines of text. A text area displaystext in asingle font, size, and style. You can
configure an editor pane to display different types of text through the use of a plug-in editor. These editorsinclude a
plain text editor, astyled text editor, an RTF (rich text format) editor, and an HTML (Hypertext Markup Language)
editor.

Figure 135 Text Components

| Label
Address: | Gunbarrel Gulch Rd. ——— Editable
B | text field
Secret Code; | II Paszword
- field
Balance Due; $34 .87 Maneditable
text field
In systems development, judgment is required fo balance competing —————— Text area

pressures. The design of an interface is influenced by both the demands
of users® tasks and the constraints of the underlying mechanism. This is
complicated by the fact that not all users are engaged in the same tasks.
&ninterface i3 affected by schedule and budget, by marketing and sales
considerations, and numerous other factors.

Security in JDK 1.1 g

by Mary Daceforde e Editor pane
with plug-in
HTML editor kit

Your feedback is important to us! Pleasze send
comments abont this trail o) mogalEjara, S0, o,
I wonr message, place srraried. 7 in the subject header.

The Java Security API iz a new Java core API, built avound the
java.security package (and itz subpackages). The first release of Java
Security in JDE 1.1 contains a subset of crptography functonality,
including APIs for digital signatures and message dizests.

In addition, there are abstract interfaces for kev management and cerificate
managerment.

The lezzons in this wail describe and show wou how 10 13e the main aspects
of the Java Security AP |

@ Make your text easier to localize by using resource bundles. A resource bundle stores text separately so that
localizers don't have to change the application's source code to accommodate trand ation.

For guidelines on translating text, see Planning for Internationalization and L ocalization.

http://java.sun.com/products/jlf/dg/higo.htm (1 sur 8) [05/06/2000 14:19:01]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Text Components

Labels

A label consists of read-only text, graphics, or both. Labels serve two functionsin an application: to identify
components and to communicate status and other information. Users cannot select alabel.

Labels That Identify Controls

Y ou can associate alabel with a component (such as atext field, sider, or checkbox) to describe the use of the
component. In the following figure, the Salary Contribution: label lets users know they can use the slider to adjust their
salary contribution.

Figure 136 Label That Describes the Use of a Slider

|— Label slider
I

Salary Contribution: I [:=] 1

0 2% 4% (8 o 10%

Y ou can aso use alabel to describe a group of components. In the following figure, the Color: label describes a group
of three radio buttons. The text (Red, Y ellow, and Blue) is part of the radio buttons and not a separate component, asis
the Color: label.

Figure 137 Label That Describes a Radio Button Group

Label
Radio button text

Color:) Red
1 Yellow
i Blue

L_I7 Keepthetext of thelabel brief, and use terminology that is familiar to users.

Active and Inactive Labels

Y ou can make alabel active or inactive so that its state is the same as the component it describes. Active labels are
drawn in the primary 1 color defined in the application's color theme. Inactive labels are drawn in the secondary 2 color
defined in the application's color theme. The following figure shows an active and inactive label.

Figure 138 Active and Inactive Labels

Size: Adtive

Inactive

11
L_Z7 Make alabel inactive when the component it describesisinactive.

Spacing, Position, and Capitalization of Labels
The following figure shows the recommended spacing, position, and capitalization of labels.

Figure 139 Spacing Between a Label and a Component

http://java.sun.com/products/jlf/ldg/higo.htm (2 sur 8) [05/06/2000 14:19:01]

Design Guidelines: Text Components

12

Find: |

L7 Insert 12 pixels between alabel and the component it describes when labels areright aligned. When labels are
left aligned, insert 12 pixels between the longest label and its associated component.

_Z7 Display alabel before or above the component it describes. For languages that read from left to right, "before” is
to the left of the component.

11
" _I7 Use headline capitalization in the label text and place a colon at the end of the text.

For more information on aligning labels in the user interface, see Text Layout. For more information on capitalization,
see Capitalization of Text in the Interface.

Mnemonics in Labels

Y ou can specify amnemonic for alabel. When the mnemonic is activated, it gives focus to the component that the
label describes. This technique is often used with alabel that accompanies an editable text field. In the following figure,
the text field gets focus when users press Alt-N.

Figure 140 Label With aMnemonic

Name: | |

L Mremanic

111
L_Z7 If you can't add a mnemonic directly to the component that requires one, asin the case of an editable text field,

place the mnemonic in the component's label.

B2 The displayedMnemonic property can be used to specify the mnemonic in alabel.

EB= ThelabelFor property can be used to associate alabel with another component so that the component gains
focus when the label's mnemonic is activated.

Labels That Communicate Status and Other Information

Y ou can use alabel to communicate status or give instructions to users. In addition, you can instruct your application to
ater alabel to show achangein state. The progress bar in the following figure uses two labels that change as the
operation progresses. The application changes the top label to reflect the file currently being copied, and it updates the
bottom label asthe progress bar fills.

Figure 141 Labels That Clarify the Meaning of a Progress Bar

MetalPix: Copy in Progress =——

hiroshige.qgif File being copied
I | Stop
About 25 seconds remaining Estirmated time

to completion

L _47 Use sentence capitalization in the text of alabel that communicates status.

http://java.sun.com/products/jlf/dg/higo.htm (3 sur 8) [05/06/2000 14:19:01]

Design Guidelines: Text Components

Text Fields

A text field isarectangular areathat displays asingle line of text. A text field can be editable or noneditable.

Noneditable Text Fields

In anoneditable text field, users can select and copy text, but they cannot change it. Only the application can change
the contents of a noneditable text field. The background of a noneditable text field is the secondary 3 color defined in
the application's color theme. In the default theme, the background color is gray, as shown in the following figure.

Figure 142 Noneditable Text Field

16.3%

Editable Text Fields

In an editable text field, users can type or edit asingle line of text. For example, afind dialog box has atext field in
which users type a string for which they want to search. A text field has keyboard focus when it displays a blinking bar
that indicates the insertion point. When users type in text that is too long to fit in the field, the text scrolls horizontally.
By default, the background of an editable text field is white.

The following figure shows an editable text field with keyboard focus. The Language: label is a separate component
from the text field.

Figure 143 Editable Text Field With Blinking Bar

Language: |Ja |

L Label L Blinking bar at inzertion point

In an editable text field, users can:
o Set theinsertion point by single-clicking
o Select aword by double-clicking
o Select the entire line of text by triple-clicking
o Select arange of characters by dragging
0 Insert characters and replace selected text by typing at the insertion point
o Cut, copy, and paste text by using menu commands or keyboard shortcuts (Ctrl-X for cut, Ctrl-C for copy, and
Ctrl-V for paste)

The following figure shows atext field with the letters Jeffer selected. The insertion point is at the end of the selected
text and indicates that the text field has keyboard focus. The selected text is overwritten when the user types or pastes
new text.

Figure 144 Editable Text Field With Selected Text

Thornas Jeffetson |

To associate amnemonic with atext field, you must give the text field alabel. Y ou can then assign a mnemonic to the
|abel, and make the mnemonic give focusto the text field. For details, see Mnemonicsin Labels. For keyboard

operations appropriate to text fields, see Table 28.

111
L_Z* Depending on the type of data, you might be able to check individual charactersfor errors asthey are typed--for
example, if userstry to type aletter into atext field that should contain only numbers. In this case, do not display the
character in the field. Instead, sound the system beep. If the user typesthreeillegal charactersin arow, post an Error
aert box that explains the legal entries for the text field.

http://java.sun.com/products/jlf/dg/higo.htm (4 sur 8) [05/06/2000 14:19:01]

Design Guidelines: Text Components

111
_Z7 If you plan an action based on the string in the text field (such as searching for the string or performing a

calculation) do so when users signify that they have completed the entry by typing Enter or Return or by moving
keyboard focus outside the text field.

Password Fields

The password field is an editable text field that displays a masking character instead of the characters that users type.
Asterisks are displayed in the password field by default. Y ou can designate any Unicode character as the masking
character (but make sure the character is available in the current font).

The password field is commonly used in alogin dialog box, as shown in the following figure. The Password: label isa
separate component from the password field.

Figure 145 Password Field

|
| %ﬁ MetalMail: Log In S
|

Login Hame: | phyllis3

Password: | wroree]

Label

—— Editable text field

L Password field with asterisks
az masking characters

—
—

Log In Cancel Help

A password field provides users some of the same editing capabilities as an editable text field, but not the cut and copy
operations. For keyboard operations appropriate to password fields, see Table 28.

EB== The setEchoChar method can be used to change the masking character--for example, from asterisks to pound
signs.

Text Areas

A text area provides arectangular space in which users can view, type, and edit multiple lines of text. The JFC renders
such text in asingle font, size, and style, as shown in the following figure.

Figure 146 Text Area

In systems development, judgrment is required to balance competing
pressures. The design of an interface is influenced by both the dermands —— Single font, size,
of users® tasks and the constraints of the underTying mechanizm. This is and style
complicated by the fact that not all users are engaged in the same tasks.
Aninterface is affected by schedule and budget, by marketing and sales
considerations, and numerous other factors.

Users can type and replace text in atext area. See Text Fields for a description of text-editing features supplied by the
JFC. For keyboard operations appropriate to text areas, see Table 27.

Y ou can enable word wrap so that the text wraps to the next line when it reaches the edge of the text area, as shownin

the preceding figure. Y ou can enable scrolling by placing the text areainside a scroll pane. In this case, the text scrolls
horizontally and vertically when it istoo long to fit in the text area.

The following figure shows atext areainside a scroll pane. For information on scrolling, see Scroll Panes.

Figure 147 Text Areain a Scroll Pane

http://java.sun.com/products/jlf/dg/higo.htm (5 sur 8) [05/06/2000 14:19:01]

Design Guidelines: Text Components

The engineetritiy of complex artifactz such az car radioz iz often |«
lavered, resulting in a divizion of labor. An engineer familiar |
with the properties of materialz desighed capacitors, rezizstors. [
and othet componetits. 4 radio desighner Knows the properties of [
theze compotients tut not of the underlving materials. An e
automobile Jesigner iz familiar with the properties and e
requirements of the dJazhboard radio that will contiect to the

electrical svstem, but mav Kiiow fothing abowt radio internalz.

Computers alzo have several levels of mechatizm. The deepest
lewel iz the hardware, including the processor, cofitrolled by |
programs written in a machine language. Few programmers or |«

EB== ThelineWrap and wrapStyleWord properties of the text area can be set to true to enable word wrap on word
boundaries.

Editor Panes

An editor pane isamultiline text pane that uses aplug-in editor Kit to display a specific type of text, such as RTF (rich

text format) or HTML (Hypertext Markup Language). An editor kit is capable of displaying all fonts provided in the
AWT. The JFC provides four kits that you can plug into an editor pane:

o Default editor kit

o Styled text editor kit
o RTF editor kit

o HTML editor kit

Y ou can a'so create your own editor kit or use athird-party editor kit. For an example of how to create an editor kit, see
Java Swing by Robert Eckstein, Marc Loy, and Dave Wood.

EB=" The setEditable method can be used to turn text editing on or off in an editor kit.

Default Editor Kit

Y ou can use the default editor kit to display text in asingle font, size, and style. Thiskit isfunctionally equivalent to a
text area.

Styled Text Editor Kit

Y ou can use a styled text editor kit to display multiple fonts, sizes, and styles, as shown in the following figure. You
can aso embed images and components (such as tables) in a styled text editor Kit.

Figure 148 Styled Text Editor Kit

http://java.sun.com/products/jlf/dg/higo.htm (6 sur 8) [05/06/2000 14:19:01]

Design Guidelines: Text Components

Figure 1. Two dezigne for kitchen faucetz. The uzer interface for the faumcet on the
left iz hazed oh ah engineering rwdel-the faucet handlez directly control the hot
atd cold water flows. The interface for the fawcet on the right iz hazed on a wzer
tazk model-moving the handle up and down controls the combined flow rate; moring
it from gide to 2ide controls the temperature.

— DIFFERENT MODELS FOR AN INTERFACE

— Desigtiers of the humat interface for a computer or other complex svstem
conzciously or unconsciously chooze a model that will form the tasiz for the

rF

interface. Engineers involwved it the design of the svstem have extenzive knowledze -

Multiple font zizez and styles

RTF Editor Kit

Y ou can use an RTF editor kit to read, write, and display RTF text, as shown in the following figure. The RTF editor
kit also provides the capabilities provided by the styled editor kit.

Figure 149 RTF Editor Kit

3.2 The Central Role of -
Language Think of the wray a new library vser might interact

with a reference librarian. If the librardsan had a
Over the past million vesrs, humsns have evolved comimand lne interface, they would only
lnguage &5 oW major comumunicaton mode. understand & limited nomber of grammatically
Language lets us refer w0 things that are not Perfectqueries, and the novice nzer wovld have to
immediately present, Teason about potentsl | consult an obscure reference manval o leam
actions, snd wse conditionsls snd other concepts which queries to woite out. A reference librarin
that are 1ot available with & see-and-point with a WIMP interface would hawe a set of mens -
interface. Another important property of language 00 their desktop; the vser would search the menms H
mizsing in graphical interfaces iz the ability o and point 1o the appropodate query. Meither [
encapavlate complex groups of ohjects or actions inferface seems wvery Telpful. Instead, real
and refer to them with a single name. An interface reference librardans talk with the user for & while
thit can better exploit human langvage will be both 10 negofiate e actial query. Simiady, we
more natral and more powerful. Finally, natoral envizion a computer interface that ntlizes a
lrnguages can cope with ambiguity and fuzzy ﬂmsgums, gpelling correction, displays of what iz |
categores. Adding the ability 0 desl with possible, and kl_'ujwledge u::f_ T.hﬂ nzer and the task -

HTML Editor Kit

You can use an HTML editor kit to display text in HTML 3.2. Users can click alink on the HTML page to generate an
event, which you can use to replace the contentsin the pane.

Figure 150 HTML Editor Kit

http://java.sun.com/products/jlf/ldg/higo.htm (7 sur 8) [05/06/2000 14:19:01]

Design Guidelines: Text Components

rF

Security in JDK 1.1 g |

by Mary Daceforde Links

Your feedback is important to us! Pleaze zend
comnents ahont this trail t0: futodaliSjare. sun. com.
I wonr message, place sriogisd. 7 inthe subject header

The Java Security API iz a new Java core APT, built around the
java.security package (and its subpackages)y. The first release of Java
sSecurity in JDE 1.1 contains a subset of crvptography functonalitsy,
including APTs for digital signatures and message digests.

In addition, there are abstract inteifaces for kev management and certificate

MAnAgement.

The lessons in this trail describe and showr wou how 10 use the main aspects
of the Java Security APT.

ull

Previous | Next | Contents | Index | Search

java.sun.com : Design Guidelines

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jlf/dg/higo.htm (8 sur 8) [05/06/2000 14:19:01]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Lists, Tables, and Trees

java.sun.com: Jawva Look and Feel Desian Guidelines @ @ Contents Index Search

12: Lists, Tables, and Trees

Lists, tables, and trees provide away to organize related information so users can easily make comparisons of the data.
A list isaone-dimensional arrangement of data, and atable is atwo-dimensional arrangement of data. A treeview is
an outline of hierarchical relationships.

Figure 151 Ligt, Table, and Tree View

List Table
Bell Pepper FirstMame | LastMame |Employee 1D Praoject |
Mushroom Jakab Lehn 532 | Butler B
Enlal:l;ernni Feter Winter 27 | FireDog
Fineapple Sophia | Almann 7T | Erakatoa _
Sausage Sarmuel Stewart 452 | Butler i
Srmoked Harn Eva Kidney 1273 | Moonbeam
i ary Dale 311 | FireDog
Foscoe Arrowesmmith 28 | FireDog
hira Brooks 192 | Moonbeam -
Tree view
@[] Art
@ [Misc
@ [] Projects
@ [Diarnond
@ [Fire station
@ [Elevation
@ [Firstfloor
[y Communications
[y Garage

[y shop

&[] Second floar
@ [Landscaping
&] Gamble house
@ [] Puhblications

Lists

A list displays a set of items, which can be text, graphics, or both. Y ou can use alist to present users with a set of
exclusive or nonexclusive choices. For example, you might use alist to present the days of the week, from which users
could choose one day on which to start their calendars. Or, you might use alist to display pizzatoppings, from which
users could make several selections, as shown in the following figure.

Figure 152 Nonexclusive List

http://java.sun.com/products/jlf/dg/higp.htm (1 sur 13) [05/06/2000 14:17:53]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Lists, Tables, and Trees

Bell Pepper
Mushroom
Olive
Fepperani
Fineapple
Salsage
Srmoked Harm

elected itemns

For other components that enable users to select one item from alimited set of items, see Noneditable Combo Boxes
and Radio Buttons. For a component that enables users to select oneitem from alimited set of items or typein an
aternative item, see Editable Combo Boxes. For a component that enables users to select one value from a continuous
or discontinuous range of values, see Sliders.

For the keyboard operations appropriate for lists, see Table 19.

L7 When resizing alist, be sure that it always displays a whole number of lines.

Scrolling

Y ou can provide vertical and horizontal scrolling of theitemsin alist by placing the list inside a scroll pane. Users can
then scroll the list as described in Scroll Panes.

=% If you place alist in a scroll pane, make the vertical and horizontal scrollbars appear only when needed. This
behavior isthe default behavior of scroll panes.

Selection Models for Lists

The JFC provides three selection models that you can use to enable usersto select list items: single item, single range,
and multiple ranges. Single-item selection provides users with an exclusive choice. Single-range and multiple-range
selection provide users with nonexclusive choices.

Single Iltem

Y ou can enable usersto select asingle item by clicking it. The item gets keyboard focus. The prior selection, if any, is
deselected. In the following figure, the user has sel ected Pepperoni.

Figure 153 Single-Item SelectioninaList

Bell Pepper
M ushroom
Qlive
Pepperani —— Clicking here selects this itern
Fineapple
Sausange
Srmaked Ham

Single Range of Items

Y ou can enable usersto select asingle item or arange of items. Users select an item by clicking it. The item gets
keyboard focus and becomes the anchor point of the selection. Users extend the selection by moving the pointer to
another item and Shift-clicking. In the following figure, the user first clicked Sausage and then Shift-clicked Pineapple.

Figure 154 Range of Selected Itemsinalist

http://java.sun.com/products/jlf/dg/higp.htm (2 sur 13) [05/06/2000 14:17:53]

Design Guidelines: Lists, Tables, and Trees

Bell Pepper
Mushroom
Olive
Fepperani
Fineapple — shift-clicking here extends the selection
Salsage — Clicking here selectz thiz itern and sets
Srroked Harm the anchor poirt

Multiple Ranges of Items

Y ou can enable usersto select asingle item, arange of items, or multiple ranges of items (also known as
"discontinuous," "discontiguous,” or "digoint" ranges). Users select asingleitem by clicking it and extend the selection
by Shift-clicking. To start another range, users Control-click an item. That item gets keyboard focus and becomes the
anchor point of the new range. In addition, the selection of the item istoggled--if the item was initially selected, it is
deselected, and vice versa. Shift-clicking extends the new range.

In the following figure, the user selected the first range by clicking Bell Pepper and then Shift-clicking Mushroom. The
user selected additional ranges by Control-clicking Pepperoni and Sausage.

Figure 155 Multiple Ranges of Selected ItemsinalList

Bell Pepper ———— Clicking here zelectz thiz iterm and sets the anchar paint
Mushroom —f——— Shift-clicking here extends the selection
Olive
Fepperani —f——— Contral-clicking here selects the item and mowves the anchor paint
Fineapple
Sausage ———— Control-clicking here selects the item and rmoves the anchor point
Smoked Ham again

Tables

A table organizes related information into a series of rows and columns. Each field in the table is called a"cell.” By
default, acell contains atext field, but you can replace it with graphics and other components, such as a checkbox or
combo box. The cell with keyboard focus has an inner border, which is drawn in the primary 1 color in the application's
color theme.

The following figureillustrates the use of atable to display the records of employeesin acompany database. The cell
with the value 377 is selected and has keyboard focus.

Figure 156 Tablein a Scroll Pane

http://java.sun.com/products/jlf/dg/higp.htm (3 sur 13) [05/06/2000 14:17:53]

Design Guidelines: Lists, Tables, and Trees

Column header

FirstMame | LastMame |EmployeeID| & Project |
Jdakob Lehn 532 | Butler sl
Feter Wilinter 27 | FireDog
Sophia Arnann ¥ 377 | Krakatoa [
samuel Stenwart 452 | Butler [ccrollbar
Eva kidney 1273 | Moonheam
b ary Dole 811 | FireDog —— Row
Foscoe Arrowesimith 28 | FireDog
M ira Brooks 192 | Moonbeam -
|
| Column
Moneditable cell with

kevboard focus

The background color of acell depends on whether the cell is selected, whether the cell is editable, and the background
color of the table. The following table shows how a cell getsits background color.

Table 11 Background Color of Table Cells

Type of Cell Background Color Example
An unselected cell (editable or The background color of the table, Kid
noneditable) which is white by defaullt. ey

White. The inner border isdrawn in
the primary 1 color to indicate that
the cell has keyboard focus. (For | Mary
information on color themesin the
Javalook and feel, see Colors.)

A selected cell that is editable and
currently has keyboard focus

The primary 3 color, whichislight

Any other selected cell blue in the default color theme.

Sophia

Users can select and edit acell if the component in that cell supports editing. For example, if acell contains atext field,
users can type, cut, copy, and paste text. For more information on editing text in atable, see Editable Text Fields. For

the keyboard operations that are appropriate for tables, see Table 26.

Table Appearance

The JFC provides several optionsthat enable you to define the appearance of your table. Y ou can turn on the display of
horizontal and vertical lines that define the table cells, as shown in Figure 156. Y ou can set the horizontal and vertical

padding around the content of acell. Y ou can also set the width of the columns.

27 When resizing atable vertically, make sure that it always displays a whole number of lines.

Table Scrolling

Y ou can provide scrolling of your table by placing the table inside a scroll pane. A table has column headers only when
itisinascroll pane. For information on scrolling, see Scroll Panes.

http://java.sun.com/products/jlf/dg/higp.htm (4 sur 13) [05/06/2000 14:17:53]

Design Guidelines: Lists, Tables, and Trees

Column Reordering

Y ou can enable users to rearrange the columns in the table. When users drag the column header to the right or left, the
entire column moves. Releasing the mouse button places the column at the new location.

The following figure shows the Last Name column being dragged to the right. In this case, the column is selected
(although users can also drag an unselected column).

Figure 157 Reordering Columns by Dragging a Column Header

Firgt Mame |Ermployee D) Last N?gne Inject |]
Jdakoh 532 Lehn sl
Feter 27 Winter ¥
Sophia 377 | Arnant |:|:|a]
Samuel 452 Stewart % i
Eva 1273 Kidney e
i &y a11 Cole iy
Foscoe 23 Arrowesmith g
hira 192 Erooks JEam -

Column Resizing

Y ou can enable usersto resize the columnsin atable. Users drag the right border of the column header to the right to
make the column wider, and to the left to make the column narrower. When users resize a column, you must decide
whether to change the width of the entire table or adjust the other columns so the overall width is preserved. The
JFC-supplied resize options are described in the following table.

Table 12 Table Resize Options

The original table. The double arrow -
shows the west resize pointer before
the columns are resized. bl <0 G 100

) —
Resize next
Resi zes the columns on either side of
the border being moved. One column 40 8o 20 100
becomes bigger, while the other + +
becomes smaller.

"

) i
Resize subsequent
Resizes the column whose border
was moved and all columnsto its 40 80 43 73
right. This option is the default
option.) T T T .

http://java.sun.com/products/jlf/dg/higp.htm (5 sur 13) [05/06/2000 14:17:53]

Design Guidelines: Lists, Tables, and Trees

Resize last
Resi zes the column whose border 40 1o G (&]0]
was moved and the last (rightmost)
column.

I+
I+

1
L

Resize all
Resizes all other columns, 32 g0 458 g0
distributing the remaining space
proportionately.

I+
J--
I+
|-

'Y
¥

Resize off Pl Y
Resi zes the column whose border
was moved, and makes the table
wider or narrower to adjust the space
added or removed from the column.
Thisisthe only option that changes
the overal width of the table.

40 g0 G0 100

I+

[Y
¥

Row Sorting

Y ou can give users the ability to sort the rowsin atable by clicking the column headers. An email application, which
displays alist of messagesin atable, iswell suited for row sorting. As shown in the following figure, users can sort the
messages by date, sender, or subject. The header of the From column appears in bold to indicate that the messages are
currently sorted alphabetically by sender.

Figure 158 Row Sorting in an Email Application

Bold colurnn headerindicates sortorder

Date | From |Subject B
M Tue Feb 8 HERIOG Wiesentaler Ahnengalerie ol
ThuFebh 13 HERZOG Fe:\Weisentaler Ahnengalerie
Tue Feb 14 Kathy Menno The Swing Connection: 1.2.2 update
MonFeh 16 Keith Brooks mouse double clicks in swing controls |
M FriFeh12 lisa.mevers@oene Re: Security office request
Fri Feh 5 Michael Lux fwdl: Feedback on Swing e
M wed Feb 17 Michael Lux Fe: project schedules
M TueFeb15 Michael Lux project schedules
SatFeh 13 Michael Lux randarm musings an carnival -

11
L7 Provide avisua indicator for the table column that currently determines the sort order. For example, put the

column header text in bold.

111
2= If your application has a menu bar, provide row sorting as a set of menu items as well (for example, include " Sort

by Sender" in the View menu).

EB== Row sorting is not included with the table component. However, the JFC contains sample code that can be used
to implement row sorting. See The Java Tutorial for more information.

http://java.sun.com/products/jlf/dg/higp.htm (6 sur 13) [05/06/2000 14:17:53]

Design Guidelines: Lists, Tables, and Trees

Selection Models for Tables

When designing atable, you must decide which objects (cells, rows, or columns) users can select. The JFC provides 24
models for selecting objects in tables, but they are not all distinct.

%’ The following nine selection models are recommended for use in the Javalook and fed!:
o No selection
o Singlecell
o Single range of cells
o Single row
o Singlerange of rows
o Multiple ranges of rows
o Single column
o Single range of columns
o Multiple ranges of columns

No Selection

Y ou can turn off selection in atable. Nothing is selected when users click in acell.

Single Cell

Y ou can enable usersto select acell by clicking it. The cell gets keyboard focus, which isindicated by an inner border.
Any previous selection is desel ected.

In the following figure, the cell containing 377 is selected and has keyboard focus. The cell cannot be edited, as
indicated by the primary 3 background color.

Figure 159 Single-Cell Selection

FirstMame | LastMame |EmployeeID| Project |
Jakah Lehn 532 | Butler B
Feter Winter 27 | FireDog
Sophia Armant ® 377 | Krakatoa B
Samuel Stewart 452 | Butler E
Eva Kidney 1273 | Moonheam
i &y Dale 311 | FireDog
Foscoe Arrowesimith 28 | FireDog
hira Brooks 192 | Moonbeam =

— Clicking here selects this cell

Range of Cells

Y ou can enable usersto select asingle cell or arectangular range of cells. Users select acell by clicking it. That cell
gets keyboard focus and becomes the anchor point of the selection. Users extend the selection by moving the pointer to
anew cell and Shift-clicking. Users can also select arange of cells by dragging through the range.

In the following figure, the user has selected the range by clicking Sophia and then Shift-clicking 1273. The cell
containing Sophiais editable, asindicated by its white background.

Figure 160 Range of Selected Cells

http://java.sun.com/products/jlf/dg/higp.htm (7 sur 13) [05/06/2000 14:17:53]

Design Guidelines: Lists, Tables, and Trees

— Clicking here zelectz the cell and zets the anchor point

FirgtMame | LastMame |Employvee D) Froject |

Jakab Lehn 532 | Butler B
Feter Wilinter 27 | FireDaog

Sophia ® | Amann 377 | Krakaloa B
Samuel Stewart 452 | Butler E
Eva Fidney $ 1273 | wMoonheam

il ary Cole 811 | FireDog

Foscoe Arronesimith 28 | FireDog

Mira Brooks 192 | Moonbeam -

L Shift-clicking here extends the selection

In range selection, the selection always extends from the cell with the anchor point to the cell where the user
Shift-clicked. If users move the pointer within the selection and Shift-click, the selection becomes smaller. For
example, if the user Shift-clicks Stewart in the preceding figure, the selection is reduced to four cells (Sophia, Amann,
Samuel, and Stewart).

Single Row

Y ou can enable usersto select an entire row by clicking any cell in the row. The clicked cell gets keyboard focus,
which isindicated by an inner border. Any previous selection is desel ected.

In the following figure, the user has clicked the cell containing 811. Thiscell is not editable, asindicated by its
background color.

Figure 161 Single-Row Selection

FirstMarme | LastMame |Employee D] Project |
Jakah Lehn 532 | Butler B
Feter Wilinter 27 | FireDog
Sophia Arnann 377 | Krakatoa B
Samuel Stewart 452 | Butler 7
Eva kidreny 1273 | Moonbeam
M ary Dole | ® 811 | FireDiog
Foscoe Arrowsmith 28 | FireDog
hira Brooks 192 | Moonbeam =

— Clicking here selects the row

Single Range of Rows

Y ou can enable users to select one row or arange of rows. Users select arow by clicking any cell in the row. The cell
that has been clicked gets keyboard focus and becomes the anchor point of the selection. Users extend the selection by
moving the pointer to a new row and Shift-clicking. Users can also select arange of rows by dragging through the
range.

In the following figure, the user has clicked Amann and then Shift-clicked Dole. The cell containing Amann is editable,
asindicated by its white background.

Figure 162 Range of Selected Rows

http://java.sun.com/products/jlf/dg/higp.htm (8 sur 13) [05/06/2000 14:17:53]

Design Guidelines: Lists, Tables, and Trees

—— Clicking here selects the row and sets
the anchar paoint

First Mare | LastMame | |[Employee 1D Project |
Jakah Lehn 532 | Butler B
Feter Wilinter 27 | FireDog
Sophia | Amann @ 377 | Krakatoa B
Samuel Stewart 452 | Butler 7
Eva kidrney 1273 | Moonheam
i &y Diale 811 | FireDong
Foscoe Arrowesimith 28 | FireDog
hira Brooks 192 | Moonbeam -

L shift clicking here extends the selection

In range selection, the selection always extends from the row with the anchor point to the row where the user has
Shift-clicked. If users Shift-click within an existing selection, the selection becomes smaller. For example, if the user
Shift-clicks Stewart in the preceding figure, the selection is reduced to the two rows containing Amann and Stewart.

Multiple Ranges of Rows

Y ou can enable usersto select asingle row, arange of rows, or multiple row ranges (also known as "discontinuous,"
"discontiguous,” or "digoint" ranges). Users select asingle row by clicking any cell in the row and extend the selection
by Shift-clicking. To start another range, users Control-click any cell in arow. The cell gets keyboard focus and
becomes the anchor point of the new range. The selection of the row toggles as follows:

o If therow isnot aready selected, it is selected. A subsequent Shift-click selects all rows from the anchor point
to the row where the user has Shift-clicked.

o If therow iswithin an existing selection, the row is deselected. A subsequent Shift-click deselects all rows from
the anchor point to the row where the user has Shift-clicked.

Users can also select another range by dragging through the range while holding down the Control key.

In the following figure, the user has selected the first range by clicking Winter and then Shift-clicking Amann. The user
has created another range by Control-clicking Mary and then Shift-clicking Roscoe. The cell containing Mary has
keyboard focus and is editable.

Figure 163 Multiple Ranges of Selected Rows

http://java.sun.com/products/jlf/dg/higp.htm (9 sur 13) [05/06/2000 14:17:53]

Design Guidelines: Lists, Tables, and Trees

Clicking here selectz the row and sets the anchor point
—— Shift-clicking here extends the zelection

FirstMame | LastMame | |[Employee 1D Project |
Jakah Lehn 532 | Butler B
Feter Winter ® 27 | FireDog
Sophia Amann & 377 | Krakatoa [
Samuel Stewart 152 | Butler #
Eva Kidney 1273 | Moonbeam
il &y % | Dale 811 | FireDong
Foscoe # Arrowesimith 28 | FireDog
hira Brooks 192 | Moonbeam -

Control-clicking here selects the row and mowes the anchor point

shift-clicking here extends the selection

Multiple-range selection iswell suited for an email application that uses a table to display message headers, as shown
in Figure 158. Users can select one or more message headers (especially useful for deleting messages).

Single Column Only

Y ou can enable usersto select an entire column by clicking any cell in the column. The cell that was clicked gets
keyboard focus, which isindicated by an inner border. Any previous selection is desel ected.

In the following figure, the user has clicked Amann in the Last Name column. The white background indicates that the
cell can be edited.

Figure 164 Single-Column Selection

FirstMame | LastMame |Employee D] Project |

Jakab Lehn 532 | Butler B
Feter Wiinter 27 | FireDaog

Sophia | Amann e 377 | Krakatoa B
Samuel Stewart 452 | Butler E
Eva kidney 1273 | Moonheam

il &y Dole 811 | FireDong

Roscoe Arrowesimith 28 | FireDog

Mira Brooks 192 | Moonbeam -

—— Clicking here selects the column

Single Range of Columns

Y ou can enable usersto select one column or arange of columns. Users select a column by clicking any cell in the
column. The cell that was clicked gets keyboard focus and becomes the anchor point of the selection. Users extend the
selection by moving the pointer to a new column and Shift-clicking. Users can also select arange of columns by
dragging through the range.

In the following figure, the user has clicked 1273 and then Shift-clicked Amann. The cell containing 1273 cannot be
edited, asindicated by its background color.

http://java.sun.com/products/jlf/dg/higp.htm (10 sur 13) [05/06/2000 14:17:53]

Design Guidelines: Lists, Tables, and Trees

Figure 165 Range of Selected Columns

FirstMame | LastMame |EmployeeID| Project |

Jakab Lehn 532 | Butler B
Feter Winter 27 | FireDog

Sophia Amann @ 377 | Krakatoa B
Samuel Stewart 452 | Butler B
Eva Kidney | ® 1273 | Moaonbearm

i ary Diale 211 | FireDog

Foscoe Arrowsmith 28 | FireDog

hira Erooks 192 | Moonbeam -

L Clicking here selects the row and setz the anchor point

shift-clicking here extends the selection

In range selection, the selection always extends from the column with the anchor point to the column where the user
has Shift-clicked. If users Shift-click within an existing selection, the selection becomes smaller.

Multiple Ranges of Columns

Y ou can enable usersto select a single column, arange of columns, or multiple-column ranges (also known as
"discontinuous," "discontiguous,” or "digoint" ranges). Users select a single column by clicking any cell in the column
and extend the selection by Shift-clicking. To start another range, users Control-click any cell in the column. The cell
gets keyboard focus and becomes the anchor point of the range. The selection of the column toggles as follows:

o If the column is not already selected, it is selected. A subsequent Shift-click selectsall columns from the anchor
point to the column where the user Shift-clicked.

o If the column iswithin an existing selection, the column is deselected. A subsequent Shift-click deselects all
columns from the anchor point to the column where the user Shift-clicked.

Users can also select another range by dragging through the range while holding down the Control key.

In the following figure, the user has clicked Peter and then Shift-clicked Amann. The user has selected another range
by Control-clicking Krakatoa, which has keyboard focus and can be edited, as indicated by its white background.

Figure 166 Multiple Ranges of Selected Columns

Clicking here zelects the column and sets the anchor paint
— Shift-clicking here extends the selection

FirstMame| | LastMame| |[Ermployee D] Project |
Jakah Lehn 532 | Butler B
Peter & | Winter 17 FireDog | Eﬁi’éﬁii'ii’é“i‘.!?&r?ﬁr;n ;
Sophia Almann ® ary | krakatoa . troves the anchor point
Samuel Stenwart 452 | Butler fl
Eva Fidrney 1273 | Moonheam
i ary Ciale 811 | FireDong
Foscoe Arrowesimith 28 | FireDog
Mira Brooks 192 | Moonbeam -
Tree Views

http://java.sun.com/products/jlf/dg/higp.htm (11 sur 13) [05/06/2000 14:17:53]

Design Guidelines: Lists, Tables, and Trees

A tree view represents a set of hierarchical datain the form of an indented outline, which users can expand and
collapse. Tree views are useful for displaying data such as the folders and filesin afile system or the table of contents
in a help system.

A tree view consists of nodes. The top-level node, from which all other nodes branch, is the root node. Nodes that
might have subnodes are called "containers." All other nodes are called "leaves." The default icon for acontainer isa
folder, and the default icon for aleaf isafile. Each node is accompanied by text.

Turners appear next to each container in the tree view. The turner points right when the container is collapsed and
down when the container is expanded.

In the following figure, the Projects, Fire station, First floor, and Landscaping nodes are expanded containers; all the
other containers are collapsed. Landscaping is a container without subnodes. Communications, Garage, and Shop are
leaves. The turner, container, and leaf graphics shown in this figure are the default graphics provided by the JFC.

Figure 167 Tree View With Top-Level Lines

Top-level line —lEi-] Art
@] Misc

§] Projects
Collapsed container ———@- [Diarmond

Expanded container————————@ [Fire station

- .
Tutmer] E.Ievatlnn
© [Firstfloor
Leaf [Communications
[y Garage

[y shop
@ [Second floor
B<panded container !] Landscaping
ith brnod
without subnodes @ [Gamble house
&= [Publications

Users can click the right-pointing turner to expand a container so that its contents are visible in the tree view. The
turner rotates to point downward. Clicking the downward-pointing turner collapses a container so that its contents are
no longer visible. For the keyboard operations that are appropriate for tree views, see Table 32.

11
L7 In most tree views, display the second level of the hierarchy as your highest level. Y our outline will be easier to

useif you do not display the root node.

111
_Z* Display turnersfor al containersin the tree view, including the containers at the highest level. Turners remind
users that they can expand and collapse the node.
EB=" Setting the rootVisible property of the tree view to false turns off the display of the root node.

B2 Setting the showsRootHandles of the tree view to true turns on the display of turners for the highest-level
containers.

Lines in Tree Views

The JFC provides you three options for including linesin atree view. Thefirst option is not to include any lines. The
second option isto draw lines that separate the top-level nodes, as shown in Figure 167. The third option isto draw
linesthat define the hierarchical relationships of the nodes, as shown in the following figure.

Figure 168 Tree View With Hierarchy Lines

http://java.sun.com/products/jlf/dg/higp.htm (12 sur 13) [05/06/2000 14:17:54]

Design Guidelines: Lists, Tables, and Trees

®] Classical
&= [Early Music

@ [] Barogue
@ [Albinani

@ [Bach
& Brandenburyg Concertos

& Cello Suites
B Magnificat
A Massin B minar

& wiell Tempered Clavier
s Custorm graphic

& [Handel for leaf node
Hierarchy ——— & [vivaldi
line & [Romantic
@] lazz
@] Rock

EB="= Theclient property JTree.lineStyle can be set to None to display no lines, to Horizontal to display top-level
lines, and to Angled to display hierarchy lines.

Graphics in Tree Views

Y ou can substitute your own graphics for the JFC-supplied container and leaf node graphics. For example, if your
hierarchy represents the clients and serversin a network, you might include graphic representations of the clients and
servers. In Figure 168, a custom music graphic is used for the leaf nodes. Y ou might also use separate graphics to show

when a container is expanded and when it is collapsed.

Editing in Tree Views

Y ou can enable usersto edit the text in atree view. When editing is enabled, users can change text using the same
editing commands that they use for text fields. These commands are described in Editable Text Fields.

BB Setting the editable property to true enables editing of all nodesin the tree.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jlf/dg/higp.htm (13 sur 13) [05/06/2000 14:17:54]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Keyboard Nav., Activation, and Selection

java.sun.com: Java Look and Feel Design Guidelines @ @ Contents Index Search

A: Keyboard Navigation,
Activation, and Selection

This appendix defines the keyboard operations that enable users to navigate through, activate, or
select the JFC user interface components. (Navigating means to move the input focus from one
user interface component to another; activating refers to operating the component; selecting
means to choose one or more components, typically for a subsequent action.) For an overview of
these concepts, see Keyboard Navigation and Activation.

In general, navigating between components uses these keys:

o Tab. Moves keyboard focus to the next component or to the first member of the next
group of components.

o Ctrl-Tab. Moves keyboard focus to the next component or to the first member of a group
of components when the current component accepts atab (asin text fields, tables, and
tabbed panes).

o Shift-Tab. Moves keyboard focus to the previous component or to the first component in
the previous group of components.

o Arrow keys. Move keyboard focus within the individual components of a group of
components--for example, within menu items in a menu or within tabs in a tabbed pane.

This appendix presents the JFC-supplied keyboard navigation, activation, and sel ection operations
in aseries of tables, arranged alphabetically by component. The left column of each table
describes an action (for example, moving focus to the left) and the right column describesiits
keyboard operation (for example, |eft arrow key).

Some actions in the table list several possible keyboard operations, separated by a comma. For
example, both Home and Ctrl-Home move focus to the beginning of alist. Multiple operations
take into account the differences between the Microsoft Windows and CDE operating
environments. If you are using an environment other than the Microsoft Windows or CDE
operating environment, implement the keyboard operation that is most appropriate for your
environment.

EB="= Some of the keyboard operations described in the following tables might be temporarily

incomplete or not implemented. However, these key sequences should be reserved for future
versions of the JFC and the Java 2 platform.

Checkboxes

The following table lists the keyboard operation for checkboxes. For more information on this
component, see Checkboxes.

http://java.sun.com/products/jlf/dg/appendix.htm (1 sur 14) [05/06/2000 14:17:00]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Keyboard Nav., Activation, and Selection

Table 13 Keyboard Operation for Checkboxes

Action Keyboard Operation

Selects or deselects checkbox Spacebar

Combo Boxes

The following table lists the keyboard operations for combo boxes. For details on this component,
see Combo Boxes.

Table 14 Keyboard Operations for Combo Boxes

Action Keyboard Operation

_ . Spacebar, down arrow,
Posts associated list Alt-down arrow

Moves highlight within list when menu

is posted. Selects highlighted item Up arrow, down arrow

Enter, Return, spacebar,

Closes list, maintaining latest selection Escape

Command Buttons

The following table lists the keyboard operations for command buttons. For more information on
this component, see Command Buttons.

Table 15 Keyboard Operations for Command Buttons

Action Keyboard Operation

Activates command button Spacebar

Activates default button (does not

require keyboard focus) Enter, Return

Activates Cancel button (does not

require keyboard focus) Escape

http://java.sun.com/products/jlf/dg/appendix.htm (2 sur 14) [05/06/2000 14:17:00]

Design Guidelines: Keyboard Nav., Activation, and Selection

Desktop Panes and Internal Frames

The following table lists the keyboard operations for desktop panes and internal frames. For
details on internal frames and desktop panes, see Working With Multiple Document | nterfaces.

Table 16 Keyboard Operations for Desktop Panes and Internal Frames

Action Keyboard Operation
Opensinternal frame Ctrl-F5
Closesinternal frame Ctrl-F4
Moves internal frame Ctrl-F7
Resizesinternal frame Ctrl-F8
Minimizesinternal frame Ctrl-F9

Navigates first between open internal
frames, then among minimized
internal frames

Ctrl-Esc, Ctrl-Tab, Shift-Esc,
Shift-Tab

Opens minimized internal frame that

has keyboard focus Ctrl-F5, Enter, Return

Navigates among associated windows

on the desktop pane Ctrl-F6, Shift-Ctrl-F6

Navigates between associated
windows when an internal frame Ctrl-F6, Shift-Ctrl-F6
creates a secondary window

Displays desktop contextual menu Citrl-spacebar

Dialog Boxes

The following table lists the keyboard operations for dialog boxes, alert boxes, and utility
windows. For comprehensive treatment of dialog boxes and alert boxes, see Chapter 8. For a

discussion of utility windows, see Utility Windows.

Table 17 Keyboard Operations for Dialog Boxes

Action Keyboard Operation
Navigates into dialog box Alt-F6
Navigates out of dialog box Alt-F6

http://java.sun.com/products/jlf/dg/appendix.htm (3 sur 14) [05/06/2000 14:17:00]

Design Guidelines: Keyboard Nav., Activation, and Selection

Activates Cancel button Escape

Activates default command button Enter, Return

HTML Editor Kits

HTML editor kits use the navigation, selection, and activation sequences described in Table 27,
plus the two listed here. For details on the appearance and behavior of this component, sese HTML

Editor Kit.
Table 18 Keyboard Operations for HTML Panes
Action Keyboard Operation
Navigatesto link and other focusable | Tab, Shift-Tab, Ctrl-Tab,
elements Shift-Ctrl-Tab
Activates link Enter, Return, spacebar

Lists

The actions listed in the following table assume multiple selection in lists. For more information
on the appearance, behavior, and selection of this component, see Lists.

Table 19 Keyboard Operations for Lists

Action Keyboard Operation
Moves focus up one row or line Up arrow
Moves focus down one row or line Down arrow

Moves focus up one view minus one
line, giving focusto first linein the Page Up
view

Moves focus down one view minus

oneline, giving focusto first linein Page Down

the view

Moves focus to beginning of list Home, Ctrl-Home
Moves focus to end of list End, Ctrl-End
Selects all itemsin list Ctrl-A, Ctrl-/

http://java.sun.com/products/jlf/dg/appendix.htm (4 sur 14) [05/06/2000 14:17:00]

Design Guidelines: Keyboard Nav., Activation, and Selection

Deselects all Ctrl-/

Makes a selection (and deselects any

previous sel ection) Spacebar
Toggles selection (and does not affect i

previous selections) Crl-spacebar
Extends selection Shift-spacebar
Extends selection down one item Shift-down arrow
Extends selection up one item Shift-up arrow

Extends selection to beginning of list Shift-Home

Extends selection to end of list Shift-End

Extends selection up one view Shift-PgUp

Extends selection down one view Shift-PgDn
Menus

The keyboard operationsin this table apply to menu bars, menus, drop-down menus, submenus,
contextual menus, menu items, radio button menu items, and checkbox menu items. For a
discussion of menus, see Chapter 9.

Table 20 Keyboard Operations for Menus

Action Keyboard Operation

Posts current menu Enter, Return, spacebar, arrow keys
Dismisses menu without taking action

and returns focus to last component Escape

that had focus

Moves focus to menu bar and posts F10

first menu

Navigates within menus Arrow keys

Navigates between titlesin menu bar Arrow keys

Activates a menu item, dismisses

menu, and goes to last window item Enter, Return, spacebar
with focus
Displays contextual menu Shift-F10

http://java.sun.com/products/jlf/dg/appendix.htm (5 sur 14) [05/06/2000 14:17:00]

Design Guidelines: Keyboard Nav., Activation, and Selection

Dismisses contextual menu Escape

Navigates within contextual menu Arrow keys

Activates highlighted item in

contextual menu and dismisses menu Enter, Return, spacebar

Radio Buttons

The following table lists the keyboard operation for radio buttons. For a discussion of the
appearance and behavior of this component, see Radio Buttons.

Table 21 Keyboard Operation for Radio Buttons

Action Keyboard Operation
Selects radio button Spacebar
Scrollbars

Users can operate scrollbars from the keyboard when keyboard focus is anywhere in the scroll
pane that contains the scrollbar. For a discussion of the appearance and behavior of this
component, see Scrollbars.

Table 22 Keyboard Operations for Scrollbars

Action Keyboard Operation
Moves view up oneline Up arrow

Moves view down one line Down arrow

Moves up one view Page Up

Moves down one view Page Down

Moves to beginning of data Ctrl-Home

Movesto end of data Ctrl-End

Moves right one view minus one line Ctrl-PgDn

Moves left one view Ctrl-Pg Up

http://java.sun.com/products/jlf/dg/appendix.htm (6 sur 14) [05/06/2000 14:17:00]

Design Guidelines: Keyboard Nav., Activation, and Selection

Sliders

The following table lists the keyboard operations for sliders. For details on this component, see

Sliders.
Table 23 Keyboard Operations for Sliders
Action Keyboard Operation
Changes value of slider Arrow keys
Movesto left/top value Home
Moves to right/bottom value End

Jumps in left/top direction

(approximately 20% of the scale) Page Up, Ctrl-PgUp

Jumps in right/bottom direction

(approximately 20% of the scale) Page Down, Ctrl-PgDn

Split Panes

The following table lists the keyboard operations for split panes. After users enter a split pane,
pressing Tab cycles the focus to the components within the split pane. For a description of the
appearance and behavior of this component, see Split Panes.

Table 24 Keyboard Operations for Split Panes

Action Keyboard Operation
Navigates between split panes and

gives focusto last element that had Tab, F6

focus

Givesfocus to splitter bar F8

Changes location of splitter bar in

splitter pane Arrow keys, Home, End

Tabbed Panes

The following table lists the keyboard operations for tabbed panes. For a description of the

http://java.sun.com/products/jlf/dg/appendix.htm (7 sur 14) [05/06/2000 14:17:00]

Design Guidelines: Keyboard Nav., Activation, and Selection

appearance and behavior of this component, see Tabbed Panes. When atabbed pane initially gets
focus, the focus goes to one of the tabs, and not to one of the content panes.

Table 25 Keyboard Operations for Tabbed Panes

Action Keyboard Operation

Navigates through tabs Arrow keys

Moves from tab to its associated

content pane Ctrl-down arrow

Moves from content pane to its

associated tab Ctrl-up arrow

Moves to next or previous content

pane Ctrl-PgDn or Ctrl-PgUp

Tables

The following table lists the keyboard operations for tables. For a description of the appearance
and behavior of this component, see Tables.

Table 26 Keyboard Operations for Tables

Action Keyboard Operations
Moves focus up one cell Shift-Return

Moves focus down one cell Return

Moves focus left one cdll Shift-Tab

Moves focus right one cell Tab

Deselects current selection and moves

focus up one cell Up arrow

Deselects current selection and moves DOWN arrow

focus down one cell

Scrolls up one view and gives focusto Page U
first visible cell in the current column agetp

Scrolls down one view and gives focus

to first visible cell in the current Page Down
column

Scrollsleft one view and gives focus to

first visible cell in the current row Ctrl-PgUp

http://java.sun.com/products/jlf/dg/appendix.htm (8 sur 14) [05/06/2000 14:17:00]

Design Guidelines: Keyboard Nav., Activation, and Selection

Scrollsright one view and gives focus

to first visible cell in the current row Ctrl-PgDn
Moves focus and view to first cell in

the current row Home
Moves focus and view to last cell in End

the current row

Moves focus and view to first cell in

the current column Ctrl-Home
Moves focus and view to last cell in

the current column Crl-End
Allows editing in a cell without £
overwriting the information

Resets cell to the state it was in before

it was edited Escape
Selects entire table Ctrl-A
Extends selection up one row Shift-up arrow

Extends sal ection down one row

Shift-down arrow

Extends selection left one column

Shift-left arrow

Extends selection right one column

Shift-down arrow

Extends selection to beginning of row

Shift-Home

Extends selection to end of row

Shift-End

Extends selection to beginning of
column

Ctrl-Shift-Home

Extends selection to end of column Ctrl-Shift-End
Extends selection up one view Shift-PgUp
Extends selection down one view Shift-PgDn
Extends selection |eft one view Ctrl-Shift-PgUp
Extends selection right one view Ctrl-Shift-PgDn

Text Areas and Default and Styled Text Editor Kits

The following table lists the keyboard operations for text areas and the default and styled text
editor kits. For details on the appearance and behavior of these components, see Text Areas,

http://java.sun.com/products/jlf/dg/appendix.htm (9 sur 14) [05/06/2000 14:17:01]

Design Guidelines: Keyboard Nav., Activation, and Selection

Default Editor Kit, and Styled Text Editor Kit.

Table 27 Keyboard Operations for Text Areas and Default and Styled Text Editor

Kits
Action Keyboard Operation
Moves insertion point up oneline Up arrow
Moves insertion point down one line Down arrow
Movesiraon POTLOMRINONe | ot o
g)(r)r\]/; r|1 Qns'?rct)lr oghg?£ etro the right one Right arrow
Moves up one view Page Up
Moves down one view Page Down
Moves left one view Ctrl-PgUp
Moves right one view Ctrl-PgDn
Moves to beginning of line Home
Moves to end of row or line End
Moves to beginning of data Ctrl-Home
Movesto end of data Ctrl-End

Moves to next word

Ctrl-right arrow

Moves to previous word

Ctrl-left arrow

Selects al Ctrl-A, Ctrl-/
Deselects all Ctrl-\
Extends selection up Shift-up arrow

Extends selection down

Shift-down arrow

Extends salection left

Shift-left arrow

Extends selection right Shift-right arrow
Extends selection up one view Shift-PgUp
Extends selection down one view Shift-PgDn
Extends selection to the left one view Ctrl-Shift-PgUp
Extends selection to the right one view | Ctrl-Shift-PgDn

http://java.sun.com/products/jlf/dg/appendix.htm (10 sur 14) [05/06/2000 14:17:01]

Design Guidelines: Keyboard Nav., Activation, and Selection

Extends selection to beginning of line

Shift-Home

Extends salection to end of line

Shift-End

Extends selection to beginning of data

Ctrl-Shift-Home

Extends selection to end of data

Ctrl-Shift-End

Extends selection to next word

Ctrl-Shift-right arrow

Extends selection to previous word

Ctrl-Shift-left arrow

Text Fields

The following table lists the keyboard operations for text fields. For details on this component, see

Text Fields.
Table 28 Keyboard Operations for Text Fields
Action Keyboard Operation
m g\r/ie;]itnserti on point one character to Right arrow
Moves insertion point one character to L eft arrow

the left

Moves insertion point to beginning of
next word

Ctrl-right arrow

Moves insertion point to beginning of
previous word

Ctrl-left arrow

Moves insertion point to beginning of

field Home

Moves insertion point to end of field End

Submits text entry Enter, Return
Extends selection to beginning of line | Shift-Home
Extends selection to end of line Shift-End
Extends selection one character tothe | i | o6t arrow

left

Extends selection one character to the
right

Shift-right arrow

Extends selection to next word

Shift-Ctrl-right arrow

http://java.sun.com/products/jlf/dg/appendix.htm (11 sur 14) [05/06/2000 14:17:01]

Design Guidelines: Keyboard Nav., Activation, and Selection

’ Extends selection to previous word Shift-Ctrl-left arrow

Toggle Buttons

The following table lists the keyboard operation for toggle buttons. For details on this component,
see Toggle Buttons.

Table 29 Keyboard Operation for Toggle Buttons

Action Keyboard Operation

Toggles button on or off Spacebar

Tool Tips

The following table lists the keyboard operations for tool tips. For details on this component, see

Tool Tips.
Table 30 Keyboard Operations for Tool Tips
Action Keyboard Operation
Displaystooal tip Ctrl-F1
Removestool tip Escape, Ctrl-F1
Toolbars

The following table lists the keyboard operations for toolbars. For details on the appearance and
behavior of this component, see Toolbars.

Table 31 Keyboard Operations for Toolbars

Action Keyboard Operation
Navigates within toolbar Arrow keys
Activates tool bar Spacebar

http://java.sun.com/products/jlf/dg/appendix.htm (12 sur 14) [05/06/2000 14:17:01]

Design Guidelines: Keyboard Nav., Activation, and Selection

Tree Views

The following table lists the keyboard operations for tree views. For details on the appearance and
behavior of this component, see Tree Views.

Table 32 Keyboard Operations for Tree Views

Action Keyboard Operation
Expands current node Right arrow
Collapses current node Left arrow
Moves focus up one node Up arrow
Moves focus down one node Down arrow
Moves focus to first nodein tree Home
Moves focus to last node in tree End

Moves up one view Page Up
Moves down one view Page Down
Moves |eft one view Ctrl-PgUp
Moves right one view Ctrl-PgDn
Selects all nodesin tree Ctrl-A, Ctrl-/
Deselects all Ctrl-\

Extends selection down

Shift-down arrow

Extends selection up Shift-up arrow
Extends selection to beginning of tree | Shift-Home
Extends selection to end of tree Shift-End
Extends selection up one view Shift-PgUp
Extends selection down one view Shift-PgDn
Extends selection right one view Ctrl-Shift-PgDn
Extends selection |eft one view Ctrl-Shift-PgUp

http://java.sun.com/products/jlf/dg/appendix.htm (13 sur 14) [05/06/2000 14:17:01]

Design Guidelines: Keyboard Nav., Activation, and Selection

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jlf/dg/appendix.htm (14 sur 14) [05/06/2000 14:17:01]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Design Guidelines: Errata

java.sun.com:Java Look and Feel Design Guidelines Contents Index Search

Errata

Errors corrected in Web Version 1.0.1 (July 1999) and 2nd Printing (August 1999)

Page xxvi. Second paragaraph in the section on Design for Multiple Platforms. Change "M cFarland,
Aland" to "McFarland, Alan"

Page 35. Last sentence before Figure 20. Change "Japanese” to "Chinese"
Page 35. Caption for Figure 30. Change "Japanese” to "Chinese"
Page 37. Last sentence of first paragraph. Change "26 Juli 1987" to "26. Juli 1987"

Page 175. First sentence of paragraph before Figure 155. Change "and then Shift-clicking Pineapple" to
"and then Shift-clicking Mushroom"

Errors corrected in Web Version 1.0.2 (December 1999)

Page 76. First sentence of cross platform guideline at bottom of page. Change "bar may not include” to
"bar might not include"

Page 192. Combobox table. Replace 2nd, 3rd, and 4th items with the following two items:
Moves highlight within list when menu is posted. Selects highlighted item - Up arrow, down arrow
Closes list, maintaining lastest selection - Enter, Return, spacebar, Escape

Page 192. Glossary entry for MIME. Change "assign applications interpret” to "assign applications to
interpret"

Figures9, 10, 32, 34, 75, 76, 111, 116, 117, 119, 120, 123, 125, 126, and 148. Windows title bars should
not contain a"What's This?"' button.

Figures 44 and 77. Default Close button should not have a mnemonic.

Figure 59. Don't Save button should have a mnemonic.

java.sun.com : Design Guidelines Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

http://java.sun.com/products/jlf/dg/errata.html [05/06/2000 14:19:19]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Java Look and Feel Design Guidelines

java.sun.com:Java Look and Feel Design Guidelines

Java Look and Feel Design Guidelines

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road,
Palo Alto, California 94303 U.S.A. All rights reserved.

This product or documentation is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or documentation may be reproduced in
any form by any means without prior written authorization of Sun and its licensors, if any. Third-party
software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, JavaOS, JavaHelp, Java 2D, HotJava, JavaBeans, Java
Plug-in, Java Development Kit, JDK, Personal Java, Java Foundation Classes, JavaScript, JavaStation,
Javavirtual machine, the Java Coffee Cup logo, Solaris, and Write Once, Run Anywhere are trademarks
or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its
users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the
concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive
license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun's written license agreements.

U.S. Government approval required when exporting the product.

DOCUMENTATION ISPROVIDED "ASIS' WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY KIND OF IMPLIED OR
EXPRESS WARRANTY OF NON-INFRINGEMENT OR THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road,
Palo Alto, Californie 94303 Etats-Unis. Tous droits réserves.

Ce produit ou document est protége par un copyright et distribué avec des licences qui en restreignent
I'utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne
peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans |'autorisation préalable et
écrite de Sun et de sesbailleurs de licence, sil y en a. Lelogiciel détenu par destiers, et qui comprend la
technologie relative aux polices de caracteres, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, JavaOS, JavaHelp, Java 2D, HotJava, JavaBeans, Java
Plug-in, Java Development Kit, JDK, Personal Java, Java Foundation Classes, JavaScript, JavaStation,
Javavirtual machine, Java Coffee Cup logo, Solaris, et Write Once, Run Anywhere sont des marques de
fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

L'interface d'utilisation graphique OPEN LOOK et Sun a été dével oppée par Sun Microsystems, Inc. pour
ses utilisateurs et licenciés. Sun reconnait |es efforts de pionniers de Xerox pour larecherche et le
développement du concept des interfaces d'utilisation visuelle ou graphique pour I'industrie de
I'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d'utilisation graphique
Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place I'interface d'utilisation
graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun. L'accord du
gouvernement américain est requis avant |'exportation du produit.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS,
DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT

http://java.sun.com/products/jlf/dg/notice.html (1 sur 2) [05/06/2000 14:19:03]

http://java.sun.com/

Java Look and Feel Design Guidelines

EXCLUES DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS R
NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A
L'APTITUDE A UNE UTILISATION PARTICULERE OU A L'ABSENCE DE CONTREFACON.

java.sun.com : Design Guidelines

http://java.sun.com/products/jlf/dg/notice.html (2 sur 2) [05/06/2000 14:19:03]

http://java.sun.com/

	sun.com
	Java Look and Feel Design Guidelines
	Design Guidelines: Preface
	Design Guidelines: Colophon
	Design Guidelines: Contents
	Design Guidelines: Index
	Design Guidelines: Glossary
	Design Guidelines: Contents
	Design Guidelines: The Java Look and Feel
	Design Guidelines: The Java Foundation Classes
	Design Guidelines: Design Considerations
	Design Guidelines: Visual Design
	Design Guidelines: Application Graphics
	Design Guidelines: Behavior
	Design Guidelines: Windows, Panes, and Frames
	Design Guidelines: Dialog Boxes
	Design Guidelines: Menus and Toolbars
	Design Guidelines: Basic Controls
	Design Guidelines: Text Components
	Design Guidelines: Lists, Tables, and Trees
	Design Guidelines: Keyboard Nav., Activation, and Selection
	Design Guidelines: Errata
	Java Look and Feel Design Guidelines

