

Frames version | No frames version | Reader Feedback

Version 1.0.2 December 1999
Sun Microsystems, Inc.
901 San Antonio Road, Palo Alto, CA 94303 USA, 650 960-1300
Copyright© 1999 Sun Microsystems, Inc. All Rights Reserved.
Terms of Use | Privacy Policy.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Java Look and Feel Design Guidelines

http://java.sun.com/products/jlf/dg/higtitle.alt.htm [05/06/2000 14:11:49]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/products/jlf/dg/index.htm
mailto:jlfguide@sun.com?subject=JLFDG%201.0.1%20Feedback
http://www.sun.com/
http://www.sun.com/share/text/SMICopyright.html
http://www.sun.com/privacy/
http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/products/jlf/dg/search.html

Preface
Java Look and Feel Design Guidelines provides essential information for anyone involved in
creating cross-platform applications and applets in the JavaTM programming language. In
particular, this book offers design guidelines for software that uses the JavaTM Foundation Classes
(JFC) together with the Java look and feel.

Who Should Use This Book
Although the human interface designer and the software developer might well be the same person,
the two jobs require different tasks, skills, and tools. Primarily, this book addresses the designer
who chooses the interface components, lays them out in a set of views, and designs the user
interaction model for an application. (Unless specified otherwise, this book uses "application" to
refer to both applets and applications.) This book should also prove useful for developers,
technical writers, graphic artists, production and marketing specialists, and testers who participate
in the creation of Java applications and applets.

Java Look and Feel Design Guidelines focuses on design issues and human-computer interaction
in the context of the Java look and feel. It also attempts to provide a common vocabulary for
designers, developers, and other professionals. If you require more information about technical
aspects of the Java Foundation Classes, visit the Java Technology and Swing Connection web
sites at http://java.sun.com and http://java.sun.com/products/jfc.

The guidelines provided in this book are appropriate for applications and applets that run on
personal computers and network computers. They do not address the needs of software that runs
on consumer electronic devices.

What Is in This Book
Java Look and Feel Design Guidelines includes the following chapters:

Chapter 1, "The Java Look and Feel," introduces key design concepts and visual elements
underlying the Java look and feel and offers a quick visual tour of an application and an applet
designed with the JFC components and the Java look and feel.

Chapter 2, "The Java Foundation Classes,"provides an overview of the JavaTM Development
Kit and the Java Foundation Classes, introduces the JFC components, discusses the concept of
pluggable look and feel designs, and describes the currently available look and feel options.

Chapter 3, "Design Considerations," discusses some of the fundamental challenges of
designing Java look and feel applications and applets and of providing for accessibility,
internationalization, and localization.

Chapter 4, "Visual Design," suggests ways to use the Java look and feel theme mechanism to
change colors and fonts, provides guidelines for the capitalization of text in the interface, and
gives recommendations for layout and visual alignment.

Design Guidelines: Preface

http://java.sun.com/products/jlf/dg/higa.htm (1 sur 8) [05/06/2000 14:15:51]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/
http://java.sun.com/products/jfc

Chapter 5, "Application Graphics," discusses the use of cross-platform color, the creation of
graphics that suit the Java look and feel, and the use of graphics to enhance corporate and product
identity.

Chapter 6, "Behavior," tells how users of Java look and feel applications utilize the mouse,
keyboard, and screen and provides guidelines regarding user input and human-computer
interaction, including drag-and-drop operations.

Chapter 7, "Windows, Panes, and Frames," discusses and makes recommendations for the use
of primary, secondary, plain, and utility windows as well as panels, scroll panes, tabbed panes,
split panes, and internal frames.

Chapter 8, "Dialog Boxes," describes dialog boxes and alert boxes, sets standards for dialog box
design, and provides examples of typical dialog boxes in Java look and feel applications.

Chapter 9, "Menus and Toolbars," defines and gives guidelines for the use of drop-down
menus, contextual menus, toolbars, and tool tips and provides examples of typical menus in Java
look and feel applications.

Chapter 10, "Basic Controls," covers the use of controls such as command buttons, toggle
buttons, checkboxes, radio buttons, sliders, and combo boxes; it also describes progress bars and
provides suggestions for their use.

Chapter 11, "Text Components," explains and makes recommendations for the use of the JFC
components that control the display and editing of text: labels, text fields, text areas, and editor
panes.

Chapter 12, "Lists, Tables, and Trees," discusses and makes recommendations for the use of
lists, tables, and tree views.

Appendix A, "Keyboard Navigation, Activation, and Selection," contains tables that specify
keyboard operations for the components of the Java Foundation Classes.

Glossary defines important words and phrases found in this book. Glossary terms appear in
boldface throughout the book.

What Is Not in This Book
This book does not provide detailed discussions of human interface design principles or the
design process, nor does it present much general information about usability testing.

For authoritative explications of human interface design principles and the design process, see
Macintosh Human Interface Guidelines.

For the classic book on usability testing, see Jakob Nielsen's Usability Engineering.

For details on both of these valuable resources, see Related Books and Web Sites.

Graphic Conventions
Screen shots in this book illustrate the use of JFC components in applications with the Java look
and feel. Because such applications typically run inside windows provided and managed by the
native platform, the screen shots show assorted styles of windows and dialog boxes from the
Microsoft Windows, Macintosh, and CDE (Common Desktop Environment) platforms.

Design Guidelines: Preface

http://java.sun.com/products/jlf/dg/higa.htm (2 sur 8) [05/06/2000 14:15:51]

Throughout the text, symbols are used to call your attention to design guidelines. Each type of
guideline is identified by a unique symbol.

Java Look and Feel Standards

Requirements for the consistent appearance and compatible behavior of Java look and
feel applications.

Java look and feel standards promote flexibility and ease of use in cross-platform
applications and support the creation of applications that are accessible to all users,
including users with physical and cognitive limitations. These standards require you to
take actions that go beyond the provided appearance and behavior of the JFC
components.

Occasionally, you might need to violate these standards. In such situations, use your
discretion to balance competing requirements. Be sure to engage in user testing to
validate your judgments.

Cross-Platform Delivery Guidelines

Recommendations for dealing with colors, fonts, keyboard operations, and other issues
that arise when you want to deliver your application to a variety of computers running a
range of operating systems.

Internationalization Guidelines

Advice for creating applications that can be adapted to the global marketplace.

Implementation Tips

Technical information and useful tips of particular interest to the programmers who are
implementing your application design.

Related Books and Web Sites
Many excellent references are available on topics such as fundamental principles of human
interface design, design issues for specific (or multiple) platforms, and issues relating to
accessibility, internationalization, and applet design.

Design Principles
The resources in this section provide information on the fundamental concepts underlying
human-computer interaction and interface design.

Design Guidelines: Preface

http://java.sun.com/products/jlf/dg/higa.htm (3 sur 8) [05/06/2000 14:15:51]

Baecker, Ronald M., William Buxton, and Jonathan Grudin, eds. Readings in Human-Computer
Interaction: Toward the Year 2000, 2d ed. Morgan Kaufman, 1995. Based on research from
graphic and industrial design and studies of cognition and group process, this volume addresses
the efficiency and adequacy of human interfaces.

Hurlburt, Allen. The Grid: A Modular System for the Design and Production of Newspapers,
Magazines, and Books. John Wiley & Sons, 1997. This is an excellent starting text. Although
originally intended for print design, this book contains many guidelines that are applicable to
software design.

IBM Human-Computer Interaction Group. "IBM Ease of Use." Available:
http://www.ibm.com/ibm/easy. This web site covers many fundamental aspects of human
interface design.

Laurel, Brenda, ed. Art of Human-Computer Interface Design. Addison-Wesley, 1990. Begun as a
project inside Apple, this collection of essays explores the reasoning behind human-computer
interaction and looks at the future of the relationship between humans and computers.

Mullet, Kevin, and Darrell Sano. Designing Visual Interfaces: Communication Oriented
Techniques. Prentice Hall, 1995. This volume covers fundamental design principles, common
mistakes, and step-by-step techniques for handling the visual aspects of interface design.

Nielsen, Jakob. Usability Engineering. AP Professional, 1994. This classic covers international
user interfaces (including gestural interfaces), international usability engineering, guidelines for
internationalization, resource separation, and interfaces for more than one locale.

Norman, Donald A. The Design of Everyday Things. Doubleday, 1990. A well-liked, amusing,
and discerning examination of why some products satisfy while others only baffle or disappoint.
Photographs and illustrations throughout complement the analysis of psychology and design.

Shneiderman, Ben. Designing the User Interface: Strategies for Effective Human-Computer
Interaction, 3d ed. Addison-Wesley, 1997. The third edition of this best-seller adds new chapters
on the World Wide Web, information visualization, and cooperative work and expands earlier
work on development methodologies, evaluation techniques, and tools for building user
interfaces.

Tognazzini, Bruce. Tog On Interface. Addison-Wesley, 1992. Based on a human interface column
that Tognazzini wrote for Apple developers, this book delves into the pivotal challenges of user
interface design, including the difficulties inherent in multimedia software.

Tufte, Edward R. Envisioning Information. Graphics Press, 1990. One of the best books on
graphic design, this volume catalogues instances of superb information design (with an emphasis
on maps and cartography) and analyzes the concepts behind their implementation.

Tufte, Edward R. The Visual Display of Quantitative Information. Graphics Press, 1992. Tufte
explores the presentation of statistical information in charts and graphs with apt graphical
examples and elegantly interwoven text.

Tufte, Edward R. Visual Explanations: Images and Quantities, Evidence and Narrative. Graphics
Press, 1997. The third volume in Tufte's series on information display focuses on data that
changes over time. Tufte explores the depiction of action and cause and effect through such
examples as the explosion of the space shuttle Challenger, magic tricks, and a cholera epidemic in
19th-century London.

Design for Specific Platforms
The resources in this section cover application design for the CDE, IBM, Java, Macintosh, and

Design Guidelines: Preface

http://java.sun.com/products/jlf/dg/higa.htm (4 sur 8) [05/06/2000 14:15:51]

http://www.ibm.com/ibm/easy

Microsoft Windows platforms.

CDE

Three volumes address the needs of designers and related professionals creating applications
using CDE and Motif 2.1.

The Open Group, 1997. CDE 2.1/Motif 2.1--Style Guide and Glossary.

The Open Group, 1997. CDE 2.1/Motif 2.1--Style Guide Reference.

The Open Group, 1997. CDE 2.1/Motif 2.1--Style Guide Certification Check List.

They can be ordered from the Open Group at
http://www.opengroup.org/public/pubs/catalog/mo.htm.

IBM

Object-Oriented Interface Design: IBM Common User Access Guidelines. Que Corp, 1992.
Available: http://www.ibm.com/ibm/hci/guidelines/design/ui_design.html. This book is out of
print but available from most or all IBM branch offices. A small portion of the printed book is
intertwined with a modest amount of more current material at this IBM web site.

Java

Campione, Mary, and Kathy Walrath. The Java Tutorial: Object-Oriented Programming for the
Internet, 2d ed. Addison-Wesley, 1998. Full of examples, this task-oriented book introduces you
to fundamental Java concepts and applications. Walrath and Campione describe the Java
language, applet construction, and the fundamental Java classes and cover the use of multiple
threads and networking features.

Campione, Mary, et al. The Java Tutorial Continued: The Rest of the JDK. Addison-Wesley,
1998. The experts describe features added to the original core Java platform with many
self-paced, hands-on examples. The book focuses on Java 2 APIs but also contains the
information you need to use the JDK 1.1 versions of the APIs.

Chan, Patrick. The Java Developer's Almanac, 1999. Addison-Wesley, 1999. Organized to
increase programming performance and speed, this book provides a quick but comprehensive
reference to the JavaTM 2 Platform, Standard Edition, v. 1.2.

Eckstein, Robert, Mark Loy, and Dave Wood. Java Swing. O'Reilly & Associates, 1998. An
excellent introduction to the Swing components, this book documents the Swing and Accessibility
application programming interfaces. An especially useful chapter explains how to create a custom
look and feel.

Geary, David M. Graphic Java 2: Mastering the JFC. Volume 2, Swing. Prentice Hall, 1998. This
comprehensive volume describes the skills needed to build professional, cross-platform
applications that take full advantage of the Java Foundation Classes. The volume includes
chapters on drag and drop, graphics, colors and fonts, image manipulation, double buffering,
sprite animation, and clipboard and data transfer.

Sun Microsystems, Inc. Java 2 Platform API Specification. Available:
http://java.sun.com/products/jdk/1.2/docs/api/overview-summary.html. This web site provides
up-to-date technical documentation on the Java 2 API.

Design Guidelines: Preface

http://java.sun.com/products/jlf/dg/higa.htm (5 sur 8) [05/06/2000 14:15:51]

http://www.opengroup.org/public/pubs/catalog/mo.htm
http://www.ibm.com/ibm/hci/guidelines/design/ui_design.html
http://java.sun.com/products/jdk/1.2/docs/api/overview-summary.html

Sun Microsystems, Inc. Java Look and Feel Design Guidelines. Available:
http://java.sun.com/products/jlf. This web site contains an HTML version of this book.

Sun Microsystems, Inc. The Java Tutorial: A Practical Guide for Programmers. Available:
http://java.sun.com/docs/books/tutorial/index.html. This web site is divided into four trails: a
getting started trail for those new to the Java language; a trail introducing the Java language with
sections on writing applets, the essential Java classes, creating a GUI, and custom networking; a
specialized trail addressing such topics as internationalization, 2D graphics, and security; and a
trail providing a comprehensive example.

Topley, Kim. Core Java Foundation Classes. Prentice Hall Computer Books, 1998. Topley
explains how to build basic Swing applications, with an emphasis on layout managers and basic
graphics programming. The book also describes the creation of multiple document interface
(MDI) applications.

Walker, Will. "The Multiplexing Look and Feel." Available:
http://java.sun.com/products/jfc/tsc/archive/archive.html. This article describes a special look and
feel that provides a way to extend the features of a Swing GUI without having to create a new
look and feel design. Walker describes an example application that can simultaneously provide
audio output, Braille output, and the standard visual output of ordinary Swing applications.

Macintosh

Apple Computer, Inc. Macintosh Human Interface Guidelines. Addison-Wesley, 1992. This
volume is the official word on Macintosh user interface principles. It includes a superb
bibliography with titles on animation, cognitive psychology, color, environmental design, graphic
and information design, human-computer design and interaction, language, accessibility, visual
thinking, and internationalization.

Apple Computer, Inc. Mac OS 8 Human Interface Guidelines. Available:
http://developer.apple.com/techpubs/mac/HIGOS8Guide/thig-2.html. This site offers a
supplement to Macintosh Human Interface Guidelines.

Microsoft Windows

Windows Interface Guidelines for Software Design. Microsoft Press, 1995. Available:
http://msdn.microsoft.com/library/. The official book on Microsoft interface design contains
specifications and guidelines for designers who would like to enhance the usability of their
programs. These guidelines are available in print, and a modest portion of them is on the World
Wide Web. You can download an addendum to the book from
http://msdn.microsoft.com/developer/userexperience/winuiguide.asp.

Design for Multiple Platforms
The books in this section discuss the complex issues that arise when designing software that runs
on many platforms.

McFarland, Alan, and Tom Dayton (with others). Design Guide for Multiplatform Graphical User
Interfaces (LP-R13). Bellcore, 1995. (Available only from Bellcore. Call 800-521-2673 from US
& Canada, +1-908-699-5800 from elsewhere.) This is an object-oriented style guide with
extensive guidelines and a good explanation of object-oriented user interface style from the user's
perspective.

Design Guidelines: Preface

http://java.sun.com/products/jlf/dg/higa.htm (6 sur 8) [05/06/2000 14:15:51]

http://java.sun.com/products/jlf
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/products/jfc/tsc/archive/archive.html
http://developer.apple.com/techpubs/mac/HIGOS8Guide/thig-2.html
http://msdn.microsoft.com/library/
http://msdn.microsoft.com/developer/userexperience/winuiguide.asp

Marcus, Aaron, Nick Smilonich, and Lynne Thompson. The Cross-GUI Handbook: For
Multiplatform User Interface Design. Addison-Wesley, 1995. This source describes the graphical
user interfaces of Microsoft Windows and Windows NT, OSF/Motif, NeXTSTEP, IBM OS/2, and
Apple Macintosh. The text includes design guidelines for portability and migration and
recommendations for handling contradictory or inadequate human interface guidelines.

Design for Internationalization
The books in this section describe software design for the global marketplace.

Fernandes, Tony. Global Interface Design: A Guide to Designing International User Interfaces.
AP Professional, 1995. Fernandes addresses developers of Internet software designed for a global
market. He explains cultural differences, languages and their variations, taboos, aesthetics,
ergonomic standards, and other issues designers must research and understand.

Guide to Macintosh Software Localization. Addison-Wesley, 1992. A thorough and thoughtful
discussion of the internationalization and localization processes that should prove helpful for
developers on any platform.

Kano, Nadine. Developing International Software for Windows 95 and Windows NT. Microsoft
Press, 1993. Kano targets Microsoft's guidelines for creating international software to an audience
with knowledge of Microsoft Windows coding techniques and C++. The work contains
information on punctuation, sort orders, locale-specific code-page data, DBCS/Unicode mapping
tables, and multilingual API functions and structures.

Luong, Tuoc V., James S.H. Lok, and Kevin Driscoll. Internationalization: Developing Software
for Global Markets. John Wiley & Sons, 1995. The Borland internationalization team describes
its procedures and methods with a focus on testing and quality assurance for translated software.
This hands-on guide tells how to produce software that runs anywhere in the world without
requiring expensive recompiling of source code.

Nielsen, Jakob, and Elisa M. Del Galdo, eds. International User Interfaces. John Wiley & Sons,
1996. This book discusses what user interfaces can and must do to become commercially viable in
the global marketplace. Contributors discuss issues such as international usability engineering,
cultural models, multiple-language documents, and multilingual machine translation.

O'Donnell, Sandra Martin. Programming for the World: A Guide to Internationalization. Prentice
Hall, 1994. This theoretical handbook explains how to modify computer systems to accommodate
the needs of international users. O'Donnell describes many linguistic and cultural conventions
used throughout the world and discusses how to design with the flexibility needed for the global
marketplace.

Uren, Emmanuel, Robert Howard, and Tiziana Perinotti. Software Internationalization and
Localization: An Introduction. Van Nostrand Reinhold, 1993. This guide to software adaptation
encourages developers to aim at producing localized software with the same capabilities as the
original software while meeting local requirements and conventions.

Design for Accessibility
These resources explore how to design software that supports all users, including those with
physical and cognitive limitations.

Bergman, Eric, and Earl Johnson. "Towards Accessible Human Interaction." In Advances in
Human-Computer Interaction, edited by Jakob Nielsen, vol. 5. Ablex Publishing, 1995.
Available:

Design Guidelines: Preface

http://java.sun.com/products/jlf/dg/higa.htm (7 sur 8) [05/06/2000 14:15:51]

http://www.sun.com/tech/access/updt.HCI.advance.html. This article discusses the relevance of
accessibility to human interface designers and explores the process of designing for ranges of user
capabilities. It provides design guidelines for accommodating physical disabilities such as
repetitive strain injuries (RSI), low vision, blindness, and hearing impairment. It also contains an
excellent list of additional sources on accessibility issues.

Schwerdtfeger, Richard S. IBM Guidelines for Writing Accessible Applications Using 100% Pure
Java. IBM Corporation, 1998. Available:
http://www.austin.ibm.com/sns/access.html. This web site presents principles of accessibility, a
checklist for software accessibility, and a list of references and resources. In addition, it provides
discussions of accessibility for the web and for Java applications.

Schwerdtfeger, Richard S. Making the GUI Talk. BYTE, 1991. Available:
ftp://ftp.software.ibm.com/sns/sr-os2/sr2doc/guitalk.txt. This speech deals with off-screen model
technology and GUI screen readers.

Sun Microsystems, Inc. Accessibility Quick Reference Guide. Available:
http://www.sun.com/tech/access/access.quick.ref.html. This site defines accessibility, lists steps to
check and double-check your product for accessibility, and offers tips for making applications
more accessible.

Sun Microsystems, Inc. "Enabling Technologies." Available:
http://www.sun.com/access. This web site includes a primer on the Java platform and accessibility
and describes the support for assistive technologies now provided by the Swing components of
the Java Foundation Classes.

Design for Applets
These books provide a range of information on designing applets.

Gulbransen, David, Kenrick Rawlings, and John December. Creating Web Applets With Java.
Sams Publishing, 1996. An introduction to Java applets, this book addresses nonprogrammers
who want to incorporate preprogrammed Java applets into web pages.

Hopson, K.C., Stephen E. Ingram, and Patrick Chan. Designing Professional Java Applets. Sams
Publishing, 1996. An advanced reference to developing Java applets for business, science, and
research.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: Preface

http://java.sun.com/products/jlf/dg/higa.htm (8 sur 8) [05/06/2000 14:15:51]

http://www.sun.com/tech/access/updt.HCI.advance.html
http://www.austin.ibm.com/sns/access.html
ftp://ftp.software.ibm.com/sns/sr-os2/sr2doc/guitalk.txt
http://www.sun.com/tech/access/access.quick.ref.html
http://www.sun.com/access
http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Colophon
LEAD WRITER
Patria Brown

WRITERS
Patria Brown, Gail Chappell

LEAD HUMAN INTERFACE DESIGNER
Don Gentner

JAVA LOOK AND FEEL CREATOR
Chris Ryan

MANAGING EDITOR
Sue Factor

GRAPHIC DESIGNER
Gary Ashcavai

ILLUSTRATORS
Gary Ashcavai, Don Gentner, Chris Ryan

PRODUCTION EDITOR
Bob Silva

PRODUCT MARKETING MANAGER
Christine Bodo

MANAGEMENT TEAM
Laine Yerga, Lynn Weaver, Rob Patten

GUIDELINE CONTRIBUTORS
Don Gentner, Chris Ryan, Michael C. Albers, Brian Beck, David-John Burrowes, Carola Fellenz,
Robin Jeffries, Earl Johnson, Jeff Shapiro, Dena Shumila

Special thanks to Jonathan Schwartz
and the Enterprise Products Group in Java Software

Grateful acknowledgments to Ruth Anderson, Maria Capucciati, Tom Dayton, Martine
Freiberger, Janice Gelb, Dale Green, Mary Hamilton, George Kaempf, Andrea Mankoski, Anant
Kartik Mithal, Moggy ODonovan, Ray Ryan, Scott Ryder, Tom Santos, the Swing Team, Harry
Vertelney, Willie Walker, Steve Wilson, and all our internal and external reviewers

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: Colophon

http://java.sun.com/products/jlf/dg/colophon.htm [05/06/2000 14:12:03]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/products/jlf/dg/search.html

A-Z (Index)

Title Page (Home)

Contents

Preface

Part I: Overview

1: The Java Look and Feel
Fundamentals of the Java Look and Feel
Visual Tour of the Java Look and Feel
 MetalEdit Application
 Retirement Savings Calculator Applet

2: The Java Foundation Classes
Java Development Kit
 Java Foundation Classes
 JDK 1.1 and the Java 2 SDK
 Support for Accessibility
 Support for Internationalization
User Interface Components of the Java Foundation Classes
 Pluggable Look and Feel Architecture
 Example Model and Interface
 Client Properties
 Major JFC User Interface Components
Look and Feel Options
 Java Look and Feel--the Recommended Design
 Alternative Approaches
 Supplied Designs

Part II: Fundamental Java
Application Design

3: Design Considerations
Choosing an Application or an Applet
 Distribution
 Security Issues
 Placement of Applets
Designing for Accessibility
 Benefits of Accessibility
 Accessible Design
Planning for Internationalization and Localization
 Benefits of Global Planning
 Global Design

4: Visual Design
Themes
 Colors
 Fonts
Capitalization of Text in the Interface
 Headline Capitalization in English
 Sentence Capitalization in English
Layout and Visual Alignment
 Between-Component Padding and Spacing Guidelines
 Design Grids
 Titled Borders for Panels
 Text Layout

Design Guidelines: Contents

http://java.sun.com/products/jlf/dg/higtoc.htm (1 sur 5) [05/06/2000 14:11:30]

Animation
 Progress and Delay Indication
 System Status Animation

5: Application Graphics
Working With Cross-Platform Color
 Working With Available Colors
 Choosing Graphic File Formats
 Choosing Colors
 Maximizing Color Quality
Designing Graphics in the Java Look and Feel Style
Designing Icons
 Working With Icon Styles
 Drawing Icons
Designing Button Graphics
 Using Button Graphic Styles
 Producing the Flush 3D Effect
 Working With Button Borders
 Determining the Primary Drawing Area
 Drawing the Button Graphic
Designing Symbols
Designing Graphics for Corporate and Product Identity
 Designing Installation Screens
 Designing Splash Screens
 Designing Login Splash Screens
 Designing About Boxes

6: Behavior
Mouse Operations
 Pointer Feedback
 Mouse-over Feedback
 Clicking and Selecting Objects
 Displaying Contextual Menus
Drag-and-Drop Operations
 Typical Drag and Drop
 Pointer and Destination Feedback
Keyboard Operations
 Keyboard Focus
 Keyboard Navigation and Activation
 Keyboard Shortcuts
 Mnemonics

Part III: The Components of the
Java Foundation Classes

7: Windows, Panes, and Frames
Anatomy of a Primary Window
Constructing Windows
 Primary Windows
 Secondary Windows
 Plain Windows
 Utility Windows
Organizing Windows
 Panels
 Scroll Panes
 Tabbed Panes
 Split Panes
Working With Multiple Document Interfaces
 Internal Frames

Design Guidelines: Contents

http://java.sun.com/products/jlf/dg/higtoc.htm (2 sur 5) [05/06/2000 14:11:30]

 Palettes

8: Dialog Boxes
Modal and Modeless Dialog Boxes
Dialog Box Design
 Tab Traversal Order
 Spacing in Dialog Boxes
 Command Buttons in Dialog Boxes
 Default Command Buttons
Common Dialog Boxes
 Find Dialog Boxes
 Login Dialog Boxes
 Preferences Dialog Boxes
 Print Dialog Boxes
 Progress Dialog Boxes
Alert Boxes
 Info Alert Boxes
 Warning Alert Boxes
 Error Alert Boxes
 Question Alert Boxes
Color Choosers

9: Menus and Toolbars
Menu Elements
 Menu Bars
 Drop-down Menus
 Submenus
 Menu Items
 Checkbox Menu Items
 Radio Button Menu Items
 Separators
Common Menus
 Typical File Menu
 Object Menu
 Typical Edit Menu
 Typical Format Menu
 View Menu
 Typical Help Menu
Contextual Menus
Toolbars
 Toolbar Placement
 Draggable Toolbars
 Toolbar Buttons
Tool Tips

10: Basic Controls
Command Buttons
 Default Command Buttons
 Combining Graphics With Text in Command Buttons
 Using Ellipses in Command Buttons
 Command Button Spacing
 Command Button Padding
Toggle Buttons
 Independent Choice
 Exclusive Choice
Checkboxes
 Checkbox Spacing

Design Guidelines: Contents

http://java.sun.com/products/jlf/dg/higtoc.htm (3 sur 5) [05/06/2000 14:11:30]

Radio Buttons
 Radio Button Spacing
Combo Boxes
 Noneditable Combo Boxes
 Editable Combo Boxes
Sliders
Progress Bars

11: Text Components
Labels
 Labels That Identify Controls
 Labels That Communicate Status and Other Information
Text Fields
 Noneditable Text Fields
 Editable Text Fields
Password Fields
Text Areas
Editor Panes
 Default Editor Kit
 Styled Text Editor Kit
 RTF Editor Kit
 HTML Editor Kit

12: Lists, Tables, and Trees
Lists
 Scrolling
 Selection Models for Lists
Tables
 Table Appearance
 Table Scrolling
 Column Reordering
 Column Resizing
 Row Sorting
 Selection Models for Tables
Tree Views
 Lines in Tree Views
 Graphics in Tree Views
 Editing in Tree Views

Appendix A: Keyboard Navigation, Activation, and Selection
Checkboxes
Combo Boxes
Command Buttons
Desktop Panes and Internal Frames
Dialog Boxes
HTML Editor Kits
Lists
Menus
Radio Buttons
Scrollbars
Sliders
Split Panes
Tabbed Panes
Tables
Text Areas and Default and Styled Text Editor Kits
Text Fields
Toggle Buttons
Tool Tips

Design Guidelines: Contents

http://java.sun.com/products/jlf/dg/higtoc.htm (4 sur 5) [05/06/2000 14:11:30]

Toolbars
Tree Views

Glossary

Index

Errata

Colophon

Search

Java Look and Feel Design Guidelines. Copyright 1999. Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: Contents

http://java.sun.com/products/jlf/dg/higtoc.htm (5 sur 5) [05/06/2000 14:11:30]

http://java.sun.com/products/jlf/dg/search.html

Index
A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V |
W-Y | Z

Numerals

8-bit colors, 58-62

256-color displays, 58-62

Return to the top of this page.

A

About Application item (Help menu), 139

About boxes, 76

Abstract Window Toolkit (AWT), 16

accelerator keys. See keyboard shortcuts

access keys. See mnemonics

accessibility, 30-32

ease of use and, 30

JFC support for, 16-17

keyboard focus and, 32, 83-85

mnemonics and, 31-32, 88-90

multiplexing look and feel, xxv

recommended reading, xxvii-xxviii

tab traversal and, 32, 114

usability tests for, 32

active components, spacing of, 48-49

active windows

color design for borders, 40, 43

example, 5

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (1 sur 28) [05/06/2000 14:11:45]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

alert boxes, 122-126

See also dialog boxes

capitalization of text in, 47

Error, 124-125

Info, 123

keyboard operations for, 194

platform-specific examples, 10

Question, 125-126

Warning, 10, 124

alignment. See spacing and alignment

Alt key, 82, 88-89

animation, 54-55

See also mouse-over feedback

applets, 27-29

browser windows and, 29

examples, 5, 10-12

JFC downloads with, 28

menus in, 29

mnemonics in, 29

recommended reading, xxviii

security issues, 28-29

application graphics, 57-76

See also button graphics; colors; icons

About boxes, 76

corporate and product identity and, 73-76

GIF files and, 58-59

installation screens, 73

internationalization, 36, 62

Java look and feel style, 62

JPEG files and, 58, 73

splash screens, 73-75

symbols, 72

tree views, 189

application windows. See primary windows

applications, compared with applets, xix, 5, 27-29

Apply button, 118

arrow keys, 82, 85, 86, 191

arrows. See arrow keys; indicators; scroll arrows

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (2 sur 28) [05/06/2000 14:11:45]

assistive technologies, 16-17, 31

See also accessibility

audience, xix

Return to the top of this page.

B

background canvas, color design for, 41, 43

Backspace key, 82

behavioral design, 77-90

bibliography, xxii-xxviii

bit depth, 58

black, use in Java look and feel, 40, 42, 43, 44

blinking. See animation

blues, use in Java look and feel, 40-41, 43

borders

in button graphics, 68, 143-144

color design for, 43

in icons, 64

boxes. See About boxes; alert boxes; checkboxes; combo boxes; dialog boxes

branding, for products, 73-76

browser windows, 5, 10-13, 29

button controls, 147, 148-156

See also button graphics; checkboxes; command buttons; mouse buttons; radio buttons;
toggle buttons; toolbar buttons

button graphics, 66-72

See also spacing and alignment

borders in, 68, 143-144

drop-down arrows in, 144

use with text, 45, 142-143, 148, 150

Return to the top of this page.

C

Cancel button, 75, 116-117

capitalization, 46-47

cascading menus. See submenus

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (3 sur 28) [05/06/2000 14:11:45]

case-sensitivity, in user input, 159

CDE look and feel, 24

cells in tables, 176-177, 180-182

channels (for scrollbars), 103

checkbox menu items, 135

example, 7

keyboard operations for, 196

checkboxes, 154-155

example, 9

font design for, 45

keyboard operations for, 192

in menus, 7, 135

spacing of, 48-49, 154-155

text with, 46-47, 154

choosers, color, 126-127

choosing menu items, 133

clicking, 77-78

See also dragging

Control-clicking, 80

double-clicking, 77, 80

as selection technique, 80

Shift-clicking, 80

triple-clicking, 77, 80

client properties, 18

Close button, 76, 116

close controls, 98, 99, 109, 110

See also window controls

Close item (File menu), 98, 137

collapse box. See window controls

color choosers, 126-127

color model, 4, 39-44

colors, 39-44

See also application graphics

black, 40, 42, 43, 44

blues, 40-41, 43

cross-platform, 57-62

dithering, 58, 60-62

graphic file formats and, 58-59

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (4 sur 28) [05/06/2000 14:11:45]

grays, 40, 42, 43, 44, 60

Java look and feel model, 39-44

primary, 40-41, 43-44

redefining, 44

secondary, 40, 41-42, 43-44

table of Java look and feel colors, 43

web-safe, 58, 60

white, 40, 42, 43, 44

columns in tables

reordering, 177

resizing, 178-179

selecting, 184-186

combo boxes, 156-159

capitalization of text with, 46-47

defined, 147

editable, 158-159

example, 9

internationalization, 36

keyboard operations for, 192

noneditable, 157-158

command buttons, 148-150

See also button graphics; default command buttons; toolbar buttons

in alert boxes, 122-123

Apply, 118

Cancel, 75, 116-117

Close, 76, 116

color design for, 41

ellipsis mark in, 150

examples, 8, 9

font design for, 45

Help, 116

keyboard operations for, 193

OK, 116-117

Reset, 118

spacing of, 122-123, 143-144, 151

text with, 46, 142-143, 148, 149, 150-151

Command key, 87

commands, menu. See menu items

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (5 sur 28) [05/06/2000 14:11:45]

common menus, 136-139

company logos, 73-76

components, 17-18

spacing between, 47-53

specifying look and feel of, 23-24

table of major JFC components, 19-22

containers, 95-110

See also dialog boxes; windows

content panes, 104-106

contextual menus, 139-140

See also menus

defined, 129

displaying, 80-81

keyboard operations for, 196

Control key, 7, 80, 82-88, 191

control type style, in Java look and feel, 43, 45

controls, 147-161

See also checkboxes; command buttons; radio buttons; sliders; toggle buttons; window
controls

capitalization of text with, 46-47

in menus, 135-136

copyright information, 74, 76

corporate identity, graphics and, 73-76

crosshair pointers, 79

cross-platform colors, 57-62

See also colors

cross-platform delivery guidelines, defined, xxii

cursors. See pointers

Return to the top of this page.

D

data loss and alert boxes, 124

default colors, 40-43

See also colors

default command buttons, 149-150

See also command buttons

behavior of, 118-119

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (6 sur 28) [05/06/2000 14:11:45]

examples, 9, 10

mnemonics with, 113

default editor kit, 170, 200-201

default fonts, 45

default pointers, 79

delay feedback, 54-55, 121-122

Delete key, 82

design principles. See principles of design

desktop panes, 108-110, 112, 193-194

destination feedback, 82

dialog boxes, 111-127

See also command buttons; spacing and alignment; utility windows

capitalization of titles and text in, 47

command buttons in, 115-119

find, 120

initial keyboard focus in, 113

international considerations, 35

keyboard operations for, 194

login, 120

mnemonics in, 113

modes, 112

palette windows, 110

platform-specific examples, 8-9

preferences, 9, 113-114, 120-121

print, 121

progress, 54-55, 121-122

tab traversal in, 32, 114

titles for, 113

as top-level containers, 97-99

Dialog font, 45

dimmed text, color design for, 41, 43

disabilities. See accessibility

dithering, 58

in button graphics, 71

in icons, 65

prevention of, 60-62

dockable toolbars, 141-142

dots in menus. See ellipsis mark

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (7 sur 28) [05/06/2000 14:11:45]

double-clicking, 77, 80

downloading applets, 28

drag texture, 4, 8

drag-and-drop operations, 81-82

dragging

and dropping, 81-82

as selection technique, 77, 80

title bars, 109

toolbars, 141-142

drop-down arrows

See also indicators

for combo boxes, 156-158

for toolbar buttons, 144

drop-down menus, 131

See also menus

common, 136-139

defined, 129

displaying, 131

examples, 6-8

keyboard operations for, 196

titles of, 131

toolbar buttons and, 144

Return to the top of this page.

E

ease of use. See principles of design

Edit menu, 138

example, 7

keyboard shortcuts in, 88

mnemonics in, 90

editable combo boxes, 158-159

See also combo boxes

example, 9

in login splash screens, 75

editable text fields, 9, 167-168

editing

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (8 sur 28) [05/06/2000 14:11:45]

password fields, 169

selection techniques, 77, 80

tables, 177

text, 169-172

text fields, 167-168

tree views, 189

editor panes, 170-172

example, 8

keyboard operations for, 200-201

8-bit colors, 58-62

ellipsis mark

in command buttons, 150

in menu items, 134

End key, 82, 87

Enter key, 82, 86, 87, 149

Error alert boxes, 124-125

error messages, 47, 124-125

Escape key, 87, 89, 150

Exit item (File menu), 98, 137

Return to the top of this page.

F

Federal Rehabilitation Act, 30

feedback

animation and, 54-55

while dragging, 82

mouse-over, 79, 145

pointer style as, 54, 78, 82, 106

progress bars, 160-161

progress dialog boxes, 54-55, 121-122

system status, 55

Ferret utility tool, 31

fields. See password fields; text fields

File menu, 137

Close item in, 137

Exit item in, 137

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (9 sur 28) [05/06/2000 14:11:45]

keyboard shortcuts in, 88

mnemonics in, 90

Preferences item in, 134

find dialog boxes, 120

flush 3D effects

See also application graphics

button graphics and, 67, 70

component spacing and, 48-49

default theme and, 41, 43

example, 3

icons and, 63-64, 65

symbols and, 62

fonts

See also text

international considerations, 37

redefining, 45

table of default fonts, 45

Format menu, 7, 138

formatted text panes. See editor panes

formatting classes, 37

function keys, 82

Return to the top of this page.

G

GIF (Graphics Interchange Format), 58-59

glossary, 205-217

gradients

See also application graphics

in button graphics, 71-72

dithering added to, 61

in icons, 65

graphic conventions in this book, xxi-xxii

graphic file formats, 58-59

Graphics Interchange Format (GIF), 58-59

graphics. See application graphics; button graphics; colors

grays, use in Java look and feel, 40, 42, 43, 44, 60

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (10 sur 28) [05/06/2000 14:11:45]

grids, 49-51

Return to the top of this page.

H

hand pointers, 79

handicaps. See accessibility

headline capitalization style, 46-47

Help button, 116

Help menu, 139

About Application item in, 139

mnemonics in, 90

help messages, capitalization of, 47

hierarchical menus. See submenus

highlighting, color design for, 43

Home key, 82, 87

HTML banners, 10-11

HTML editor kits, 172, 194, 200-201

human interface principles. See principles of design

Return to the top of this page.

I

I-beam pointer. See text pointers

icons, 63-66

See also application graphics

borders in, 64

capitalization of text with, 46-47

internationalization, 36, 62

selection, 77, 80

implementation tips, defined, xxii

inactive components, spacing of, 48-49

inactive menu items, color design for, 43

inactive windows

color design for, 41, 43

example, 5

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (11 sur 28) [05/06/2000 14:11:45]

indicators

for combo boxes, 156-159

for submenus, 132

for toolbar buttons, 144

in tree views, 187

Info alert boxes, 123

informational symbols, 72

input focus. See keyboard focus

insertion point, 78, 80, 84

installation screens, 73

internal frames, 108-110

color design for, 40-41

keyboard operations for, 193-194

internationalization, 33-37

fonts and, 37

formatting classes and, 37

graphics and, 36, 62

JDK support for, 17

layout managers and, 35, 49

mnemonics and, 33, 36

placement of checkbox text, 154

placement of radio button text, 155

recommended reading, xxvi-xxvii

resource bundles and, 35, 164

scrollbars and, 104

Stop button and, 122

testing in different locales, 37

text handling and, 17, 35-37, 49, 52

internationalization guidelines, defined, xxii

Return to the top of this page.

J

JApplet component. See applets

Java 2 SDK, 15-16

Java 2D API, 16

Java Accessibility API, 16

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (12 sur 28) [05/06/2000 14:11:45]

See also accessibility

Java Accessibility Utilities, 16

Java applets. See applets

Java Development Kit (JDK), 15-16

Java Foundation Classes (JFC)

downloading with applets, 28

features of, 15-18

table of major JFC components, 19-22

Java look and feel

color model, 39-44

compared to other designs, 23-24

defined, 15

design fundamentals, 3-4

fonts in, 45

keyboard operations in, 82-90

mouse operations in, 77-82

visual tour of, 4-13

Java look and feel standards, defined, xxi

JavaHelp, 139

JButton component. See command buttons; toolbar buttons

JCheckbox component. See checkboxes

JCheckboxMenuItem component. See checkbox menu items

JColorChooser component. See color choosers

JComboBox component. See combo boxes

JDesktopPane component. See desktop panes

JDialog component. See dialog boxes

JDK (Java Development Kit), 15-16

JEditorPane component. See editor panes

JFC. See Java Foundation Classes

JFrame component. See primary windows

JInternalFrame component. See internal frames

JLabel component. See labels

JList component. See lists

JMenu component. See drop-down menus; submenus

JMenuBar component. See menu bars

JMenuItem component. See menu items

Joint Photographic Experts Group (JPEG), 58, 73

JOptionPane component. See alert boxes

JPanel component. See panels

JPasswordField component. See password fields

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (13 sur 28) [05/06/2000 14:11:45]

JPEG (Joint Photographic Experts Group), 58, 73

JPopupMenu component. See contextual menus

JProgressBar component. See progress bars

JRadioButton component. See radio buttons

JRadioButtonMenuItem component. See radio button menu items

JScrollBar component. See scrollbars

JScrollPane component. See scroll panes

JSeparator component. See separators

JSlider component. See sliders

JSplitPane component. See split panes

JTabbedPane component. See tabbed panes

JTable component. See tables

JTextArea component. See text areas

JTextField component. See text fields

JTextPane component. See editor panes

JToggleButton component. See toggle buttons

JToolBar component. See toolbars

JTooltip component. See tool tips

JTree component. See tree views

JWindow component. See plain windows

Return to the top of this page.

K

key bindings. See keyboard operations

keyboard focus, 83-85

accessibility and, 32, 83-85

defined, 83

keyboard navigation and activation. See keyboard operations

keyboard operations, 83-90

See also keyboard shortcuts; mnemonics

for navigation and activation, 85-87

tables of, 191-203

keyboard shortcuts, 87-88

See also keyboard operations; mnemonics

defined, 83

duplicates in contextual menus, 140

duplicates in toolbar buttons, 145

example, 7

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (14 sur 28) [05/06/2000 14:11:45]

font design for, 45

in tool tips, 144

style in menus, 88, 130

table of common sequences, 88

keys

Alt, 82, 88-89

arrow, 82, 85, 86, 191

Backspace, 82

Command, 87

Control, 7, 80, 82-88, 191

Delete, 82

End, 82, 87

Enter and Return, 82, 86, 87, 149

Escape, 87, 89, 150

function, 82

Home, 82, 87

Meta, 87

modifier, 82, 85-89

Option, 82

Page Down, 82, 86

Page Up, 82, 86

Shift, 80, 82, 85, 191

spacebar, 85, 87

Tab, 85, 86, 191

Return to the top of this page.

L

labels, 164-166

See also text

active and inactive, 165

capitalization of, 46-47

color design for, 40-41, 43

communicating status with, 166

example, 9

identifying controls with, 164-166

internationalization and, 52

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (15 sur 28) [05/06/2000 14:11:45]

mnemonics in, 166

spacing and alignment of, 52, 53, 165

layers. See containers

layout managers, 35, 49, 101

layout. See spacing and alignment

legal requirements

About boxes, 76

accessibility and, 30

splash screens, 75

list boxes. See combo boxes

lists, 173-175

keyboard operations for, 195

scrolling in, 174

selection in, 80, 174-175

localization, 33-37

See also internationalization

login dialog boxes, 120

login splash screens, 75

look and feel designs, 23-24

See also Java look and feel

lower-level containers, 101-108

See also panels; scroll panes; split panes; tabbed panes

Return to the top of this page.

M

Macintosh look and feel, 24

MDI (multiple document interface), 108-110, 112

menu bars, 130-131

in applets, 29

example, 6

keyboard operations for, 196

menu items, 132-136

See also keyboard shortcuts; menus; mnemonics

About Application (Help menu), 139

available and unavailable, 133

capitalization of, 46

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (16 sur 28) [05/06/2000 14:11:45]

checkbox, 135

choosing, 133

Close (File menu), 98, 137

color design for, 40-41, 42, 43, 130

ellipsis mark in, 134

example, 7

Exit (File menu), 98, 137

highlighted, 133

keyboard operations for, 196

Preferences (File menu), 134

radio button, 136

in submenus, 132

table of common keyboard shortcuts, 88

table of common mnemonics, 90

menu separators, 7, 134, 136

menu titles, 131

See also keyboard shortcuts; menu items; menus; mnemonics

capitalization of, 46

color design for, 40-41, 42, 43, 130

example, 6

font design for, 45

order of, 136

menus, 129-146

See also contextual menus; drop-down menus; keyboard shortcuts; menu bars; menu
items; menu titles; mnemonics; submenus

applets and, 29

choosing items, 133

color design for, 40-41, 42, 43, 130

common in Java look and feel, 136-139

displaying, 131

Edit, 7, 88, 90, 138

ellipsis mark in, 134

File, 88, 90, 134, 137

Format, 7, 138

Help, 90, 139

keyboard operations for, 196

Object, 137

order of, 136

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (17 sur 28) [05/06/2000 14:11:45]

separators, 7, 134, 136

types of, 129

View, 139

Meta key, 87

Metal. See Java look and feel

MetalEdit application, 5-10

Microsoft Windows look and feel, 24

MIME (Multipurpose Internet Mail Extensions), 82

minimized internal frames, 109-110, 193

minimized windows, example, 5

mnemonics, 88-90

See also keyboard operations; keyboard shortcuts

accessibility and, 31-32, 88-90

in applets, 29

defined, 83

in dialog boxes, 113

examples, 7, 9

international considerations, 33, 36

in labels, 9, 166

table of common assignments, 90

modal dialog boxes, 112

modeless dialog boxes, 112

models (in components), 17-18

modifier keys, 82, 85-89

See also keyboard shortcuts; mnemonics

mouse buttons, 77-78

mouse operations, 77-82

See also dragging

clicking, 77-78, 80

displaying contextual menus, 80-81

mouse-over feedback, 79, 145

move pointers, 79

multiplatform design, recommended reading, xxvi

multiple document interface (MDI), 108-110, 112

Return to the top of this page.

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (18 sur 28) [05/06/2000 14:11:45]

N

navigation, 85-87

See also keyboard shortcuts; mnemonics

accessibility considerations, 31, 32

between components, 191

tab traversal, 32, 114

tables of keyboard operations, 191-204

nested panes, 106, 107-108

nodes, in tree views, 187-188

noneditable combo boxes, 157-158

See also combo boxes

noneditable text fields, 167

See also text fields

Return to the top of this page.

O

Object menu, 137

OK button, 116-117

option buttons. See radio buttons

Option key, 82

Return to the top of this page.

P

padding. See spacing and alignment

Page Down key, 82, 86

Page Up key, 82, 86

palette windows, 110

See also dialog boxes

palettes, color, 58, 59, 60

See also color choosers; colors

panels, 51-52, 101

panes. See scroll panes; split panes; tabbed panes

password fields, 168-169

plain windows, 73-75, 99-100

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (19 sur 28) [05/06/2000 14:11:45]

platform-specific design, recommended reading, xxiv-xxvi

pluggable look and feel architecture, 17-18

See also Java look and feel

plug-in editor kits. See editor panes

pointers, 78-79

changing shape of, 54, 78, 82, 106

table of JDK types, 79

pop-up menus. See combo boxes; contextual menus

pop-up windows. See dialog boxes

posting menus, 131, 133

pre-dithered gradients, 60-61, 65, 71-72

See also application graphics

preferences dialog boxes, 9, 113-114, 120-121

Preferences item (File menu), 134

primary colors, in Java look and feel, 40-41, 43-44

primary windows, 95-98

See also windows

defined, 93

platform-specific examples, 5, 6

principles of design, 27-37

accessibility, 30-32

applets and, 28-29

internationalization and, 33-37

recommended reading, xxii-xxiii

print dialog boxes, 121

product names, 74, 76

progress bars, 160-161

color design for, 40-41

defined, 147

progress dialog boxes, 55, 121-122

progress feedback, 54, 121-122, 160-161

See also feedback

Return to the top of this page.

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (20 sur 28) [05/06/2000 14:11:45]

Q

Question alert boxes, 125-126

Quit. See Exit item

Return to the top of this page.

R

radio button menu items, 135-136

example, 7

keyboard operations for, 196

radio buttons, 155-156

capitalization of text with, 47

example, 9

keyboard operations for, 196

in menus, 135-136

spacing of, 156

reading order and localization, 35

recommended reading, xxii-xxviii

Reset button, 118

resize pointers, 79

resource bundles, 35, 164

Retirement Savings Calculator applet, 10-13

Return key, 82, 86, 87, 149

reverse video, 43

rollovers. See mouse-over feedback

rows in tables

selecting, 182-184

sorting, 179

RTF editor kit, 171

Return to the top of this page.

S

screen readers, 16

See also accessibility

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (21 sur 28) [05/06/2000 14:11:45]

scroll arrows, 103-104

scroll boxes, 102

color design for, 40-41

example, 8

scroll panes, 8, 102-103, 169-170

scrollbars, 102-104

example, 8

in lists, 174

in tables, 177

internationalization considerations, 104

keyboard operations for, 197

secondary colors, in Java look and feel, 40, 41-42, 43-44

secondary menus. See submenus

secondary windows, 93, 98-99

See also dialog boxes

security of information, in applets, 28-29

selection, 77, 80

of list items, 174-175

of table cells, 180-182

of table columns, 184-186

of table rows, 182-184

sentence capitalization style, 47

separators, 7, 134, 136

shadows, color design for, 41, 43

Shift key, 80, 82, 85, 191

shortcut keys. See keyboard shortcuts

shortcut menus. See contextual menus

sliders, 159-160

capitalization of text with, 47

defined, 147

drag texture in, 85

example, 12

keyboard operations for, 197

small type style, in Java look and feel, 43, 45

sorting order and localization, 37

spacebar, 85, 87

spacing and alignment, 47-53

in alert boxes, 122

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (22 sur 28) [05/06/2000 14:11:45]

inside button graphics, 66-72

of checkboxes, 48-49, 154-155

of command buttons, 122-123, 151

between components, 48-49

design grids and, 49-50

in dialog boxes, 50-51, 115

internationalization and, 49

of labels, 52, 53, 165

layout managers and, 35, 49, 101

of radio buttons, 156

of scrollbars, 103

in tables, 177

of text, 49, 52-53

of titled borders, 51-52

of toggle buttons, 152-153

of toolbar buttons, 143

splash screens, 73-75, 99-100

split panes, 106-108

drag texture in, 85

keyboard operations for, 198

splitter bars, 107

standard menus. See drop-down menus

Stop button, 122

styled text editor kit, 170-171, 200-201

submenus, 132

See also menus

defined, 129

keyboard operations for, 196

Swing. See Java Foundation Classes

symbols, 62

system colors, 59

system status feedback, 55

system type style, in Java look and feel, 43, 45

Return to the top of this page.

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (23 sur 28) [05/06/2000 14:11:45]

T

Tab key, 85, 86, 191

tab traversal, 32, 114

tabbed panes, 104-106

capitalization of tab names, 47

keyboard operations for, 198

tables, 176-186

cell background color, 176

editing cells, 177

example, 12

font design for, 45

format options, 177

keyboard operations for, 199-200

reordering columns, 177

resizing columns, 178-179

scrolling in, 177

selecting cells, 180-182

selecting columns, 184-186

selecting rows, 182-184

selection techniques in, 80

sorting rows, 179

text, 163-172

See also editor panes; fonts; labels; password fields; text areas; text fields

in buttons, 143, 149, 151

capitalization in interface, 46-47

color design for, 43

direction of, 17

internationalization and, 17, 34-37, 49, 52

selection, 77, 80

spacing and alignment, 49, 52-53

use in labels, 52

text areas, 169-170, 200-201

text fields, 167-168

capitalization of labels with, 47

in combo boxes, 158, 159

examples, 9, 12

font design for, 45

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (24 sur 28) [05/06/2000 14:11:45]

keyboard operations for, 202

in sliders, 160

text pointers, 79

themes, 23, 39-45

three-dimensional effects. See flush 3D effects

title bars

alert box examples, 10

capitalization of text in, 47

color design for, 41, 43

dialog box examples, 9

dragging, 109

window examples, 6

titled borders, 51-52

toggle buttons, 152-153

See also button graphics; command buttons; toolbar buttons

example, 8

keyboard operations for, 202

tool tips, 145-146

capitalization of, 47

font design for, 45

keyboard operations for, 203

timing of, 146

for toolbar buttons, 144

toolbar buttons, 142-145

See also button graphics; command buttons; toggle buttons

examples, 6, 8

graphics in, 66-67

with menus, 144

spacing of, 143

text in, 143

tool tips for, 143

toolbars, 140-145

docking, 141-142

examples, 6, 8

keyboard operations for, 203

spacing of buttons in, 143

tool tips for, 144

top-level containers, 97-100

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (25 sur 28) [05/06/2000 14:11:45]

See also dialog boxes; plain windows; primary windows; utility windows

trademarks, 74, 76

translating text, 34-36, 49, 52, 122

tree views, 187-189

font design for, 45

keyboard operations for, 203-204

triangles. See indicators

triple-clicking, 77, 80

turners, 187-188

type styles, in Java look and feel, 45

typography. See fonts; text

Return to the top of this page.

U

unavailable items in menus, 133

usability testing

accessibility issues, 32

internationalization, 37

user type style, in Java look and feel, 43, 45

utility windows, 100

defined, 93

keyboard operations for, 194

Return to the top of this page.

V

version numbers, in About box, 76

vertical spacing. See spacing and alignment

View menu, 139

visual design, 39-55

See also application graphics; spacing and alignment

visual identifiers, product, 74, 76

Return to the top of this page.

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (26 sur 28) [05/06/2000 14:11:45]

W-Y

wait pointers, 79

Warning alert boxes, 10, 124

warning symbols, 72

web. See applets

web-safe colors, 58, 60

white, use in Java look and feel, 40, 42, 43, 44

window controls

close controls, 98, 99, 109, 110

in internal frames, 108-109

in plain windows, 99-100

platform-specific examples, 6

in primary windows, 97-98

windows, 93-110

See also dialog boxes

active, 5, 40, 43

browser, 5, 10-13, 29

capitalization of titles, 47

color design for, 40-41, 43

frames and, 22

keyboard focus, 83

keyboard operations for, 193-194

in MDIs, 108-110

palette, 110

panels and panes in, 51-52, 101-108

plain, 73-75, 99-100

platform-specific examples, 5, 6

primary, 93, 95-98

secondary, 93, 98-99

as top-level containers, 97-100

utility, 93, 100

Windows. See Microsoft Windows look and feel

word order and localization, 36

word wrap, in text areas, 169-170

Return to the top of this page.

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (27 sur 28) [05/06/2000 14:11:45]

Z

zoom box. See window controls

zooming panes, 107

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: Index

http://java.sun.com/products/jlf/dg/higix.htm (28 sur 28) [05/06/2000 14:11:45]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Glossary
Abstract Window Toolkit The class library that provides the standard API for building

GUIs for Java programs. The Abstract Window Toolkit
(AWT) includes imaging tools, data transfer classes, GUI
components, containers for GUI components, an event
system for handling user and system events among parts of
the AWT, and layout managers for managing the size and
position of GUI components in platform-independent
designs. (The GUI components in the AWT are implemented
as native-platform versions of the components, and they have
largely been supplanted by the Swing components.) See also
Java Foundation Classes, Swing classes.

accessibility The degree to which software can be used comfortably by a
wide variety of people, including those who require assistive
technologies like screen magnifiers or voice recognition. An
accessible JFC application employs the Java Accessibility
API, enables its users to select an appropriate look and feel,
and provides keyboard operations for all actions that can be
carried out by use of the mouse. See also Java Accessibility
API, Java Accessibility Utilities, keyboard operations.

alert box A dialog box used by an application to convey a message or
warning or to gather information from the user. Four
standard alert boxes (Question, Info, Error, and Warning) are
supplied for JFC applications. Alert boxes are created using
the JOptionPane component. See also dialog box.

applet A program, written in the Java language, that a user can
interact with in a web browser. See also application.

application A program that combines all the functions necessary for a
user to accomplish a particular set of tasks (for instance,
word processing or inventory tracking). Unless stated
otherwise, this book uses "application" to refer to both
applets and standalone applications. See also applet.

assistive technology Hardware or software that helps people with disabilities use a
computer (or provides alternative means of use to all users).
Examples include pointing devices other than the mouse,
audio or text-only browsers, and screen readers that translate
the contents of the screen into Braille, voice output, or
audible cues.

AWT See Abstract Window Toolkit.

Design Guidelines: Glossary

http://java.sun.com/products/jlf/dg/higq.htm (1 sur 12) [05/06/2000 14:12:13]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

bit depth The amount of information (in bits) used to represent a pixel.
A bit depth of 8 supports up to 256 colors; a bit depth of 24
supports up to 16,777,216 colors.

browser An application that enables users to view, navigate through,
and interact with HTML documents and applets. Also called
a "web browser."

button A collective term for the various controls whose on-screen
appearance typically simulates a push button or a radio
button. The user clicks buttons to specify commands or set
options. See also checkbox, command button, radio
button, toggle button, toolbar button.

checkbox A control, consisting of a graphic and associated text, that a
user clicks to select or deselect an option. A check mark in
the checkbox graphic indicates that the option is selected.
Checkboxes are created using the JCheckBox component.
See also radio button.

checkbox menu item A menu item that appears with a checkbox next to it to
represent an on or off setting. A check mark in the checkbox
graphic indicates that the menu item is selected. Checkbox
menu items are created using the JCheckBoxMenuItem
component. See also menu item.

color chooser A component that enables a user to select a color. Color
choosers are created using the JColorChooser component.
See also HSB, palette window, RGB, utility window.

combo box A component with a drop-down arrow that the user clicks to
display a list of options. Noneditable combo boxes
(sometimes called "list boxes") have a list from which the
user can select one item. Editable combo boxes offer a text
field as well as a list of options. The user can make a
selection by typing a value in the text field or by selecting an
item from the list. Combo boxes are created using the
JComboBox component.

command button A button with a rectangular border that contains text, a
graphic, or both. A user clicks a command button to specify a
command to initiate an action. Command buttons are created
using the JButton component. See also button, toggle
button, toolbar button.

component A piece of code or, by extension, the interface element
implemented by that code. See also Swing classes.

container A component (such as an applet, window, pane, or internal
frame) that holds other components.

Design Guidelines: Glossary

http://java.sun.com/products/jlf/dg/higq.htm (2 sur 12) [05/06/2000 14:12:13]

contextual menu A menu that is displayed when a user presses mouse button 2
while the pointer is over an object or area associated with
that menu. A contextual menu offers only menu items that
are applicable to the object or region at the location of the
pointer. Sometimes called a "pop-up menu." Contextual
menus are created using the JPopupMenu component. See
also menu.

control An interface element that a user can manipulate to perform
an action, select an option, or set a value. Examples include
buttons, sliders, and combo boxes.

cross-platform Pertaining to heterogeneous computing environments. For
example, a cross-platform application is one that has a single
code base for multiple operating systems.

cursor See pointer.

default command button The command button that the application activates if a user
presses Enter or Return. Default buttons in Java look and feel
applications have a heavier border than other command
buttons. See also command button.

designer A professional who specifies the way that users will interact
with an application, chooses the interface components, and
lays them out in a set of views. The designer might or might
not be the same person as the developer who writes the
application code.

desktop pane A container, a sort of "virtual desktop," for an MDI
application. Desktop panes are created using the
JDesktopPane component. See also internal frame, MDI.

dialog box A secondary window displayed by an application to gather
information from users or to inform them of a condition. A
dialog box can contain panes, lists, buttons, and other
components. Dialog boxes are created using the JDialog
component. See also alert box, color chooser, palette
window, secondary window, utility window.

dithering Simulating unavailable colors in a displayed graphic by using
a pattern of two or more available colors.

drag To move the mouse while holding down a mouse button. See
also drag and drop.

drag and drop To drag an interface element to a new location in order to
move, copy, or link it. See also drag.

drop-down arrow The triangular indicator that a user clicks to view more
options than are visible on screen--such as the list attached to
a combo box or the options provided by some toolbar
buttons.

Design Guidelines: Glossary

http://java.sun.com/products/jlf/dg/higq.htm (3 sur 12) [05/06/2000 14:12:13]

drop-down menu A menu that is displayed when a user chooses a menu title in
the menu bar. Drop-down menus are created using the JMenu
component. See also menu, menu bar.

editor pane A component that supports a variety of plug-in editor kits.
The JFC includes editor kits that can display plain, styled,
HTML, and RTF data. Editor panes are created using the
JEditorPane component. See also plug-in editor kit.

flush 3D style In the Java look and feel, the effect created by rendering
on-screen graphics whose surfaces appear to be in the same
plane as the surrounding canvas.

GIF Graphics Interchange Format. An 8-bit graphics format
developed by CompuServe and commonly used on the World
Wide Web. GIF files are limited to 256 colors, and they
compress without loss of information. The GIF format is
typically used for graphics in the Java look and feel. See also
bit depth, JPEG.

HSB For "hue, saturation, brightness." In computer graphics, a
color model in which hue refers to a color's light frequency,
saturation is the amount or strength of the hue (its purity),
and brightness is the amount of black in the color (its
lightness or darkness). See also RGB.

icon An on-screen graphic representing an interface element that a
user can select or manipulate--for example, an application,
document, or disk.

insertion point The place, usually indicated by a blinking bar, where typed
text or a dragged or pasted selection will appear. See also
pointer.

internal frame A container used in MDI applications to create windows that
a user cannot drag outside of the desktop pane. In an MDI
application that uses the Java look and feel, internal frames
have a window border, title bar, and standard window
controls with the Java look and feel. Internal frames are
created using the JInternalFrame component. See also
desktop pane, MDI.

internationalization The process of preparing software that is suitable for the
global marketplace, taking into account wide variations in
regions, languages, and cultures. Internationalization usually
requires the separation of component text from code to ease
the process of translation. See also localization.

Java 2D API A programming interface (part of the Java Foundation
Classes in the Java 2 SDK) that provides an advanced
two-dimensional imaging model for complex shapes, text,
and images. Features include enhanced font and color
support and a single, comprehensive rendering model. See
also Java Foundation Classes.

Design Guidelines: Glossary

http://java.sun.com/products/jlf/dg/higq.htm (4 sur 12) [05/06/2000 14:12:13]

Java 2 SDK The software development kit that developers need to build
applications for the Java 2 Platform, Standard Edition, v. 1.2.
See also Java Development Kit.

Java Accessibility API A programming interface (part of the Java Foundation
Classes) that enables assistive technologies to interact and
communicate with JFC components. A Java application that
fully supports the Java Accessibility API is compatible with
such technologies as screen readers and screen magnifiers.
See also accessibility, assistive technology, Java
Accessibility Utilities, Java Foundation Classes.

Java Accessibility Utilities A set of classes (provided in the Java 2 SDK) for use by the
vendors who create assistive technologies or automated tool
tests. See also accessibility, assistive technology, Java
Accessibility API, Java Foundation Classes.

Java Development Kit Software that includes the APIs and tools that developers
need to build applications for those versions of the Java
platform that preceded the Java 2 Platform. Also called the
"JDK." See also Java 2 SDK.

Java Foundation Classes A product that includes the Swing classes, pluggable look
and feel designs, and the Java Accessibility API (all
implemented without native code and compatible with JDK
1.1). For the Java 2 platform, the Java Foundation Classes
(JFC) also include the Java 2D API, drag and drop, and other
enhancements. See also Abstract Window Toolkit,
pluggable look and feel architecture, Swing classes.

Java look and feel The default appearance and behavior for JFC applications,
designed for cross-platform use. The Java look and feel
works in the same way on any platform that supports the
Java Foundation Classes. See also Java Foundation
Classes, pluggable look and feel architecture.

JDK See Java Development Kit.

JFC See Java Foundation Classes.

JFC application An application built with the Java Foundation Classes. See
also Java Foundation Classes.

JPEG A graphics format developed by the Joint Photographic
Experts Group. The JPEG format is frequently used for
photographs and other complex images that benefit from a
larger color palette than a GIF image can provide. JPEG
compression is "lossy"; decompressed images are not
identical to uncompressed images. See also GIF.

keyboard focus The active window or component where the user's next
keystrokes will take effect. Sometimes called the "input
focus."

Design Guidelines: Glossary

http://java.sun.com/products/jlf/dg/higq.htm (5 sur 12) [05/06/2000 14:12:13]

keyboard operations A collective term for keyboard shortcuts, mnemonics, and
other forms of navigation and activation that utilize the
keyboard instead of the mouse. See also keyboard shortcut,
mnemonic.

keyboard shortcut A keystroke combination (usually a modifier key and a
character key, like Control-C) that activates a menu item
from the keyboard even if the relevant menu is not currently
displayed. See also keyboard operations, mnemonic.

label Static text that appears in the interface. For example, a label
might identify a group of checkboxes. (The text that
accompanies each checkbox within the group, however, is
specified in the individual checkbox component and is
therefore not considered a label.) Labels are created using the
JLabel component.

layout manager An object that assists the designer in determining the size and
position of components within a container. Each container
type has a default layout manager. See also Abstract
Window Toolkit.

list A set of choices from which a user can select one or more
items. Items in a list can be text, graphics, or both. Lists are
created using the JList component. See also combo box.

localization The process of customizing software for a particular locale.
Localization usually involves translation and often requires
changes to fonts, keyboard usage, and date and time formats.
See also internationalization.

look and feel The appearance and behavior of a complete set of GUI
components. See also Java look and feel.

MDI Multiple document interface. An interface that confines all of
an application's internal frames inside its desktop pane. See
also desktop pane.

menu A list of choices (menu items) logically grouped and
displayed by an application so that a user need not memorize
all available commands or options. Menus in the Java look
and feel are "sticky"--that is, they remain posted on screen
after the user clicks the menu title. Menus are created using
the JMenu component. See also contextual menu,
drop-down menu, menu bar, menu item, submenu.

menu bar The horizontal strip at the top of a window that contains the
titles of the application's drop-down menus. Menu bars are
created using the JMenuBar component. See also drop-down
menu.

menu item A choice in a menu. Menu items (text or graphics) are
typically commands or other options that a user can select.
Menu items are created using the JMenuItem component.
See also checkbox menu item, radio button menu item.

Design Guidelines: Glossary

http://java.sun.com/products/jlf/dg/higq.htm (6 sur 12) [05/06/2000 14:12:13]

middle mouse button The central button on a three-button mouse (typically used in
UNIX environments). The Java look and feel does not utilize
the middle mouse button. See also mouse button 2.

MIME Multipurpose Internet Mail Extensions. An Internet standard
for sending and receiving non-ASCII email attachments
(including video, audio, and graphics). Web browsers also
use MIME types to assign applications to interpret and
display files that are not written in HTML.

minimized internal frame A reduced representation of an internal frame in an MDI
application. Minimized internal frames look like horizontally
oriented tags that appear at the lower-left corner of the
desktop. The user can drag minimized internal frames to
rearrange them. See also MDI.

mnemonic An underlined letter, typically in a menu title, menu item, or
the text of a button or component. A mnemonic shows the
user which key to press (in conjunction with the Alt key) to
activate a command or navigate to a component. See also
keyboard operations, keyboard shortcut.

modal dialog box In a JFC application, a dialog box that prevents the user's
interaction with other windows in the current application.
Modal dialog boxes are created using the JDialog
component. See also dialog box, modeless dialog box.

modeless dialog box In a JFC application, a dialog box whose presence does not
prevent the user from interacting with other windows in the
current application. Modeless dialog boxes are created using
the JDialog component. See also dialog box, modal dialog
box.

modifier key A key (for example, the Control or the Shift key) that does
not produce an alphanumeric character but rather modifies
the action of other keys.

mouse button 1 The primary button on a mouse (the only button, for
Macintosh users). By default, mouse button 1 is the leftmost
button, though users might switch the button settings so that
the rightmost button becomes mouse button 1. See also
middle mouse button, mouse button 2.

mouse button 2 On a two-button or three-button mouse, the button that is
used to display contextual menus. By default, mouse button 2
is the rightmost button on the mouse, though users might
switch the settings so that the leftmost button becomes
mouse button 2. See also contextual menu, middle mouse
button, mouse button 1.

mouse-over feedback A change in the visual appearance of an interface element
that occurs when the user moves the pointer over it--for
example, the display of a button border when the pointer
moves over a toolbar button.

multiple document interface See MDI.

Design Guidelines: Glossary

http://java.sun.com/products/jlf/dg/higq.htm (7 sur 12) [05/06/2000 14:12:13]

native code Code that refers to the methods of a specific operating
system or is compiled for a specific processor.

palette window In an MDI application with the Java look and feel, a
modeless window that displays a collection of tools, colors,
or patterns. Palette windows float on top of document
windows. User choices made in a palette window affect
whichever primary window is active. Palette windows are
created using the JInternalFrame component. See also utility
window.

pane A collective term for scroll panes, split panes, and tabbed
panes.

panel A container for organizing the contents of a window, dialog
box, or applet. Panels are created using the JPanel
component. See also tabbed pane.

password field A special text field in which the user types a password. The
field displays a masking character for each typed character.
Password fields are created using the JPasswordField
component.

plain window An unadorned window with no title bar or window controls,
typically used for splash screens. Plain windows are created
using the JWindow component. See also primary window,
window controls.

pluggable look and feel architecture An architecture that separates the implementation of
interface elements from their presentation, enabling an
application to dynamically choose how its interface elements
interact with users. When a pluggable look and feel is used
for an application, the designer can select from several look
and feel designs.

plug-in editor kit An editor that can be used by the editor pane. The Java
Foundation Classes supply plug-in editor kits for plain,
styled, RTF, and HTML data.

pointer A small graphic that moves around the screen as the user
manipulates the mouse (or another pointing device).
Depending on its location and the active application, the
pointer can assume various shapes, such as an arrowhead,
crosshair, or clock. By moving the pointer and pressing
mouse buttons, a user can select objects, set the insertion
point, and activate windows. Sometimes called the "cursor."
See also insertion point.

preference A setting for an application or tool. Typically set by users.
See also property.

primary window A top-level window of an application, where the principal
interaction with the user occurs. Primary windows always
retain the look and feel of the user's native platform. Primary
windows are created using the JFrame component. See also
dialog box, secondary window.

Design Guidelines: Glossary

http://java.sun.com/products/jlf/dg/higq.htm (8 sur 12) [05/06/2000 14:12:13]

progress bar An interface element that indicates one or more operations
are in progress and shows the user what proportion of the
operations has been completed. Progress bars are created
using the JProgressBar component. See also control, slider.

property A characteristic of an object. Depending on the object, the
user or the designer might set its properties. See also
preference.

radio button A button that a user clicks to set an option. Unlike
checkboxes, radio buttons are mutually exclusive--selecting
one radio button deselects all other radio buttons in the
group. Radio buttons are created using the JRadioButton
component. See also checkbox.

radio button menu item A menu item that appears with a radio button next to it.
Separators indicate which radio button menu items are in a
group. Selecting one radio button menu item deselects all
others in that group. Radio button menu items are created
using the JRadioButtonMenuItem component.

resource bundle The place where an application stores its locale-specific data
(isolated from source code).

RGB For "red, green, blue." In computer graphics, a color model
that represents colors as percentages of red, green, and blue.
See also HSB.

scroll arrow In a scrollbar, one of the arrows that a user can click to move
through displayed information in the corresponding direction
(up or down in a vertical scrollbar, left or right in a
horizontal scrollbar). See also scrollbar.

scroll box A box that a user can drag in the channel of a scrollbar to
cause scrolling in the corresponding direction. The scroll
box's position in the scrollbar indicates the user's location in
the list, window, or pane. In the Java look and feel, the scroll
box's size indicates what proportion of the total information
is currently visible on screen. A large scroll box, for
example, indicates that the user can peruse the contents with
just a few clicks in the scrollbar. See also scrollbar.

scroll pane A container that provides scrolling with optional vertical and
horizontal scrollbars. Scroll panes are created using the
JScrollPane component. See also scrollbar.

scrollbar A component that enables a user to control what portion of a
document or list (or similar information) is visible on screen.
A scrollbar consists of a vertical or horizontal channel, a
scroll box that moves through the channel of the scrollbar,
and two scroll arrows. Scrollbars are created using the
JScrollBar component. See also scroll arrow, scroll box,
scroll pane.

Design Guidelines: Glossary

http://java.sun.com/products/jlf/dg/higq.htm (9 sur 12) [05/06/2000 14:12:13]

secondary window A modal or modeless window created from and dependent
upon a primary window. Secondary windows set options or
supply additional details about actions and objects in the
primary window. Secondary windows are dismissed when
their associated primary window is dismissed. Secondary
windows are created using either the JFrame or the JDialog
component. See also dialog box, primary window.

separator A line graphic that is used to divide menu items into logical
groupings. Separators are created using the JSeparator
component.

slider A control that enables the user to set a value in a range--for
example, the RGB values for a color. Sliders are created
using the JSlider component. See also progress bar.

split pane A container that enables the user to adjust the relative size of
two adjacent panes. Split panes are created using the
JSplitPane component.

submenu A menu that is displayed when a user chooses a certain menu
item in a higher-level menu. Submenus are created using the
JMenu component.

Swing classes A set of GUI components, featuring a pluggable look and
feel, that are included in the Java Foundation Classes. The
Swing classes implement the Java Accessibility API and
supply code for interface elements such as windows, dialog
boxes and choosers, panels and panes, menus, controls, text
components, tables, lists, and tree views. See also Abstract
Window Toolkit, Java Foundation Classes, pluggable
look and feel architecture.

tabbed pane A container that enables the user to switch between several
components (usually JPanel components) that appear to share
the same space on screen. The user can view a particular
panel by clicking its tab. Tabbed panes are created using the
JTabbedPane component.

table A two-dimensional arrangement of data in rows and
columns. Tables are created using the JTable component.

text area A multiline region for displaying (and sometimes editing)
text. Text in such areas is restricted to a single font, size, and
style. Text areas are created using the JTextArea component.
See also editor pane.

text field An area that displays a single line of text. In a noneditable
text field, a user can copy, but not change, the text. In an
editable text field, a user can type new text or edit the
existing text. Text fields are created using the JTextField
component. See also password field.

theme mechanism A feature that enables a designer to specify alternative colors
and fonts across an entire Java look and feel application. See
also Java look and feel.

Design Guidelines: Glossary

http://java.sun.com/products/jlf/dg/higq.htm (10 sur 12) [05/06/2000 14:12:13]

title bar The strip at the top of a window that contains its title and
window controls. See also window controls.

toggle button A button that alternates between two states. For example, a
user might click one toggle button in a toolbar to turn italics
on and off. A single toggle button has checkbox behavior; a
programmatically grouped set of toggle buttons can be given
the mutually exclusive behavior of radio buttons. Toggle
buttons are created using the JToggleButton component. See
also toolbar button.

tool tip A short text string that appears on screen to describe the
interface element beneath the pointer.

toolbar A collection of frequently used commands or options.
Toolbars typically contain buttons, but other components
(such as text fields and combo boxes) can be placed in
toolbars as well. Toolbars are created using the JToolBar
component. See also toolbar button.

toolbar button A button that appears in a toolbar, typically a command or
toggle button. Toolbar buttons are created using the JButton
or JToggleButton component. See also command button,
toggle button.

top-level container The highest-level container for a Java application or applet.
The top-level containers are JWindow, JFrame, and JDialog.

tree view A representation of hierarchical data (for example, directory
and file names) as a graphical outline. Clicking expands or
collapses elements of the outline. Tree views are created
using the JTree component.

turner A graphic used in the tree view component. The user clicks a
turner to expand or collapse a container in the hierarchy.

utility window In a non-MDI application with the Java look and feel, a
modeless dialog box that typically displays a collection of
tools, colors, fonts, or patterns. Unlike palette windows,
utility windows do not float. User choices made in a utility
window affect whichever primary window is active. A utility
window is not dismissed when a primary window is
dismissed. Utility windows are created using the JDialog
component. See also palette window, secondary window.

web browser See browser.

window See dialog box, palette window, plain window, primary
window, secondary window, utility window.

window controls Controls that affect the state of a window (for example, the
Maximize button in Microsoft Windows title bars).

Design Guidelines: Glossary

http://java.sun.com/products/jlf/dg/higq.htm (11 sur 12) [05/06/2000 14:12:13]

Contents

 A-Z (Index)

 Title Page (Home)

 Contents

 Preface

Part I: Overview

 1: The Java Look and Feel
 Fundamentals of the Java Look and Feel
 Visual Tour of the Java Look and Feel
 MetalEdit Application
 Retirement Savings Calculator Applet

 2: The Java Foundation Classes
 Java Development Kit
 Java Foundation Classes
 JDK 1.1 and the Java 2 SDK
 Support for Accessibility
 Support for Internationalization
 User Interface Components of the Java Foundation Classes
 Pluggable Look and Feel Architecture
 Example Model and Interface
 Client Properties
 Major JFC User Interface Components
 Look and Feel Options
 Java Look and Feel--the Recommended Design
 Alternative Approaches
 Supplied Designs

Part II: Fundamental Java Application Design

 3: Design Considerations
 Choosing an Application or an Applet
 Distribution
 Security Issues
 Placement of Applets
 Designing for Accessibility
 Benefits of Accessibility
 Accessible Design

Design Guidelines: Contents

http://java.sun.com/products/jlf/dg/higtoc.nf.htm (1 sur 6) [05/06/2000 14:12:15]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

 Planning for Internationalization and Localization
 Benefits of Global Planning
 Global Design

 4: Visual Design
 Themes
 Colors
 Fonts
 Capitalization of Text in the Interface
 Headline Capitalization in English
 Sentence Capitalization in English
 Layout and Visual Alignment
 Between-Component Padding and Spacing Guidelines
 Design Grids
 Titled Borders for Panels
 Text Layout
 Animation
 Progress and Delay Indication
 System Status Animation

 5: Application Graphics
 Working With Cross-Platform Color
 Working With Available Colors
 Choosing Graphic File Formats
 Choosing Colors
 Maximizing Color Quality
 Designing Graphics in the Java Look and Feel Style
 Designing Icons
 Working With Icon Styles
 Drawing Icons
 Designing Button Graphics
 Using Button Graphic Styles
 Producing the Flush 3D Effect
 Working With Button Borders
 Determining the Primary Drawing Area
 Drawing the Button Graphic
 Designing Symbols
 Designing Graphics for Corporate and Product Identity
 Designing Installation Screens
 Designing Splash Screens
 Designing Login Splash Screens
 Designing About Boxes

 6: Behavior
 Mouse Operations
 Pointer Feedback
 Mouse-over Feedback
 Clicking and Selecting Objects
 Displaying Contextual Menus
 Drag-and-Drop Operations

Design Guidelines: Contents

http://java.sun.com/products/jlf/dg/higtoc.nf.htm (2 sur 6) [05/06/2000 14:12:15]

 Typical Drag and Drop
 Pointer and Destination Feedback
 Keyboard Operations
 Keyboard Focus
 Keyboard Navigation and Activation
 Keyboard Shortcuts
 Mnemonics

 Part III: The Components of the Java Foundation Classes

 7: Windows, Panes, and Frames
 Anatomy of a Primary Window
 Constructing Windows
 Primary Windows
 Secondary Windows
 Plain Windows
 Utility Windows
 Organizing Windows
 Panels
 Scroll Panes
 Tabbed Panes
 Split Panes
 Working With Multiple Document Interfaces
 Internal Frames
 Palettes

 8: Dialog Boxes
 Modal and Modeless Dialog Boxes
 Dialog Box Design
 Tab Traversal Order
 Spacing in Dialog Boxes
 Command Buttons in Dialog Boxes
 Default Command Buttons
 Common Dialog Boxes
 Find Dialog Boxes
 Login Dialog Boxes
 Preferences Dialog Boxes
 Print Dialog Boxes
 Progress Dialog Boxes
 Alert Boxes
 Info Alert Boxes
 Warning Alert Boxes
 Error Alert Boxes
 Question Alert Boxes
 Color Choosers

 9: Menus and Toolbars
 Menu Elements
 Menu Bars
 Drop-down Menus

Design Guidelines: Contents

http://java.sun.com/products/jlf/dg/higtoc.nf.htm (3 sur 6) [05/06/2000 14:12:15]

 Submenus
 Menu Items
 Checkbox Menu Items
 Radio Button Menu Items
 Separators
 Common Menus
 Typical File Menu
 Object Menu
 Typical Edit Menu
 Typical Format Menu
 View Menu
 Typical Help Menu
 Contextual Menus
 Toolbars
 Toolbar Placement
 Draggable Toolbars
 Toolbar Buttons
 Tool Tips

 10: Basic Controls
 Command Buttons
 Default Command Buttons
 Combining Graphics With Text in Command Buttons
 Using Ellipses in Command Buttons
 Command Button Spacing
 Command Button Padding
 Toggle Buttons
 Independent Choice
 Exclusive Choice
 Checkboxes
 Checkbox Spacing
 Radio Buttons
 Radio Button Spacing
 Combo Boxes
 Noneditable Combo Boxes
 Editable Combo Boxes
 Sliders
 Progress Bars

 11: Text Components
 Labels
 Labels That Identify Controls
 Labels That Communicate Status and Other Information
 Text Fields
 Noneditable Text Fields
 Editable Text Fields
 Password Fields
 Text Areas
 Editor Panes
 Default Editor Kit

Design Guidelines: Contents

http://java.sun.com/products/jlf/dg/higtoc.nf.htm (4 sur 6) [05/06/2000 14:12:15]

 Styled Text Editor Kit
 RTF Editor Kit
 HTML Editor Kit

 12: Lists, Tables, and Trees
 Lists
 Scrolling
 Selection Models for Lists
 Tables
 Table Appearance
 Table Scrolling
 Column Reordering
 Column Resizing
 Row Sorting
 Selection Models for Tables
 Tree Views
 Lines in Tree Views
 Graphics in Tree Views
 Editing in Tree Views

 Appendix A: Keyboard Navigation, Activation, and Selection
 Checkboxes
 Combo Boxes
 Command Buttons
 Desktop Panes and Internal Frames
 Dialog Boxes
 HTML Editor Kits
 Lists
 Menus
 Radio Buttons
 Scrollbars
 Sliders
 Split Panes
 Tabbed Panes
 Tables
 Text Areas and Default and Styled Text Editor Kits
 Text Fields
 Toggle Buttons
 Tool Tips
 Toolbars
 Tree Views

 Glossary

 Index

 Errata

 Colophon

 Search

Design Guidelines: Contents

http://java.sun.com/products/jlf/dg/higtoc.nf.htm (5 sur 6) [05/06/2000 14:12:15]

http://java.sun.com/products/jlf/dg/search.html

1: The Java Look and Feel
As the Java platform has matured, designers and developers have recognized the need for consistent, compatible, and
easy-to-use Java applications. The Java look and feel meets that need by providing a distinctive platform-independent
appearance and standard behavior. The use of this single look and feel reduces design and development time and lowers
training and documentation costs for all users.

This book sets standards for the use of the Java look and feel. By following these guidelines, you can create Java
applications that effectively support all users worldwide, including those with physical and cognitive limitations.

Fundamentals of the Java Look and Feel
The Java look and feel is the default interface for applications built with the Java Foundation Classes. The Java look and feel
is designed for cross-platform use and can provide:

Consistency in the appearance and behavior of common design elements❍

Compatibility with industry-standard components and interaction styles❍

Aesthetic appeal that does not distract from application content❍

Three distinctive visual elements are the hallmarks of the Java look and feel components: the flush 3D style, the drag
texture, and the color model.

In the Java look and feel, component surfaces appear to be at the same level as the surrounding canvas. This "flush 3D" style
is illustrated in the following figure.

Figure 1 Consistent Use of the Flush 3D Style

The clean, modern appearance reduces the visual noise associated with beveled edges. Flush 3D components fit in with a
variety of applications and operating systems.

A textured pattern, used throughout the Java look and feel, indicates items that users can drag. Such an indication cues
cross-platform users in a reliable way. The following figure demonstrates several uses of the drag texture.

Figure 2 Consistent Use of the Drag Texture

A simple and flexible color model ensures compatibility with platforms and devices capable of displaying quite different
color depths. The default colors provide an aesthetically pleasing and comfortable scheme for interface elements, as shown
in the following figure.

Figure 3 Role of the Color Model in Compatibility

Design Guidelines: The Java Look and Feel

http://java.sun.com/products/jlf/dg/higc.htm (1 sur 9) [05/06/2000 14:16:54]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Visual Tour of the Java Look and Feel
The Java look and feel implements widely understood interface elements (windows, icons, menus, and pointers) and works
in the same way on any operating system that supports the Java Foundation Classes (JFC). The visual tour in this section
shows off two JFC applications with the Java look and feel: MetalEdit and Retirement Savings Calculator. MetalEdit is a
standalone, text-editing application; Retirement Savings Calculator is an applet displayed in a browser window.

The following figure shows a Microsoft Windows desktop with MetalEdit and Retirement Savings Calculator. MetalEdit has
a menu bar and toolbar as well as a text-editing area. Retirement Savings Calculator is displayed inside a web browser.
Other Microsoft Windows applications are also present; some are represented by minimized windows.

Although the windows of many applications can be open on the desktop, only one can be the active window. In the figure,
MetalEdit is the active window (indicated by the color of the title bar), whereas the Netscape NavigatorTM browser, which
contains Retirement Savings Calculator, is inactive. As an applet, Retirement Savings Calculator is displayed within an
HTML page.

Figure 4 Typical Desktop With Applications on the Microsoft Windows Platform

MetalEdit Application
This section uses a hypothetical text-editing application called "MetalEdit" to illustrate some of the most important visual

Design Guidelines: The Java Look and Feel

http://java.sun.com/products/jlf/dg/higc.htm (2 sur 9) [05/06/2000 14:16:54]

characteristics of the Java look and feel, including its windows, menus, toolbars, editor panes, dialog boxes, and alert boxes.

Example Windows

The windows in Java look and feel applications use the borders, title bars, and window controls of the platform they are
running on. For instance, the MetalEdit document window shown in Figure 4 is running on a Microsoft Windows desktop
and uses the standard Microsoft window frame and title bar. As shown in the following figure, the contents of the document
window (menu bar, toolbar, and editor pane) use the Java look and feel. However, the window borders, title bars, and
window controls have a platform-specific appearance.

Figure 5 Document Window on Three Platforms

Example Menus

The menu bar, which is the horizontal strip under the window title, displays the titles of application menus, called
"drop-down menus." Drop-down menus provide access to an application's primary functions. They also enable users to
survey the features of the application by looking at the menu items. Chapter 9 contains discussions of drop-down menus,
submenus, and contextual menus and provides guidelines for the creation of menus and menu items for your application.

Figure 6 Example Menu Bar

Design Guidelines: The Java Look and Feel

http://java.sun.com/products/jlf/dg/higc.htm (3 sur 9) [05/06/2000 14:16:54]

The following figure shows the contents of the Edit and Format menus from the MetalEdit menu bar. The menu items are
divided into logical groupings by menu separators (in the flush 3D style). For instance, in the Edit menu, the Cut, Copy, and
Paste commands, which are related to the clipboard, are separated from Undo and Redo commands, which reverse or restore
changes in the document. For more information, see Separators. Selected menu titles are highlighted in blue in the default
Java look and feel theme. For details, see Themes.

Figure 7 Example Drop-down Menus

Keyboard shortcuts offer an alternative to using the mouse to choose a menu item. For instance, to copy a selection, users
can press Control-C. For details, see Keyboard Shortcuts.

Mnemonics provide yet another way to access menu items. For instance, to view the contents of the Edit menu, users press
Alt-E. Once the Edit menu has keyboard focus, users can press C to copy a selection. These alternatives are designated by
underlining the "E" in Edit and the "C" in Copy. For details, see Mnemonics.

The menus shown in Figure 7 illustrate two commonly used menu titles, menu items, and menu item arrangements for Java
look and feel applications. For details, see Drop-down Menus and Menu Items.

Example Toolbar

A toolbar displays command and toggle buttons that offer immediate access to the functions of many menu items. The
MetalEdit toolbar is divided into four areas for functions relating to file management, editing, font styles, and alignment.
Note the flush 3D style of the command and toggle buttons and the textured drag area to the left of the toolbar. For details,
see Toolbars.

Figure 8 Example Toolbar

Design Guidelines: The Java Look and Feel

http://java.sun.com/products/jlf/dg/higc.htm (4 sur 9) [05/06/2000 14:16:54]

Example Editor Pane

The document text in the following figure is displayed in an editor pane with a styled text editor plug-in kit, which is
embedded in a scroll pane. (Note the use of the drag texture in the scroll box.) For more on styled text editor plug-in kits, see
Editor Panes. For details on scroll panes, see Scroll Panes.

Figure 9 Example Editor Pane

Example Dialog Boxes

In the Java look and feel, dialog boxes use the borders and title bars of the platform they are running on. However, the
dialog box contents have the Java look and feel. Chapter 8 describes dialog boxes in the Java look and feel and contains
recommendations for their use.

Figure 10 shows a preferences dialog box with the title bars, borders, and window controls of several platforms. The dialog
box enables users to specify options in the MetalEdit application. Noneditable combo boxes are used to select ruler units and
a font. Text fields are used to specify the margins. An editable combo box enables users to specify font size. Radio buttons
and checkboxes are used to set other preferences. Clicking the Browse command button displays a file chooser in which
users can select a stationery folder.

Note the flush 3D borders of the combo boxes, text fields, radio buttons, checkboxes, and command buttons. Labels use the
primary 1 color, one of eight colors in the default Java look and feel theme. For a thorough treatment of basic controls
(including combo boxes, radio buttons, checkboxes, and command buttons), see Chapter 10. For a detailed discussion of text
fields and labels, see Chapter 11.

MetalEdit provides mnemonics and keyboard navigation and activation sequences for each of the interactive controls in the
preferences dialog box. The dialog box in the following figure illustrates two ways to create a mnemonic: directly in a
component, indicated by an underlined letter in the component text, or in a label associated with the component, indicated
by an underlined letter in the label.

Figure 10 Example Dialog Boxes on Microsoft Windows, Macintosh, and CDE Platforms

Design Guidelines: The Java Look and Feel

http://java.sun.com/products/jlf/dg/higc.htm (5 sur 9) [05/06/2000 14:16:54]

Example Alert Boxes

The alert boxes in a Java look and feel application use the borders, title bars, and window controls of the platform they are
running on. However, the symbols, messages, and command buttons supplied by the JFC use the Java look and feel. (You
provide the actual message and specify the number of command buttons as well as the button text. The JFC provides layouts
for the symbol, the message, and the command buttons.)

When users try to close a window without saving changes, the Warning alert box asks them if they would like to save
changes. Of the three command buttons in MetalEdit's Warning alert box, shown in the following figure, the default
command button is Save. The Don't Save button closes the window without saving changes. The Cancel button closes the
dialog box but leaves the unsaved document open. For details, see Alert Boxes.

Figure 11 Example Alert Boxes on CDE, Microsoft Windows, and Macintosh Platforms

Design Guidelines: The Java Look and Feel

http://java.sun.com/products/jlf/dg/higc.htm (6 sur 9) [05/06/2000 14:16:54]

Retirement Savings Calculator Applet
The sample applet, Retirement Savings Calculator, is part of a web page displayed in the Netscape Navigator browser, as
shown in the following figure. This human resources applet enables employees of a fictitious company to determine their
contributions to a retirement savings plan. To make it easy for all employees to access information on their retirement
savings, the company provides the applet in a web page. (Note the boundaries of the applet. The HTML page also includes a
banner in the GIF format as well as an HTML header with the title of the page.) All the JFC components shown in the
sample applet use the Java look and feel.

Figure 12 Applet on an HTML Page in a Browser (Exploded View)

Design Guidelines: The Java Look and Feel

http://java.sun.com/products/jlf/dg/higc.htm (7 sur 9) [05/06/2000 14:16:54]

The applet obtains an employee's current retirement savings contribution and other salary data from a database and fills
noneditable text fields with the relevant data. The employee can drag a slider to specify a salary contribution and click a
radio button to specify whether new contributions go to a money market, bond, or stock market fund. A row of command
buttons offers a choice of whether to save changes, reset the salary contribution, or display help.

Using the employee's input, the applet calculates the employee's weekly and yearly gross salary, tax withholding, other
deductions, retirement savings contribution, net paycheck, and the company's matching funds. Results are displayed in a
table. Finally, the employee can type an assumed appreciation rate in an editable text field to see accumulated future savings
or instruct the applet to use the five-year fund history to project savings in the chart at the bottom of the applet.

Figure 13 Retirement Savings Calculator Applet

Design Guidelines: The Java Look and Feel

http://java.sun.com/products/jlf/dg/higc.htm (8 sur 9) [05/06/2000 14:16:54]

For more information on the components used in this applet, see Text Fields, Sliders, Radio Buttons, Command Buttons,
and Tables.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: The Java Look and Feel

http://java.sun.com/products/jlf/dg/higc.htm (9 sur 9) [05/06/2000 14:16:54]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

2: The Java Foundation
Classes

This book assumes that you are designing software based on the Java Foundation Classes and
utilizing the Java look and feel. This chapter provides an overview of that technology: the Java
Development Kit and JavaTM 2 SDK, the user interface components of the Java Foundation
Classes, the pluggable look and feel architecture, and available look and feel designs.

Java Development Kit
The APIs and tools that developers need to write, compile, debug, and run Java applications are
included in the Java Development Kit (JDKTM) and Java 2 SDK.

The guidelines in this book pertain to applications built with the Java 2 SDK, Standard Edition, v.
1.2 (referred to hereafter as "Java 2 SDK"), or the Java Development Kit versions 1.1.3 through
1.1.7 (referred to hereafter as "JDK 1.1"). The Java Foundation Classes are available for use with
JDK 1.1, but they are an integral part of the Java 2 platform.

Java Foundation Classes
The Java Foundation Classes (JFC) include the Swing classes, which define a complete set of
graphic interface components for JFC applications. An extension to the original Abstract Window
Toolkit, the JFC includes the Swing classes, pluggable look and feel designs, and the Java
Accessibility API, which are all implemented without native code (code that refers to the
methods of a specific operating system or is compiled for a specific processor). The JFC
components include windows and frames, panels and panes, dialog boxes, menus and toolbars,
buttons, sliders, combo boxes, text components, tables, lists, and trees.

All the components have look and feel designs that you can specify. The cross-platform, default
look and feel is the Java look and feel. For details on the design principles and visual elements
underlying the Java look and feel, see Chapter 1.

In code, the Java look and feel is referred to as "Metal."

JDK 1.1 and the Java 2 SDK
The following figure summarizes the differences in the Java Foundation Classes in JDK 1.1 and
the Java 2 SDK. Both development kits contain the Abstract Window Toolkit (AWT), the class
library that provides the standard application programming interfaces for building graphical user
interfaces for Java programs. There is native code in the AWT code in both kits, and in drag and
drop and the Java 2DTM API in the Java 2 SDK.

Design Guidelines: The Java Foundation Classes

http://java.sun.com/products/jlf/dg/higd.htm (1 sur 8) [05/06/2000 14:14:34]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Figure 14 Java Foundation Classes for JDK 1.1 and the Java 2 SDK

In the Java 2 SDK, the Java Foundation Classes also include the Java 2D API, drag and drop, and
other enhancements. The Java 2D API provides an advanced two-dimensional imaging model for
complex shapes, text, and images. Features include enhanced font and color support and a single,
comprehensive rendering model.

Support for Accessibility
Three features of JDK 1.1 and the Java 2 SDK support people with special needs: the Java
Accessibility API, the pluggable look and feel architecture, and keyboard navigation.

The Java Accessibility API provides ways for an assistive technology to interact and
communicate with JFC components. A Java application that fully supports the Java Accessibility
API is compatible with technologies such as screen readers and screen magnifiers. A separate
package, Java Accessibility Utilities, provides support in locating the objects that implement the
Java Accessibility API.

A pluggable look and feel architecture is used to build both visual and nonvisual designs, such as
audio and tactile user interfaces. For more on the pluggable look and feel, see Pluggable Look and
Feel Architecture.

Keyboard navigation enables users to move between components, open menus, highlight text, and
so on. This support makes an application accessible to people who do not use a mouse. For details
on keyboard operations, see Appendix A.

Support for Internationalization
JDK 1.1 and the Java 2 SDK provide internationalized text handling. This feature includes
support for the bidirectional display of text lines--important for displaying documents that mix
languages with a left-to-right text direction (for instance, English, German, or Japanese) and

Design Guidelines: The Java Foundation Classes

http://java.sun.com/products/jlf/dg/higd.htm (2 sur 8) [05/06/2000 14:14:34]

languages with a right-to-left direction (for instance, Arabic or Hebrew). JDK 1.1 and the Java 2
SDK also provide resource bundles, locale-sensitive sorting, and support for localized numbers,
dates, times, and messages.

User Interface Components of the Java
Foundation Classes

The Java Foundation Classes include Swing, a complete set of user interface components,
including windows, dialog boxes, alert boxes, panels and panes, and basic controls. Each JFC
component contains a model (the data structure) and a user interface (the presentation and
behavior of the component), as shown in the following illustration.

Figure 15 Structure of the JFC Components

Pluggable Look and Feel Architecture
Because both presentation and behavior are separate and replaceable ("pluggable"), you can
specify any of several look and feel designs for your application--or you can create your own look
and feel. The separation of a component's model (data structure) from its user interface (display
and interaction behavior) is the empowering principle behind the pluggable look and feel
architecture of the JFC. A single JFC application can present a Java look and feel, a
platform-specific look and feel, or a customized interface (for example, an audio interface).

Example Model and Interface
Consider the slider in the following figure as a simplified example. The slider's model contains
information about the slider's current value, the minimum and maximum values, and other
properties. The slider's user interface determines how users see or interact with the slider. The
model knows almost nothing about the user interface--while the user interface knows a great deal
about the model.

Figure 16 Pluggable Look and Feel Architecture of a Slider

Design Guidelines: The Java Foundation Classes

http://java.sun.com/products/jlf/dg/higd.htm (3 sur 8) [05/06/2000 14:14:34]

Client Properties
You can use the client properties mechanism to display an alternate form of a specific Java user
interface component. If a look and feel design does not support the property, it ignores the
property and displays the component as usual. You can set alternate appearances for sliders,
toolbars, trees, and internal frames. For instance, a nonfilling slider is displayed by default.
However, by using the client properties mechanism, you can display a filling slider, as shown in
Figure 16.

Major JFC User Interface Components
The following table illustrates the major user interface components in the JFC. Components are
listed alphabetically by their names in code. Their English names are provided, followed by the
location of more detailed information on each component.

Table 1 Names and Appearance of the JFC User Interface Components

Component Code Name Common Name For Details

JApplet Applet Click here

JButton Command button and toolbar button
Click here
Click here

Design Guidelines: The Java Foundation Classes

http://java.sun.com/products/jlf/dg/higd.htm (4 sur 8) [05/06/2000 14:14:34]

JCheckBox Checkbox Click here

JCheckBoxMenuItem Checkbox menu item Click here

JColorChooser Color chooser Click here

JComboBox Noneditable and editable combo
boxes

Click here

JDesktopPane Desktop pane Click here

JDialog Dialog box, secondary window, and
utility window

Click here
Click here
Click here

JEditorPane Editor pane Click here

JFrame Primary window Click here

JInternalFrame Internal frame, minimized internal
frame, and palette window

Click here
Click here
Click here

JLabel Label Click here

JList List Click here

JMenu Drop-down menu and submenu
Click here
Click here

JMenuBar Menu bar Click here

JMenuItem Menu item Click here

JOptionPane Alert box Click here

JPanel Panel Click here

Design Guidelines: The Java Foundation Classes

http://java.sun.com/products/jlf/dg/higd.htm (5 sur 8) [05/06/2000 14:14:34]

JPasswordField Password field Click here

JPopupMenu Contextual menu Click here

JProgressBar Progress bar Click here

JRadioButton Radio button Click here

JRadioButtonMenuItem Radio button menu item Click here

JScrollBar Scrollbar Click here

JScrollPane Scroll pane Click here

JSeparator Separator Click here

JSlider Slider Click here

JSplitPane Split pane Click here

JTabbedPane Tabbed pane Click here

JTable Table Click here

JTextArea Plain text area Click here

JTextField Noneditable and editable text fields
(single line)

Click here

JTextPane Editor pane with the styled editor kit
plug-in

Click here

JToggleButton Toggle button and toolbar button
Click here
Click here

Design Guidelines: The Java Foundation Classes

http://java.sun.com/products/jlf/dg/higd.htm (6 sur 8) [05/06/2000 14:14:34]

JToolBar Toolbar Click here

JToolTip Tool tip Click here

JTree Tree view Click here

JWindow Plain (unadorned) window Click here

In the JFC, the typical primary windows that users work with are based on the JFrame
component. Unadorned windows that consist of a rectangular region without any title bar, close
control, or other window controls are based on the JWindow component. Designers and
developers typically use the JWindow component to create windows without title bars, such as
splash screens.

For details on the use of windows, frames, panels, and panes, see Chapter 7.

Look and Feel Options
You, the designer, have the first choice of a look and feel design. You can determine the look and
feel you want users to receive on a specific platform, or you can choose a cross-platform look
and feel.

Java Look and Feel--the Recommended Design
With a cross-platform look and feel, your application will appear and perform the same
everywhere, simplifying the application's development and documentation.

Specify the Java look and feel, which is a cross-platform look and feel, explicitly. If you do
not specify a look and feel or if an error occurs while specifying the name of a look and feel, the
Java look and feel is used by default.

The following code can be used to specify the Java look and feel explicitly:
UIManager.setLookAndFeel(
UIManager.getCrossPlatformLookAndFeelClassName());

Alternative Approaches
If you do not specify the Java look and feel, you can specify:

A particular look and feel--one that ships with the JFC or one that someone else has made.
Note, however, that not all look and feel designs are available on every platform. For
example, the Microsoft Windows look and feel is available only on the Microsoft
Windows platform.

❍

An auxiliary look and feel--one that is designed to be used in addition to the primary look❍

Design Guidelines: The Java Foundation Classes

http://java.sun.com/products/jlf/dg/higd.htm (7 sur 8) [05/06/2000 14:14:34]

and feel. By combining look and feel designs, you can target different ways of perceiving
information.

Because there is far more to the design of an application than the look and feel of components, it
is unwise to give end users the ability to swap look and feel designs while working in your
application. Switching look and feel designs in this way only swaps the look and feel designs of
the components from one platform to another. The layout and vocabulary used are platform-
specific and do not change. For instance, swapping look and feel designs does not change the
titles of the menus.

Make it possible for your users to specify an auxiliary look and feel design, which provides
alternative methods of information input and output for people with special needs.

Supplied Designs
The look and feel designs available in JDK 1.1 and the Java 2 SDK are:

Java look and feel. (Called "Metal" in the code.) The Java look and feel is designed for
use on any platform that supports the JFC. This book provides recommendations on the
use of the Java look and feel.

❍

Microsoft Windows. (Called "Windows" in the code.) The Microsoft Windows style look
and feel can be used only on Microsoft Windows platforms. It follows the behavior of the
components in applications that ship with Windows NT 4.0. For details, see Windows
Interface Guidelines for Software Design.

❍

CDE. (Called "CDE/Motif" in the code.) The CDE style look and feel is designed for use
on UNIX® platforms. It emulates OSF/Motif 1.2.5, which ships with the SolarisTM 2.6
operating system. It can run on any platform. For details, see the CDE 2.1/Motif 2.1--Style
Guide and Glossary.

❍

In addition, you can download the Macintosh style look and feel (called "Mac OS" in the code)
separately. The Macintosh style look and feel can be used only on Macintosh operating systems. It
follows the specification for components under Mac OS 8.1. For details, see the Mac OS 8 Human
Interface Guidelines.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: The Java Foundation Classes

http://java.sun.com/products/jlf/dg/higd.htm (8 sur 8) [05/06/2000 14:14:34]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

3: Design Considerations
When you begin a software project, ask yourself these three questions:

How do I want to deliver my software to users?❍

How can I design an application that is accessible to all potential users?❍

How can I design an application that suits a global audience and requires minimal effort to localize?❍

Choosing an Application or an Applet
At the beginning of the development process, you must decide if you want to create a standalone
application or an applet that is displayed in a web browser. The following figure shows the different
environments for running applications and applets.

Figure 17 Environments for Applications and Applets

When deciding between an application and an applet, the two main issues you need to consider are
distribution and security, including read and write permissions. If you decide to use an applet, you must
also decide whether to display your applet in the user's current browser window or in a separate browser
window.

For an example of an application that uses the Java look and feel, see MetalEdit Application. For an
example of an applet, see Retirement Savings Calculator Applet. For a list of additional reading on applets,
see Design for Applets.

Design Guidelines: Design Considerations

http://java.sun.com/products/jlf/dg/higf.htm (1 sur 9) [05/06/2000 14:14:42]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Distribution
When deciding how to distribute your software, weigh the needs of both end users and administrators.
Don't forget to consider ease-of-use issues for:

Initial distribution and installation of the software❍

Maintenance of the software❍

Updates to the software❍

Daily access to the software❍

At one extreme is the standalone application, distributed on a CD-ROM disc or a floppy disk and installed
on the end user's local hard disk. Once the application is installed, users can easily access it. In an
enterprise environment, however, maintenance can be complicated because separate copies of the
application exist on each user's local computer. Distribution of the original application and subsequent
updates require shipment of the software to, and installation by, multiple users.

In contrast, applets are simpler to distribute and maintain because they are installed on a central web server.
Using a web browser on their local machines, users can access the latest version of the applet from
anywhere on the intranet or Internet. Users, however, must download the applet over the network each time
they start the applet.

If you are creating an applet, make sure that your users have a browser that contains the JFC or that they
are using JavaTM Plug-In. That way, users will not have to download the JFC every time they run the
applet.

Security Issues
Another issue to consider is whether your software needs to read and write files. Standalone Java
applications can read or write files on the user's hard disk just as other applications do. For example, the
MetalEdit application reads and writes documents on the user's local disk.

In contrast, applets usually cannot access a user's hard disk because they are intended for display on a web
page, which might come from an unknown source. Applets are better suited for tasks that do not require
access to a user's hard disk. For example, a web page for a bank might offer an applet that calculates home
mortgage payments and prints results, but does not save files on the customer's hard disk.

You can also use applets as a front end to a central database. For example, the Retirement Savings
Calculator applet enables company employees to select funds for their retirement contribution and update
the amount of their contribution in the company database.

Placement of Applets
If you decide to design an applet, you can display your applet in the user's current browser window or in a
separate browser window.

Applets in the User's Current Browser Window

The current browser window is well suited for displaying applets in which users perform a single task. This
approach enables users to perform the task and then resume other activities in the browser, such as surfing
the web.

An applet displayed in the current browser window should not include a menu bar--having a menu bar in
both the applet and the browser might confuse users. The mnemonics assigned in the applet must also be
different from the mnemonics used to control the browser window; otherwise, the mnemonics might
conflict.

Design Guidelines: Design Considerations

http://java.sun.com/products/jlf/dg/higf.htm (2 sur 9) [05/06/2000 14:14:42]

A disadvantage of using the current browser window is that the applet terminates when users navigate to
another web page. The current settings and data in the applet are lost. To use the applet again, users must
navigate back to the page that contains the applet and reload the page.

Applets in Separate Browser Windows

If your applet involves more than one task or if users might visit other web pages before completing the
task, launch a separate browser window and display the applet there. This approach enables users to
interact with the applet and maintain the original browser window for other activities. Navigating to
another web page in the original browser window does not affect the applet in the separate browser
window.

Designing an applet for a separate browser window is simpler if you remove the browser's normal menu
and navigation controls. Doing so avoids confusion between the browser's menu and controls and the
applet's menus and controls. You also avoid potential conflicts between mnemonics in the two windows.

Designing for Accessibility
Accessibility refers to the removal of barriers that prevent people with disabilities from participating in
social, professional, and practical life activities. In software design, accessibility requires taking into
account the needs of people with functional differences: for example, users who are unable to operate a
conventional mouse or keyboard or users who cannot process information using traditional output methods.

Benefits of Accessibility
Providing computer access to users with disabilities offers social, economic, and legal benefits. Accessible
software increases the opportunities for employment, independence, and productivity for the approximately
750 million people worldwide with disabilities.

Building accessibility into an application makes it easier to use for a wide range of people, not only those
with disabilities. For example, mnemonics, which provide an alternate keyboard method for accomplishing
tasks in an application, aid users with physical disabilities as well as blind and low-vision users.
Mnemonics are also broadly employed by "power" users.

Many countries are instituting legislation that makes access to information, products, and services
mandatory for individuals with special needs. In these countries, government and academic institutions are
required to purchase and support technologies that maximize accessibility. For example, in the United
States, Section 508 of the Federal Rehabilitation Act requires all federal contracts to include solutions for
employees with disabilities. The international community of people with disabilities is also successfully
pressuring companies to sell accessible software.

Accessible Design
Five steps will put you on a path to an accessible product:

Follow the standards in this book❍

Provide accessible names and descriptions for your components❍

Employ mnemonics and keyboard shortcuts throughout your application❍

Provide proper keyboard navigation and activation❍

Perform usability tests❍

For a list of additional reading, see Design for Accessibility.

Design Guidelines: Design Considerations

http://java.sun.com/products/jlf/dg/higf.htm (3 sur 9) [05/06/2000 14:14:42]

Java Look and Feel Standards

The Java look and feel standards in this book take into account the needs of users with functional
limitations. The standards cover how to use colors, fonts, animation, and graphics. By following these
standards, you will be able to meet the needs of most of your users.

Java look and feel standards are identified throughout the book by this symbol.

Accessible Names and Descriptions

You should provide an accessible name and description for each component in your application. These
properties enable an assistive technology, such as a screen reader, to interact with the component.

The accessibleName property provides a name for a component and distinguishes it from other
components of the same type.

The accessibleDescription property provides additional information about a component, such as
how it works. Setting a component's accessibleDescription property is equivalent to providing a tool tip for
the component.

The Ferret utility tool can be used to check that an accessibleName and other API information are
properly implemented in your application. Ferret is part of the Java Accessibility Utilities package.

For more information on the Java Accessibility API and the Java Accessibility Utilities package, see
Support for Accessibility.

Mnemonics

You should provide mnemonics throughout your application. A mnemonic is an underlined letter that
shows users which key to press (in conjunction with the Alt key) to activate a command or navigate to a
component. The following dialog box shows the use of mnemonics for a text field, checkboxes, radio
buttons, and command buttons. For example, if keyboard focus is within the dialog box, pressing Alt-W
moves keyboard focus to the Whole Word checkbox.

Figure 18 Mnemonics in a Dialog Box

In cases where you can't add a mnemonic to the component itself, as in the text field in the preceding
figure, you can place the mnemonic in the component's label. For more information on mnemonics, see
Mnemonics.

The labelFor property can be used to associate a label with another component so that the
component becomes active when the label's mnemonic is activated.

Design Guidelines: Design Considerations

http://java.sun.com/products/jlf/dg/higf.htm (4 sur 9) [05/06/2000 14:14:42]

Keyboard Focus and Tab Traversal

You can also assist users who navigate via the keyboard by assigning initial keyboard focus and by
specifying a tab traversal order. Keyboard focus indicates where the next keystrokes will take effect. For
more information, see Keyboard Focus.

Tab traversal order is the sequence in which components receive keyboard focus on successive presses of
the Tab key. In most cases, the traversal order follows the reading order of the users' locale. For more
information on tab traversal order, see Tab Traversal Order.

Make sure you test your application to see if users can access all functions and interactive components
from the keyboard. Unplug the mouse and use only the keyboard when you perform your test.

Usability Testing

You should test the application with a variety of users to see how well it provides for accessibility.
Low-vision users, for example, are sensitive to font sizes and color, as well as layout and context problems.
Blind users are affected by interface flow, tab order, layout, and terminology. Users with mobility
impairments can be sensitive to tasks that require an excessive number of steps or a wide range of
movement.

Planning for Internationalization and Localization
In software development, internationalization is the process of writing an application that is suitable for the
global marketplace, taking into account variations in regions, languages, and cultures. A related term,
localization, refers to the process of customizing an application for a particular language or region. The
language, meaning, or format of the following types of data can vary with locale:

Colors❍

Currency formats❍

Date and time formats❍

Graphics❍

Icons❍

Labels❍

Messages❍

Number formats❍

Online help❍

Page layouts❍

Personal titles❍

Phone numbers❍

Postal addresses❍

Sounds❍

Units of measurement❍

The following figure shows a notification dialog box in both English and Japanese. Much of the
localization of this dialog box involves the translation of text. The Japanese dialog box is bigger than the
English dialog box because some text strings are longer. Note the differences in the way that mnemonics
are displayed. In English, the mnemonic for the Sound File text field is S. In Japanese, the same mnemonic
(S) is placed at the end of the label.

Figure 19 English and Japanese Notification Dialog Boxes

Design Guidelines: Design Considerations

http://java.sun.com/products/jlf/dg/higf.htm (5 sur 9) [05/06/2000 14:14:42]

Benefits of Global Planning
The main benefit of designing an application for the global marketplace is more customers. Many countries
require that companies purchase applications that support their language and culture. Global planning
ensures that your application is easier to translate and maintain (because it has a single source file). A
well-designed application will function the same way in all locales.

Global Design
You can incorporate support for localization into your design by using JFC-supplied layout managers and
resource bundles. In addition, you should take into account that differences exist around the world in
reading order, text, mnemonics, graphics, formats, sorting orders, and fonts.

Internationalization guidelines are identified throughout the book by this symbol. For a list of
additional reading, see Design for Internationalization.

Layout Managers

You can use a layout manager to control the size and location of the components in your application. For

Design Guidelines: Design Considerations

http://java.sun.com/products/jlf/dg/higf.htm (6 sur 9) [05/06/2000 14:14:42]

example, Figure 19 shows that the Sound File label becomes longer when it is translated from English to
Japanese. The spacing between the Sound File label and its text field, however, is the same in both dialog
boxes. For more information on layout managers, see The Java Tutorial at
http://java.sun.com/docs/books/tutorial.

Resource Bundles

You should use resource bundles to store locale-specific data, such as text, colors, graphics, fonts, and
mnemonics. A resource bundle makes your application easier to localize because it provides locale-specific
data without changing the application source code. If your application has a Cancel button, for example,
the resource bundles in English, German, and Chinese would include the text shown in the following
figure.

Figure 20 Cancel Buttons in English, German, and Chinese

For more information on creating resource bundles, see The Java Tutorial.

Reading Order

When you lay out your application, place the components according to your users' reading order. This
order will help users understand the components quickly as they read through them. Reading orders vary
among locales. The reading order in English, for example, is left to right and top to bottom. The reading
order in Middle Eastern languages, on the other hand, is from right to left and top to bottom.

In this book, you will find standards such as "put labels before the component they describe." The term
"before" is determined by the reading order of the user's language. For example, in English, labels appear
to the left of the component they describe.

In the Java 2 SDK, the layout managers FlowLayout and BorderLayout are sensitive to the reading
order of the locale.

Word Order

Keep in mind that word order varies among languages, as shown in the following figure. A noneditable
combo box that appears in the middle of an English sentence does not translate properly in French, where
the adjective should come after the noun. (The correct French sentence is "Utilisez une Flèche Rouge.")

Figure 21 Correct Word Order in English But Not in French

The following figure corrects the problem by using a label before the noneditable combo box. This format
works well in both English and French.

Figure 22 Correct Word Order in Both English and French

Design Guidelines: Design Considerations

http://java.sun.com/products/jlf/dg/higf.htm (7 sur 9) [05/06/2000 14:14:42]

http://java.sun.com/docs/books/tutorial

Mnemonics

You must be careful when choosing mnemonics, which might change in different languages. Make sure
that the characters you choose for your mnemonics are available on international keyboards. In addition,
store mnemonics in resource bundles with the rest of the application's text.

Graphics

You can make localization easier by using globally understood graphics whenever possible. Many graphics
that are easily understood in one locale are puzzling in another locale. For example, using a mailbox to
represent an email application is problematic because the shape and size of mailboxes vary by locale.
Graphics that represent everyday objects, holidays, and seasons are difficult to localize, as are graphics that
include text.

Avoid using graphics that might be offensive in some locales. For example, many hand positions are
considered obscene gestures. Other graphics that sometimes cause offense are pictures of animals and
people. An example of a symbol that works well in all cultures is the use of an airplane to denote an
airport.

Like text, you can place graphics in resource bundles so that the translators can change them without
changing the application source code. The ability to change graphics also benefits users with visual
impairments.

Formats

You can use the formatting classes provided in the Java 2 SDK to automatically format numbers,
currencies, dates, and times for a specific locale. For example, in English, a date might appear as July 26,
1987, and the time as 3:17 p.m. In German, the same date is written as 26. Juli 1987 and the time is 15:17
Uhr.

For numbers and currencies, the class is NumberFormat; for dates and times, the class is
DateFormat; and for strings that contain variable data, the class is MessageFormat. The formatting classes
are part of the java.text package.

Sort Order

You can use the collator classes provided in the Java 2 SDK to enable the sorting of strings by locale. For
example, in Roman languages, sorting is commonly based on alphabetical order (which might vary from
one language to another). In other languages, sorting might be based on phonetics, character radicals, the
number of character strokes, and so on.

The Collator class in the java.text package enables locale-sensitive string sorting.

Fonts

You can place fonts in resource bundles so that they can be changed by the localizers. The ability to change
fonts also benefits users with visual impairments who read print with a magnifier or screen reader.

Design Guidelines: Design Considerations

http://java.sun.com/products/jlf/dg/higf.htm (8 sur 9) [05/06/2000 14:14:42]

Usability Testing

Two tests done early in the design process can show you how well your application works in the global
marketplace. First, you can send draft designs of your application to your translators. Second, you can test
your application with users from the locales you are targeting (for example, test a Japanese version of the
application with Japanese users). This test will help you to determine whether users understand how to use
the product, if they perceive the graphics and colors as you intended them, and if there is anything
offensive in the product.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: Design Considerations

http://java.sun.com/products/jlf/dg/higf.htm (9 sur 9) [05/06/2000 14:14:42]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

4: Visual Design
Visual design and aesthetics affect user confidence in and comfort with your application. A polished and professional
look without excess or oversimplification is not easy to attain. This chapter discusses these high-level, visual aspects
of Java look and feel applications:

Use of themes to control and change the colors and fonts of components to suit your requirements❍

Capitalization of text in interface elements to ensure consistency and readability❍

Layout and alignment of interface elements to enhance clarity, ease of use, and aesthetic appeal❍

Use of animation to provide progress and status feedback❍

Themes
You can use the theme mechanism to control many of the fundamental attributes of the Java look and feel design,
including colors and fonts. You might want to change the colors to match your corporate identity, or you might
increase color contrast and font size to enable users with visual impairments to use your application. The theme
mechanism enables you to specify alternative colors and fonts across an entire Java look and feel application.

The technical documentation for the class javax.swing.plaf.metal.DefaultMetalTheme is available at the
Swing Connection web site at http://java.sun.com/products/jfc/tsc.

Colors
If you want to change the color theme of your application, be sure that your interface elements remain visually
coherent. The Java look and feel uses a simple color model so that it can run on a variety of platforms and on devices
capable of displaying various depths of color. Eight colors are defined for the interface:

Three primary colors to give the theme a color identity and to emphasize selected items❍

Three secondary colors, typically shades of gray, for neutral drawing and inactive items❍

Two additional colors, usually defined as black and white, for the display of text and highlights❍

Within the primary and secondary color groups in the default theme, there is a gradation from dark (primary 1 and
secondary 1) to lighter (primary 2 and secondary 2) to lightest (primary 3 and secondary 3).

Primary Colors

The visual elements of Java look and feel applications use the primary colors as follows:

Primary 1 for active window borders, shadows of selected items, and labels❍

Primary 2 for selected menu titles and items, active scroll boxes, and progress bar fill❍

Primary 3 for large colored areas, such as the title bar of active internal frames and selected text❍

The usage is illustrated in the following figure.

Figure 23 Primary Colors in Default Color Theme

Design Guidelines: Visual Design

http://java.sun.com/products/jlf/dg/higg.htm (1 sur 11) [05/06/2000 14:16:32]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/products/jfc/tsc

Secondary Colors

The visual elements of Java look and feel applications use the secondary colors as follows:

Secondary 1 for the dark border that creates flush 3D effects for items such as command buttons❍

Secondary 2 for inactive window borders, shadows, pressed buttons, and dimmed command button text❍

Secondary 3 for the background canvas and inactive title bars for internal frames❍

The usage is shown in the following figure.

Figure 24 Secondary Colors in Default Color Theme

Black and White

Black and white have defined roles in the Java look and feel color model. In particular, black appears in:

Design Guidelines: Visual Design

http://java.sun.com/products/jlf/dg/higg.htm (2 sur 11) [05/06/2000 14:16:32]

User text, such as the entry in an editable text field❍

Control text, such as menu titles and menu items❍

Title text in the internal frame as well as the button text in command buttons❍

Tab text in tabbed panes❍

Text in noneditable text fields❍

White is used for:

Highlighting the flush 3D appearance of such components as command buttons❍

Highlighting in menus❍

Default Java Look and Feel Theme

The following table summarizes the eight colors defined in the Java look and feel. It provides swatches and values
representing each color in the default theme. It also gives details about the roles each color plays in basic drawing,
three-dimensional effects, and text.

Table 2 Colors of the Default Java Look and Feel Theme

Name Basic Drawing 3D Effects Text

Primary 1
RGB 102-102-153
Hex #666699

Active window borders Shadows of selected items System text (for example,
labels)

Primary 2
RGB 153-153-204
Hex #9999CC

Highlighting and selection
(for example, of menu titles
and menu items); indication
of keyboard focus

Shadows (color)

Primary 3
RGB 204-204-255
Hex #CCCCFF

Large colored areas (for
example, the active title
bar)

Text selection

Secondary 1
RGB 102-102-102
Hex #666666

Dark border for flush 3D
style

Secondary 2
RGB 153-153-153
Hex #999999

Inactive window borders Shadows; button
mousedown

Dimmed text (for
example, inactive menu
items or labels)

Secondary 3
RGB 204-204-204
Hex #CCCCCC

Canvas color (that is,
normal background color);
inactive title bar

Black
RGB 000-000-000
Hex #000000

User text and control text
(including items such as
menu titles)

White
RGB 255-255-255
Hex #FFFFFF

Highlights Background for user text
entry area

Unless you are defining a reverse-video theme, maintain a dark-to-light gradation like the one in the default
theme so that interface objects are properly rendered. To reproduce three-dimensional effects correctly, make your
secondary 1 color darker than secondary 3 (the background color); make secondary 2 (used for highlights) lighter
than the background color.

Ensure that primary 1 (used for labels) has enough contrast with the background color (secondary 3) to make
text labels easily readable.

Design Guidelines: Visual Design

http://java.sun.com/products/jlf/dg/higg.htm (3 sur 11) [05/06/2000 14:16:32]

Redefinition of Colors

The simplest modification you can make to the color theme is to redefine the primary colors. For instance, you can
substitute greens for the purple-blues used in the default theme, as shown in the following figure.

Figure 25 Green Color Theme

You can use the same value for more than one of the eight colors--for instance, a high-contrast theme might use only
black, white, and grays. The following figure shows a theme that uses the same grays for primary 2 and secondary 2.
White functions as primary 3 and secondary 3 as well as in its normal role.

Figure 26 High-Contrast Color Theme

Fonts
As part of the theme mechanism and parallel to the color model, the Java look and feel provides a default font style
model for a consistent look. You can use themes to redefine font typefaces, sizes, and styles in your application. The
default Java look and feel theme defines four type styles: the control font, the system font, the user font, and the
small font. The actual fonts used vary across platforms.

The following table shows the mappings to Java look and feel components for the default theme.

Table 3 Type Styles Defined by the Java Look and Feel

Type Style Default Theme Uses

Control 12-point bold Buttons, checkboxes, menu titles, and window titles

Small 10-point plain Keyboard shortcuts in menus and tool tips

Design Guidelines: Visual Design

http://java.sun.com/products/jlf/dg/higg.htm (4 sur 11) [05/06/2000 14:16:32]

System 12-point plain Tree views and tool tips

User 12-point plain Text fields and tables

To ensure consistency, ease of use, and visual appeal, use the supplied default fonts unless there is compelling reason
for an application-wide change (such as higher readability). Use the theme mechanism if you do make modifications.

Do not write font sizes or styles directly into your application source code. Some users might be able to read
print only with a screen reader or a magnifier.

Use the appropriate layout manager to ensure that the layout of your application can handle different font sizes.

Ensure that the font settings you choose are legible and can be rendered well on your target systems.

In the default theme, six methods are used to return references to the four type styles. The
getControlTextFont, getMenuTextFont, and getWindowTitleFont methods return the control font;
getSystemTextFont returns the system font; getUserTextFont returns the user font; and getSubTextFont returns the
small font.

All fonts in the Java look and feel are defined in the default Java look and feel theme as Dialog, which maps
to a platform-specific font.

Capitalization of Text in the Interface
This section describes standards for the capitalization of text in the Java look and feel. Text is an important design
element and appears throughout your application in such components as command buttons, checkboxes, radio
buttons, alert box messages, and labels for groups of interface elements. Strive to be concise and consistent with
language.

For all text that appears in the interface elements of your application, follow one of two capitalization
conventions: headline capitalization or sentence capitalization. Use headline capitalization for most names, titles,
labels, and short text. Use sentence capitalization for lengthy text messages.

Do not capitalize words automatically. You might encounter situations in your interface when capitalization is
not appropriate, as in window titles for documents users have named without using capitalization.

Use standard typographical conventions for sentences and headlines in your application components. Let
translators determine the standards in your target locales.

Place all text in resource bundles so that localization experts don't have to change your application's source code
to accommodate translation.

Headline Capitalization in English
Most items in your application interface should use headline capitalization, which is the style traditionally used for
book titles (and the section titles in this book). Capitalize every word except articles ("a," "an," and "the"),
coordinating conjunctions (for example, "and," "or," "but," "so," "yet," and "nor"), and prepositions with fewer than
four letters (like "in"). The first and last words are always capitalized, regardless of what they are.

Use headline capitalization for the following interface elements (examples are in parentheses):

Checkbox text (Automatic Save Every Five Minutes)❍

Combo box labels and text (Ruler Units:, Centimeters)❍

Command button text (Don't Save)❍

Icon names (Trash Can)❍

Labels for groups of buttons or controls (New Contribution To:)❍

Menu items (Save As...)❍

Design Guidelines: Visual Design

http://java.sun.com/products/jlf/dg/higg.htm (5 sur 11) [05/06/2000 14:16:32]

Menu titles (View)❍

Radio button text (Start at Top)❍

Slider text (Left)❍

Tab names (RGB Color)❍

Text field labels (Appreciation Rate:)❍

Titles of windows, panes, and dialog boxes (Color Chooser)❍

Tool tips (Cut Selection)❍

If your tool tips are longer than a few words, sentence capitalization is acceptable. Be consistent within your
application.

Sentence Capitalization in English
When text is in the form of full sentences, capitalize only the first word of each sentence (unless the text contains
proper nouns, proper adjectives, or acronyms that are always capitalized). Avoid the use of long phrases that are not
full sentences.

Use sentence capitalization in the following interface elements (examples are in parentheses):

Dialog box text (The document you are closing has unsaved changes.)❍

Error or help messages (The printer is out of paper.)❍

Labels that indicate changes in status (Operation is 75% complete.)❍

Layout and Visual Alignment
Give careful consideration to the layout of components in your windows and dialog boxes. A clear and consistent
layout streamlines the way users move through an application and helps them utilize its features efficiently. The best
designs are aesthetically pleasing and easy to understand. They orient components in the direction in which people
read them, and they group together logically related components.

Note - Throughout this book, the spacing illustrations for all user interface elements use pixels as the unit of
measurement. A screen at approximately 72 to 100 pixels per inch is assumed.

When you lay out your components, remember that users might use the mouse, keyboard, or an assistive
technology to navigate through them; therefore, use a logical order (for instance, place the most important elements
within a dialog box first in reading order).

Between-Component Padding and Spacing Guidelines
Use multiples of 6 pixels for perceived spacing between components. If the measurement involves a component edge
with a white border, subtract 1 pixel to arrive at the actual measurement between components (because the white
border on active components is less visually significant than the dark border). In these cases, you should specify the
actual measurement as 1 pixel less--that is, 5 pixels between components within a group and 11 pixels between
groups of components.

Note - Exceptions to these spacing guidelines are noted in the relevant component chapters in Part III. For instance,
the perceived spacing between toolbar buttons is 3 pixels, whereas the actual spacing is 2 pixels.

In the following figure, a perceived 6-pixel vertical space is actually 5 pixels between checkbox components. The
figure also shows how the perceived spacing between inactive objects is preserved. Note that the dimensions of
inactive components are the same as active objects, although the white border of active objects is replaced by an
invisible 1-pixel border on the bottom and right side of inactive objects.

Figure 27 Perceived and Actual Spacing of Active and Inactive Components

Design Guidelines: Visual Design

http://java.sun.com/products/jlf/dg/higg.htm (6 sur 11) [05/06/2000 14:16:32]

Insert 5 pixels (6 minus 1) between closely related items such as grouped checkboxes. Insert 11 pixels (12
minus 1) for greater separation between sets of components (such as between a group of radio buttons and a group of
checkboxes). Insert 12 pixels between items that don't have the flush 3D border highlight (for instance, text labels,
titled borders, and padding at the top and left edges of a pane).

For guidelines on the spacing of individual JFC components with the Java look and feel, see Toolbar Button Spacing
and Padding, Command Button Spacing, Radio Button Spacing, and Checkbox Spacing.

Design Grids
The most effective method of laying out user interface elements is to use a design grid with blank space to set apart
logically related sets of components. A grid divides the available space into areas that can help you to arrange and
align components in a pleasing layout. Grids make it easy for users to see the logical sequence of tasks and to
understand the relationships between sets of components.

The following illustration shows a sample grid that provides standard margins and divides the remaining space into
five columns. Horizontal divisions aid in scanning and interpreting the components and sets of related options.

Use the appropriate layout manager to control horizontal space for the variable width of internationalized text
strings.

Figure 28 Grid With Horizontal Divisions

You can use the number and width of components and their associated labels to determine the number of columns in
a grid. At the beginning of the design process, vertical divisions are more difficult to set because they depend on the
depth of components and sets of components, which are not yet placed.

Developing a grid is an ongoing process. If you know how much space is available, you can start working with the

Design Guidelines: Visual Design

http://java.sun.com/products/jlf/dg/higg.htm (7 sur 11) [05/06/2000 14:16:32]

components to determine the most effective use of space. A grid can also help you to determine how much space to
allocate to a given set of components. If you can define a grid that will work for a number of layouts, your
application will have a more consistent appearance.

For spacing between rows and columns, use multiples of 6 pixels minus 1, to allow for the flush 3D border (see
Between-Component Padding and Spacing Guidelines).

Design grids are not to be confused with the AWT Grid Layout Manager.

Layout of a Simple Dialog Box

The following illustrations show steps in the process of using a grid to lay out a simple find dialog box.

First, determine the functional requirements. Then add the components according to the Java look and feel placement
and spacing standards. For instance, you must right-align command buttons in dialog boxes at the bottom and
separate them vertically from the rest of the components by 17 pixels.

Figure 29 Vertical Separation of Command Buttons

Using the grid as a guide, add the rest of the components. Place the most important options, or those you expect users
to complete first, prior to others in reading order.

In the following illustration, the most important option--the text field for the search string--has been placed first.
Related options are aligned with it along one of the column guides. Spacing between components and groups of
components follows the Java look and feel standards.

Figure 30 Vertical Separation of Component Groups

Titled Borders for Panels
The JFC enables you to specify a titled border for panels, which you can use as containers for components inside
your application's windows.

Figure 31 Spacing for a Panel With Titled Border

Design Guidelines: Visual Design

http://java.sun.com/products/jlf/dg/higg.htm (8 sur 11) [05/06/2000 14:16:32]

Since titled borders take up considerable space, do not use them to supply titles for components; use labels
instead.

Use a titled border in a panel to group two or more sets of related components, but do not draw titled borders
around a single set of checkboxes or radio buttons.

Use titled borders sparingly: they are best when you must emphasize one group of components or separate one
group of components from other components in the same window. Do not use multiple rows and columns of titled
borders; they can be distracting and more confusing than simply grouping the elements with a design grid.

Never nest titled borders. It becomes difficult to see the organizational structure of the panel and too many
lines cause distracting optical effects.

Insert 12 pixels between the edges of the panel and the titled border. Insert 12 pixels between the bottom of the
title and the top of the first label (as well as between the label and the components) in the panel. Insert 11 pixels
between component groups and between the bottom of the last component and the lower border.

Allow for internationalized titles and labels in panels that use titled borders.

A titled border can be created as follows:
myPanel.setBorder(new TitledBorder(new LineBorder
(MetalLookAndFeel.getControlShadow()),
"<< Your Text Here >>"));

Text Layout
Text is an important design element in your layouts. The way you align and lay out text is vital to the appearance and
ease of use of your application. The most significant layout issues with respect to text are label orientation and
alignment.

Use language that is clear, consistent, and concise throughout your application text. Moreover, ensure that the
wording of your labels, component text, and instructions is legible and grammatically correct.

Label Orientation

You indicate a label's association with a component when you specify its relative position. Hence, consistency and
clarity are essential. In the following figure, the label appears before and at the top of the list in reading order.

Figure 32 Label Orientation

Design Guidelines: Visual Design

http://java.sun.com/products/jlf/dg/higg.htm (9 sur 11) [05/06/2000 14:16:32]

In general, orient labels before the component to which they refer, in reading order for the current locale. For
instance, in the U.S. locale, place labels above or to the left of the component. Positioning to the left is preferable,
since it allows for separation of text and components into discrete columns. This practice helps users read and
understand the options.

Label Alignment

Between components, alignment of multiple labels becomes an issue. Aligning labels to a left margin can make them
easier to scan and read. It also helps to give visual structure to a block of components, particularly if there is no
immediate border (such as a window frame) surrounding them. If labels vary greatly in length, the use of right
alignment can make it easier to determine the associated component; however, this practice also introduces large
areas of negative space, which can be unattractive. The use of concise wording in labels can help to alleviate such
difficulties. For an example of right-aligned labels in an applet, see Figure 12.

Align labels with the top of associated components.

Avoid the use of titled borders as organizing elements. They add clutter reduce readability, and compound
alignment problems by introducing the title as an additional text label. Instead, use design grids and careful
alignment of labels to give visual structure to your layouts.

To accommodate differences in languages, decide on the behavior you want to occur during resize operations.
Be specific about layout, spacing, and ordering. Use the layout managers to accommodate these differences.

Since the length and height of translated text varies, use layout managers properly to allow for differences in
labels.

Animation
If used appropriately, animation has great potential to be a useful and attractive part of a user interface. You can use
animation to let users know that the system is busy with a task or to draw attention to important events.

Do not overuse animation since it distracts users and draws attention away from other elements of your
application.

Screen readers, which are used by people with visual impairments, do not recognize images that move. Use
the accessibleDescription field to describe what is represented by the animation.

Progress and Delay Indication
Animation is especially useful when you want to communicate that the system is busy. Progress indication shows
users the state of an operation; delay indication lets users know that an application or a part of an application is not
available until an operation is done.

Properly used, animation can be of minimal disruption to the user. Feedback lets users know the application has
received their input and is operating on it.

Design Guidelines: Visual Design

http://java.sun.com/products/jlf/dg/higg.htm (10 sur 11) [05/06/2000 14:16:32]

When the application is processing a long operation and users can continue to work in other areas of the
application, provide them with information regarding the state of the process.

During a long operation, when users must wait until the operation is complete, change the shape of the pointer.

For example, an application's pointer might change to the wait pointer after the user selects a file and before the file
opens. For information on the JFC-supplied pointer shapes available in the Java look and feel, see Table 7.

If you know the estimated length of an operation (for example, if the user is copying files) or the number of
operations, use the Java look and feel progress bar. This bar fills from left to right as the operation progresses, as
shown in the following figure.

Figure 33 Animation in a Progress Dialog Box

For more on progress bars, see Progress Bars.

Another way to indicate delay is to use animated pointers, which are supported by the Java 2 platform. Instead of just
changing to a wait pointer, you can go one step further by animating the pointer image while the system is busy.

System Status Animation
Animation is useful when you want to call attention to events. For instance, in a mail application, you might use
animation to indicate that new mail has arrived. Another example is a monitoring system that uses animation to alert
users when failures occur.

When creating system status animation, consider the target users and their environment. If the animation needs
to be visible from across the room, a bolder animation coupled with sound might be just the right thing. On the other
hand, that same animation viewed by a user sitting at the workstation would be annoying.

When feasible, let users configure system status animation, so they can adapt their systems to the environment.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: Visual Design

http://java.sun.com/products/jlf/dg/higg.htm (11 sur 11) [05/06/2000 14:16:32]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

5: Application Graphics
This chapter provides details on:

The use of cross-platform color❍

The design of application graphics, such as button graphics, icons, and symbols❍

The use of graphics to enhance your product and corporate identity❍

Because the quality of your graphics can affect user confidence and even the perceived stability of your application, it is wise to
seek the advice of a professional visual designer.

Working With Cross-Platform Color
In a cross-platform delivery environment, you need to ensure that the visual components of your application reproduce legibly
and aesthetically on all your target systems. In many cases, you might not know which platforms will be used to run your
software or what display capabilities they might have.

Online graphics consist of the visual representations of JFC components in the Java look and feel, which are drawn for you by
the toolkit, and application graphics such as icons and splash screens, which you supply.

The Java look and feel components use a simple color model that reproduces well even on displays with a relatively small
number of available colors. You can use the theme mechanism to change the colors of the components. For details, see Themes.

Use themes to control the colors of Java look and feel components--for instance, to provide support for display devices
with minimal available colors (fewer than 16 colors).

You need to supply icons, button graphics, pictures and logos for splash screens, and About boxes. Since these graphics might
be displayed on a number of different platforms and configurations, you must develop a strategy for ensuring a high quality of
reproduction.

Use color only as a secondary means of representing important information. Make use of other characteristics (shape,
texture, size, or intensity contrast) that do not require color vision or a color monitor.

The colors available on your users' systems, along with graphic file formats, determine how accurately the colors you choose are
displayed on screen. Judging color availability is difficult, especially when you are designing applications to be delivered on
multiple configurations or platforms.

Working With Available Colors
The number of colors available on a system is determined by the bit depth, which is the number of bits of information used to
represent a single pixel on the monitor. The lowest number of bits used for modern desktop color monitors is usually 8 bits (256
colors); 16 bits provide for thousands of colors (65,536, to be exact); and 24 bits, common on newer systems, provide for
millions of colors (16,777,216). The specific colors available on a system are determined by the way in which the target
platform allocates colors. Available colors might differ from application to application.

Designers sometimes use predefined color palettes when producing images. For example, some web designers work within a set
of 216 "web-safe" colors. These colors reproduce in many web browsers without dithering (as long as the system is capable of
displaying at least 256 colors). Dithering occurs when a system or application attempts to simulate an unavailable color by using
a pattern of two or more colors or shades from the system palette.

Outside web browsers, available colors are not so predictable. Individual platforms have different standard colors or deal with
palettes in a dynamic way. The web-safe colors might dither when running in a standalone application, or even in an applet
within a browser that usually does not dither these colors. Since the colors available to a Java application can differ each time it
is run, especially across platforms, you cannot always avoid dithering in your images.

Identify and understand the way that your target platforms handle colors at different bit depths. To achieve your desired
effect, test your graphics on all target platforms at depths less than 16 bits.

Choosing Graphic File Formats

Design Guidelines: Application Graphics

http://java.sun.com/products/jlf/dg/high.htm (1 sur 16) [05/06/2000 14:13:37]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

You can use two graphic file formats for images on the Java platform: GIF (Graphics Interchange Format) and JPEG (named
after its developers, the Joint Photographic Experts Group).

GIF is the common format for application graphics in the Java look and feel. GIF files tend to be smaller on disk and in memory
than JPEG files. Each GIF image is limited to 256 colors, or 8 bits of color information per pixel. A GIF file includes a list (or
palette) of the colors (256 or fewer) used in the image. The number of colors in the palette and the complexity of the image are
two factors that affect the size of the graphic file.

On 8-bit systems, some of the colors specified in a GIF file will be unavailable if they are not part of the system's current color
palette. These unavailable colors will be dithered by the system. On 16-bit and 24-bit systems, more colors are available and
different sets of colors can be used in different GIF files. Each GIF image, however, is still restricted to a set of 256 colors.

JPEG graphics are generally better suited for photographs than for the more symbolic style of icons, button graphics, and
corporate type and logos. JPEG graphics use a compression algorithm that yields varying image quality depending on the
compression setting, whereas GIF graphics use lossless compression that preserves the appearance of the original 8-bit image.

Choosing Colors
At monitor depths greater than 8 bits, most concerns about how any particular color reproduces become less significant. Any
system capable of displaying thousands (16 bits) or millions (24 bits) of colors can find a color very close to, or exactly the
same as, each value defined in a given image. Newer systems typically display a minimum of thousands of colors. Different
monitors and different platforms might display the same color differently, however. For instance, a given color in one GIF file
might look different to the eye from one system to another.

Many monitors or systems still display only 256 colors. For users with these systems, it might be advantageous to use colors
known to exist in the system palette of the target platforms. Most platforms include a small set of "reserved" colors that are
always available. Unfortunately, these reserved colors are often not useful for visual design purposes or for interface elements
because they are highly saturated (the overpowering hues one might expect to find in a basic box of magic markers).
Furthermore, there is little overlap between the reserved color sets of different platforms, so reserved colors are not guaranteed
to reproduce without dithering across platforms.

Select colors that do not overwhelm the content of your application or distract users from their tasks. Stay away from
saturated hues. For the sake of visual appeal and ease of use, choose groups of muted tones for your interface elements.

Since there is no lowest-common-denominator solution for choosing common colors across platforms (or even colors that are
guaranteed to reproduce on a single platform), some of the colors in your application graphics will dither when running in 8-bit
color. The best strategy is to design images that dither gracefully, as described in the following section.

Maximizing Color Quality
Images with fine color detail often reproduce better on 8-bit systems than those images that are mapped to a predefined palette
(such as the web-safe palette) and use large areas of solid colors. Dithering in small areas is less noticeable than it is over larger
areas, and, for isolated pixels of a given color, dithering simply becomes color substitution. Often colors in the system palette
can provide a fair-to-good match with those specified in a GIF file. The overall effect of color substitution in small areas can be
preferable to the dithering patterns produced for single colors, or to the limited number of colors resulting from pre-mapping to
a given color palette.

The following table shows a graphic with a blur effect that contains a large number of grays. Remapping this graphic to the
web-safe palette reduces the number of grays to two and results in an unpleasing approximation of the original graphic.
However, the original GIF file displays acceptably in a Java application running in 8-bit color on various operating systems,
even though the systems might not have available the exact colors in the image.

Table 4 Remappings of a Blurred Graphic

Original Graphic Microsoft Windows Macintosh CDE

Original colors

Design Guidelines: Application Graphics

http://java.sun.com/products/jlf/dg/high.htm (2 sur 16) [05/06/2000 14:13:37]

Remapped to web-safe palette

There are no absolutely safe cross-platform colors. Areas of solid color often dither, producing distracting patterns. One
effective way to avoid coarse dithering patterns is to "pre-dither" your artwork intentionally. This approach minimizes obvious
patterned dithering on 8-bit systems while still permitting very pleasing effects on systems capable of displaying more than 256
colors.

To achieve this effect, overlay a semitransparent checkerboard pattern on your graphics. The following figure shows how to
build a graphic using this technique.

Figure 34 Adding a Pattern to Avoid Coarse Dithering Patterns

To build the graphic:

1. Use a graphics application with layers.

2. Apply the pattern only to areas that might dither badly. Leave borders and other detail lines as solid
colors.

3. Play with the transparency setting for the pattern layer until the pattern is dark enough to mix with
the color detail without overwhelming it visually. A 25% transparency with the default secondary 2
color (RGB 153-153-153) produces a good result for most graphics.

4. Test your results on your target 8-bit platforms.

The following table shows the variable results of graphic reproduction in 8-bit color, using different styles for various operating
systems.

Table 5 Variations in Reproduction of 8-Bit Color

Styles Original Graphic Windows 95
(8 bits)

Mac OS 8.5
(8 bits)

CDE
(8 bits)

Plain

Dithering added

Gradient

Design Guidelines: Application Graphics

http://java.sun.com/products/jlf/dg/high.htm (3 sur 16) [05/06/2000 14:13:37]

Dithering added to gradient

The plain graphic in the preceding table, which uses a large area of a single web-safe color, dithers badly on Windows 95 and
CDE. Adding a pattern to the plain color improves the appearance only slightly. A gradient effect is added to the graphic to add
some visual interest; this produces a banding effect on Mac OS 8.5. Adding the dithered pattern produces good results on all
three platforms with 8-bit color. In 16-bit and 24-bit color, the graphic reproduction is very close to, or exactly the same as, the
originals.

Designing Graphics in the Java Look and Feel Style
Application graphics that you design fall into three broad categories:

Icons, which represent objects that users can select, open, or drag❍

Button graphics, which identify actions, settings, and tools (modes of the application)❍

Symbols, which are used for general identification and labeling (for instance, as indicators of conditions or states)❍

Table 6 Examples of Application Graphics

Graphic Type Examples Basic 3D Style Pre-Dithered

Icons

Button graphics

Symbols

Use the GIF file format for iconic and symbolic graphics. It usually results in a smaller file size than the JPEG format and
uses lossless compression.

Put all application graphics in resource bundles.

Where possible, use globally understood icons, button graphics, and symbols. Where none exist, create them with input
from international sources. If you can't create a single symbol that works in all cultures, define appropriate graphics for different
locales (but try to minimize this task).

Designing Icons
Icons typically represent containers, documents, network objects, or other data that users can open or manipulate within an
application. An icon usually appears with identifying text.

The two standard sizes for icons are 16 x 16 pixels and 32 x 32 pixels. The smaller size is more common and is used in JFC
components such as the internal frame (to identify the contents of the window or minimized internal frame) and tree view (for
container and leaf nodes). You can use 32 x 32 icons for applications designed for users with visual impairments or for objects
in a diagram, such as a network topology.

Design icons to identify clearly the objects or concepts they represent. Keep the drawing style symbolic, as opposed to

Design Guidelines: Application Graphics

http://java.sun.com/products/jlf/dg/high.htm (4 sur 16) [05/06/2000 14:13:37]

photo-realistic. Too much detail can make it more difficult for users to recognize what the icon represents.

When designing large and small icons that represent the same object, make sure that they have similar shape, color, and
detail.

Specify values for the accessibleDescription and accessibleName properties for each icon so that assistive technologies
can find out what it is and how to use it.

Working With Icon Styles
The following figure shows sample 32 x 32 and 16 x 16 icons for files and folders drawn in two different styles. Note that many
objects are difficult to draw in a flush 3D style, particularly at the smaller 16 x 16 size. Three visual elements appear in the
sample icons: an interior highlight (to preserve the flush style used throughout the Java look and feel), a pattern to minimize
dithering (described in Working With Available Colors), and a dark border.

Figure 35 Two Families of Icons

Use a single style to create a "family" of icons that utilize common visual elements to reflect similar concepts, roles, and
identity. Icons in families might use a similar palette, size, and style.

Don't mix two- and three-dimensional styles in the same icon family.

For satisfactory display on a wide range of background colors and textures, use a clear, dark exterior border and ensure
that there is no anti-aliasing or other detail around the perimeter of the graphic.

Drawing Icons
The following section uses a simple folder as an example of how to draw an icon. Before you start, decide on a general design
for the object. In this example, a hanging file folder is used to represent a directory.

1. Draw a basic outline shape first.

Icons can use as much of the available space as
possible, since they are displayed without borders.
Icons should usually be centered horizontally in the
available space. For vertical spacing, consider
aligning to the baseline of other icons in the set, or
aligning with text (for instance, in a tree).

If both sizes are required, work on them at the same
time rather than trying to scale down a detailed 32 x
32 icon later; both sizes then can evolve into designs
that are recognizable as the same object.

Design Guidelines: Application Graphics

http://java.sun.com/products/jlf/dg/high.htm (5 sur 16) [05/06/2000 14:13:37]

2. Add some basic color (green is used here).

3. Draw a highlight on the inside top and left.

This practice creates the flush 3D style of the Java
look and feel.

4. Add some detail to the icon.

In this case, the crease or "fold" mark in the hanging
folder is drawn.

5. Try a gradient that produces a "shining" effect
instead of the flat green.

Here a dark green has replaced the black border on
the right and bottom; black is not a requirement as
long as there is a well-defined border.

Design Guidelines: Application Graphics

http://java.sun.com/products/jlf/dg/high.htm (6 sur 16) [05/06/2000 14:13:37]

6. Add a pattern to prevent coarse dithering. This
technique minimizes banding and dithering on
displays with 256 or fewer colors (see Maximizing
Color Quality).

The first graphic is an exploded view of an icon that
shows how the pattern is added.

The next graphic shows an icon in which a pattern
has been added to the color detail.

7. Define the empty area around the icon graphic
(in which you have not drawn anything) as
transparent pixels in the GIF file.

This practice ensures that the background color
shows through; if the icon is dragged to or displayed
on a different background, the area surrounding it
matches the color or pattern of the rest of the
background.

Designing Button Graphics
Button graphics appear inside buttons--most often in toolbar buttons. Such graphics identify the action, setting, mode, or other
function represented by the button. For instance, clicking the button might carry out an action (creating a new file) or set a state
(boldfaced text).

The two standard sizes for button graphics are 16 x 16 pixels and 24 x 24 pixels. Either size (but not both at the same time) can
be used in toolbars or tool palettes, depending on the amount of space available. For details on toolbars, see Toolbars. For more
on palette windows, see Palettes.

If you include both text and graphics in a button, the size of the button will exceed 16 x 16 or 24 x 24 pixels. If the button size is
an issue, consider using tool tips instead.

Do not include text as part of your button graphics (GIF files). Use button text instead. Keep the button text in a resource
bundle to facilitate localization.

Note, however, that toolbar buttons can display text instead of graphics, particularly if your usability testing establishes that the
action, state, or mode represented by the button graphic is difficult for users to comprehend. Tool tips for toolbar buttons can
help clarify the meaning of a button. For details, see Tool Tips for Toolbar Buttons.

When designing your button graphics, clearly show the action, state, or mode that the button initiates.

Design Guidelines: Application Graphics

http://java.sun.com/products/jlf/dg/high.htm (7 sur 16) [05/06/2000 14:13:37]

Keep the drawing style symbolic; too much detail can make it more difficult for users to understand what a button does.

Use a flush 3D border to indicate that a button is clickable.

Draw a clear, dark border without anti-aliasing or other exterior detail (except the flush 3D highlight) around the outside
of a button graphic.

Using Button Graphic Styles
The following figure shows sample button graphics designed for toolbars and for the contents of a tool palette.

Figure 36 Button Graphics for a Toolbar and a Tool Palette

Use a single style to create a "family" of button graphics with common visual elements. You might use a similar palette,
size, and style for different button groups, such as toolbar buttons, toggle buttons, or command buttons. Review the graphics in
context before finalizing them.

Producing the Flush 3D Effect
To produce the flush 3D effect, add an exterior white highlight on the outside right and bottom of the graphic and an interior
highlight on the inside left and top.

Figure 37 Flush 3D Effect in a Button Graphic

Working With Button Borders
The size of a button graphic includes all the pixels within the border. As shown in the following illustration, horizontal and
vertical dimensions are both either 24 or 16 pixels. The border abuts the button graphic (that is, there are no pixels between the
border and the graphic).

Figure 38 Button Graphics With Borders

Design Guidelines: Application Graphics

http://java.sun.com/products/jlf/dg/high.htm (8 sur 16) [05/06/2000 14:13:37]

Determining the Primary Drawing Area
Because the white pixels in both the button border and the button graphic are less visually significant than the darker borders,
the area used for most of the drawing is offset within the 16 x 16 or 24 x 24 space. The following illustration shows the standard
drawing area for both button sizes. Note that the white highlight used to produce the flush 3D style in the button graphic might
fall outside this area.

Figure 39 Primary Drawing Area in Buttons

The following illustrations show 16 x 16 and 24 x 24 button graphics that use the maximum recommended drawing area. Notice
that on all sides there are 2 pixels between the dark border of the button graphic and the dark portion of the button border.

Figure 40 Maximum-Size Button Graphics

Design Guidelines: Application Graphics

http://java.sun.com/products/jlf/dg/high.htm (9 sur 16) [05/06/2000 14:13:37]

Drawing the Button Graphic
When drawing a button graphic, first decide on a general design that represents the action or setting activated by the button. In
the following examples, a clipboard suggests the Paste command.

1. Decide which size you want to use for the button or toolbar graphic.

2. Draw a basic outline shape, taking care to remain within the primary drawing area.

Design Guidelines: Application Graphics

http://java.sun.com/products/jlf/dg/high.htm (10 sur 16) [05/06/2000 14:13:37]

3. Add some basic color.

4. Add the flush 3D effect by drawing highlights on the inside left and top, and on the outside bottom and right of the
outline.

This is a good basic design, but because of the large area using a single color, the graphic lacks visual interest and might not
reproduce well on some systems.

5. Try a gradient instead of the flat color.

Design Guidelines: Application Graphics

http://java.sun.com/products/jlf/dg/high.htm (11 sur 16) [05/06/2000 14:13:37]

6. Add a pattern. This technique minimizes banding and dithering on displays with 256 or fewer colors (see Maximizing
Color Quality).

The first figure shows an exploded view of the button graphic without flush 3D highlights. The next figure shows the effect of
the pattern on the color detail of the button graphic.

7. Define the empty area around your button graphic (in which you have not drawn anything) as transparent pixels in
the GIF file.

This practice ensures that the background color shows through; if the theme changes, the area around the button graphic will
match the rest of the background canvas in the interface.

Design Guidelines: Application Graphics

http://java.sun.com/products/jlf/dg/high.htm (12 sur 16) [05/06/2000 14:13:37]

Designing Symbols
Symbols include any small graphic (typically 48 x 48 pixels or smaller) that stands for a state or a concept but has no directly
associated action or object. Symbols might appear within dialog boxes, system status alert boxes, and event logs. Saturated
colors might be useful for status or warning symbols.

The examples in the following figure show the graphic from an Info alert box and a caution symbol superimposed on a folder
icon to indicate a hypothetical state. The style for symbols is not as narrowly defined as that for icons and button graphics. The
examples in the following figure use a flush or etched effect for interior detail but not for the border of the graphic.

Figure 41 Symbols

Ensure adequate contrast between a warning symbol and the icon or background it appears against.

Designing Graphics for Corporate and Product Identity
Application graphics present an excellent opportunity for you to enhance your corporate or product identity. This section
presents information about installation screens, splash screens, About boxes, and login splash screens.

Note - The examples presented in this section use the sample text-editing and mail applications, MetalEdit and MetalMail. They
are not appropriate for third-party use.

Use the JPEG file format for any photographic elements in your installation screens, splash screens, and About boxes.

Designing Installation Screens
An installation screen is a window containing images that are displayed in an application installer. Often the first glimpse users
have of your application is the installer. Consequently, an installation screen introduces and reinforces your corporate and
product identity. The number of screens in an installer can vary.

Use a plain window for installation screens, and draw any desired border inside the window.

Provide a clearcut way for your users to move through the steps required to perform the installation, and enable them to
cancel or stop the installation at any point.

The JWindow component is typically used to implement plain windows.

Design Guidelines: Application Graphics

http://java.sun.com/products/jlf/dg/high.htm (13 sur 16) [05/06/2000 14:13:37]

See Layout and Visual Alignment for general guidelines on how to arrange and align items.

Designing Splash Screens
A splash screen is a plain window that appears briefly in the time between the launch of a program and the appearance of its
main application window. Nothing other than a blank space is included with a JFC-supplied plain window; you must provide the
border and the contents of the splash screen. For instance, the black border on the window in the following figure is part of the
GIF file supplied by the splash screen designer.

Figure 42 Splash Screen for MetalEdit

Although not required, splash screens are included in most commercial products. Splash screens typically have the following
elements:

Company logo❍

Product name (trademarked, if appropriate)❍

Visual identifier of the product or product logo❍

Check with your legal adviser about requirements for placing copyright notices or other legal information in your splash
screens.

To get the black border that is recommended for splash screens, you must include a 1-pixel black border as part of the
image you create.

The JWindow component, not the JFrame component, is typically used to implement the plain window that provides the
basis for splash screens.

Designing Login Splash Screens
If your application requires users to log in, you might consider replacing the traditional splash screen with a login splash screen.

Figure 43 Login Splash Screen for MetalMail

Design Guidelines: Application Graphics

http://java.sun.com/products/jlf/dg/high.htm (14 sur 16) [05/06/2000 14:13:37]

The elements of this screen might include:

Label and text field for a login user name❍

Label and password field❍

Label and editable combo box for any other information required by the system❍

Buttons for logging in and canceling the login splash screen❍

To save time and to increase the chance of users viewing a splash screen, it is a good idea to combine your login screen and
your splash screen.

Provide a way for users to exit the login splash screen without first logging in.

The JDialog component, not the JWindow component, is typically used to implement a login splash screen.

Designing About Boxes
An About box is a dialog box that contains basic information about your application.

Figure 44 About Box for MetalEdit

An About box might contain the following elements:

Design Guidelines: Application Graphics

http://java.sun.com/products/jlf/dg/high.htm (15 sur 16) [05/06/2000 14:13:37]

Product name (trademarked, if appropriate)❍

Version number❍

Company logo❍

Product logo or a visual reminder of the product logo❍

Copyright, trademarks, and other legal notices❍

Names of contributors to the product❍

Because users typically display About boxes by choosing the About Application item from the Help menu, be sure that
the About box is accessible while your application is running.

Because the dialog box title bar might not include a Close button on all platforms, include a Close button in your About
boxes so that users can dismiss them after reading them. Follow the guidelines for button placement described in Spacing in
Dialog Boxes.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: Application Graphics

http://java.sun.com/products/jlf/dg/high.htm (16 sur 16) [05/06/2000 14:13:37]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

6: Behavior
Users interact with the computer via the mouse, the keyboard, and the screen. Such interaction is the "feel" portion of
the Java look and feel. This chapter provides input guidelines and recommendations for interaction techniques. It
describes mouse operations, including information on pointers, and drag-and-drop operations. It also discusses
keyboard operations, including the use of mnemonics, keyboard shortcuts, and keyboard focus in Java look and feel
applications.

Mouse Operations
In Java look and feel applications, the following common mouse operations are available to users:

Moving the mouse changes the position of the onscreen pointer (often called the "cursor").❍

Clicking (pressing and releasing a mouse button) selects or activates the object beneath the pointer. The object
is usually highlighted when the mouse button is pressed and then selected or activated when the mouse button
is released. For example, a click is used to activate a command button, to select an item from a list, or to set an
insertion point in a text area.

❍

Double-clicking (clicking a mouse button twice in rapid succession without moving the mouse) is used to
select larger units (for example, to select a word in a text field) or to select and open an object.

❍

Triple-clicking (clicking a mouse button three times in rapid succession without moving the mouse) is used to
select even larger units (for instance, to select an entire line in a text field).

❍

Dragging (pressing a mouse button, moving the mouse, and releasing the mouse button) is used to select a
range of objects, to choose items from drop-down menus, or to move objects in the interface.

❍

In your design, assume a two-button mouse. Use mouse button 1 (usually the left button) for selection,
activation of components, dragging, and the display of drop-down menus. Use mouse button 2 (usually the right
button) to display contextual menus. Do not use the middle mouse button; it is not available on most target
platforms.

Be aware that Macintosh systems usually have a one-button mouse, other personal computers and network
computers usually have a two-button mouse, and UNIX systems usually have a three-button mouse.

Restrict interaction to the use of mouse button 1 and mouse button 2. Macintosh users can simulate mouse
button 2 by holding down the Control key while using mouse button 1.

The following figure shows the relative placement of mouse buttons 1 and 2 on Macintosh, PC, and UNIX mouse
devices.

Figure 45 Cross-Platform Mouse Buttons and Their Default Assignments

Design Guidelines: Behavior

http://java.sun.com/products/jlf/dg/higi.htm (1 sur 10) [05/06/2000 14:15:33]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Pointer Feedback
The pointer can assume a variety of shapes. For instance, in a text-editing application, the pointer might assume an
I-beam shape (called a "text pointer" in the JDK) to indicate where the insertion point will be if the user presses the
mouse button. The insertion point is the location where typed text or a dragged or pasted selection will appear. When
the pointer moves out of the editor pane, it returns to its initial appearance as a default pointer.

The Java look and feel defines a set of pointer types that map to the corresponding native platform pointers; therefore,
the appearance of pointers can vary from platform to platform, as shown in the following table. When no
corresponding pointer exists in the native platform toolkit, the pointer is supplied by the JFC.

Table 7 Pointer Types Available in JDK 1.1 and the Java 2 SDK

Pointer Macintosh Windows 95 CDE Usage in Java Look and Feel Applications

Default Pointing, selecting, or moving

Crosshair Interacting with graphic objects

Hand Panning objects by direct manipulation

Move Moving objects

Text Selecting or inserting text

Wait Indicating that an operation is in progress and the user cannot
do other tasks

S Resize Adjusting the lower (southern) border of an object

N Resize Adjusting the upper (northern) border of an object

E Resize Adjusting the right (eastern) border of an object

W Resize Adjusting the left (western) border of an object

NW Resize Adjusting the upper-left (northwest) corner of an object

NE Resize Adjusting the upper-right (northeast) corner of an object

Design Guidelines: Behavior

http://java.sun.com/products/jlf/dg/higi.htm (2 sur 10) [05/06/2000 14:15:33]

SE Resize Adjusting the lower-right (southeast) corner of an object

SW Resize Adjusting the lower-left (southwest) corner of an object

In addition to the shapes in Table 7, a pointer graphic can be defined as an image and created using
Toolkit.createCustomCursor if you are using the Java 2 platform.

Mouse-over Feedback
Mouse-over feedback is a visual effect that occurs when users move the pointer over an area of an application
window.

In the Java look and feel, mouse-over feedback can be used to show borders on toolbar buttons when the pointer
moves over them. A slightly different effect is used to display tool tips. For details, see Toolbars and Tool Tips.

Clicking and Selecting Objects
In the Java look and feel, the selection of objects with the mouse is similar to the standard practice for other graphical
user interfaces. Users select an object by clicking it. Clicking an unselected object also deselects any previous
selection.

JFC-provided text selection follows these general rules:

A single click deselects any existing selection and sets the insertion point.❍

A double click on a word deselects any existing selection and selects the word.❍

A triple click in a line of text deselects any existing selection and selects the line.❍

Dragging (that is, moving the mouse while holding down mouse button 1) through a range of text deselects
any existing selection and selects the range.

❍

JFC-provided selection in lists and tables follows these general rules:

A click on an object deselects any existing selection and selects the object.❍

A Shift-click on an object extends the selection from the most recently selected object to the current object.❍

A Control-click on an object toggles its selection without affecting the selection of any other objects.❍

Displaying Contextual Menus
It can be difficult for users to find and access desired features given all the commands in the menus and submenus of a
complex application. Contextual menus (sometimes called "pop-up menus") enable you to make such functions
available throughout the graphical interface and to associate menu items with relevant objects.

Users can access contextual menus in two ways:

To pull down the menu, users can press and hold mouse button 2 over a relevant object. Then they can drag to
the desired menu item and release the mouse button to choose the item.

❍

To post the menu, users can click mouse button 2 over a relevant object. Then they can click the desired menu
item to choose it.

❍

Figure 46 Contextual Menu for a Text Selection

Design Guidelines: Behavior

http://java.sun.com/products/jlf/dg/higi.htm (3 sur 10) [05/06/2000 14:15:33]

Since users often have difficulty knowing whether contextual menus are available and what is in them, ensure
that the items in your contextual menu also appear in the menu bar or toolbar of the primary windows in your
application.

Be sure that the commands in your contextual menu apply only to a selected object or group of objects. For
instance, a contextual menu might include cut, copy, and paste commands limited to a selected text range, as shown in
the preceding figure.

Remember that users on the Microsoft Windows and UNIX platforms display a contextual menu by clicking or
pressing mouse button 2. Macintosh users hold down the Control key while clicking.

Drag-and-Drop Operations
Drag-and-drop operations include moving, copying, or linking selected objects by dragging them from one location
and dropping them over another. These operations provide a convenient and intuitive way to perform many tasks
using direct manipulation. Common examples of drag and drop in the user interface are moving files by dragging
file icons between folders or dragging selected text from one document to another. The Java 2 platform supports drag
and drop between two Java applications or between a Java application and a native application. For example, on a
Microsoft Windows system, users can drag a text selection from a Java application and drop it into a Microsoft Word
document.

Typical Drag and Drop
Drag and drop in Java applications is similar to standard behavior on other platforms. Users press mouse button 1
while the pointer is over a source object and then drag the object by moving the pointer while holding down the
mouse button. To drop the object, users release the button when the pointer is over a suitable destination. A successful
drop triggers an action that depends on the nature of the source and destination. If the drag source is part of a range
selection, the entire selection (for example, several file icons or a range of text) is dragged.

Pointer and Destination Feedback
During any drag-and-drop operation, your Java look and feel application needs to give visual feedback using the
pointer and the destination.

Provide the user with feedback that a drag operation is in progress by changing the shape of the pointer when
the drag is initiated.

Provide destination feedback so users know where the dragged object can be dropped. Use one or both of the
following methods to provide destination feedback:

Change the pointer shape to reflect whether the object is over a possible drop target.❍

Highlight drop targets when the pointer is over them to indicate that they can accept the target.❍

Java objects are specified by their MIME (Multipurpose Internet Mail Extensions) types, and the JavaTM

runtime environment automatically translates back and forth between MIME types and system-native types as needed.
As an object is dragged over potential targets, each potential target can query the drag source to obtain a list of
available data types and then compare that with the list of data types that it can accept. For example, when dragging a
range of text, the source might be able to deliver the text in a number of different encodings or as plain text, styled

Design Guidelines: Behavior

http://java.sun.com/products/jlf/dg/higi.htm (4 sur 10) [05/06/2000 14:15:33]

text, or HTML text. If there is a match in data types, potential targets should be highlighted as the pointer passes over
them to indicate that they can accept the dragged object.

Keyboard Operations
The Java look and feel assumes a PC-style keyboard. The standard ASCII keys are used, along with the following
modifier keys: Shift, Control, and Alt (Option on the Macintosh); the function keys F1 through F12; the four arrow
keys; Delete, Backspace, Home, End, Page Up, and Page Down. Enter and Return are equivalent. (Return does not
appear on PC keyboards.)

A modifier key is a key that does not produce an alphanumeric character but can be used in combination with other
keys to alter an action. Typical modifier keys in Java look and feel applications are Shift, Control, and Alt.

This section describes and provides recommendations for the use of keyboard operations, which include keyboard
shortcuts, mnemonics, and other forms of navigation, selection, and activation that utilize the keyboard instead of the
mouse. A mnemonic is an underlined letter that typically appears in a menu title, menu item, or the text of a button or
other component. The underlined letter reminds users how to activate the equivalent command by pressing the Alt key
and the character key that corresponds to the underlined letter. For instance, you could use a mnemonic to give
keyboard focus to a text area or to activate a command button. A keyboard shortcut is a sequence of keys (such as
Control-A) that activates a menu command.

Keyboard Focus
The keyboard focus (sometimes called "input focus") designates the active window or component where the user's
next keystrokes will take effect. Focus typically moves when users click a component with a pointing device, but
users can also control focus from the keyboard. Either way, users designate the window, or component within a
window, that receives input. (There are exceptions: for instance, a left-alignment button on a toolbar should not take
focus away from the text area where the actual work is taking place.)

When a window is first opened, assign initial keyboard focus to the component that would normally be used
first. Often, this is the component appearing in the upper-left portion of the window. If keyboard focus is not assigned
to a component in the active window, the keyboard navigation and control mechanisms cannot be used. The
assignment of initial keyboard focus is especially important for people who use only a keyboard to navigate through
your application--for instance, those with visual or mobility impairments.

In the Java look and feel, many components (including command buttons, checkboxes, radio buttons, toggle buttons,
lists, combo boxes, tabbed panes, editable cells, and tree views) indicate keyboard focus by displaying a rectangular
border (blue, in the default color theme).

Figure 47 Keyboard Focus Indicated by Rectangular Border

Design Guidelines: Behavior

http://java.sun.com/products/jlf/dg/higi.htm (5 sur 10) [05/06/2000 14:15:33]

Editable text components, such as text fields, indicate keyboard focus by displaying a blinking bar at the insertion
point.

Figure 48 Keyboard Focus Indicated by Blinking Bar at Insertion Point

Menus indicate focus with a colored background for menu titles or menu items (blue, in the default color theme).

Figure 49 Keyboard Focus Indicated by Colored Background

Split panes and sliders indicate focus by darkening the drag-textured areas (blue, in the default color theme).

Figure 50 Keyboard Focus Indicated by Drag Texture

Design Guidelines: Behavior

http://java.sun.com/products/jlf/dg/higi.htm (6 sur 10) [05/06/2000 14:15:33]

Keyboard Navigation and Activation
Keyboard navigation and activation enable users to move keyboard focus from one user interface component to
another via the keyboard.

In general, pressing the Tab key moves focus through the major components; Shift-Tab moves through the
components in the reverse direction. Control-Tab and Control-Shift-Tab work in a similar fashion and are particularly
useful when keyboard focus is in an element that accepts tabs, such as a text area or a table. Arrow keys are often used
to move within groups of components--for example, Tab puts focus in a set of radio buttons and then the arrow keys
move focus among the radio buttons. However, the Tab key is used to move among checkboxes.

Once an element has focus, pressing the spacebar typically activates it or selects it. In a list, pressing Shift-spacebar
extends the selection; pressing Control-spacebar makes another selection without affecting the current selections.

Some components do not need explicit keyboard focus to be operated. For example, the default button in a dialog box
can be operated by pressing the Enter or Return key without the default button having keyboard focus. Similarly,
scrollbars can be operated from the keyboard if focus is anywhere within the scroll pane.

Keyboard navigation can be useful not only for accessibility purposes, but also for power users, users who prefer the
keyboard over the mouse, or users who choose alternative input methods like voice input or onscreen keyboards.

Ensure that all application functions are accessible from the keyboard by unplugging the mouse and testing the
application's keyboard operations.

Some of the keyboard operations in the tables in Appendix A are temporarily incomplete or unimplemented.
However, the key sequences listed in this appendix should be reserved for future versions of the JFC and the Java 2
platform.

The setNextFocusableComponent method from JComponent can be used to set the order for tabbing by
chaining components together--specifying for each component what the next component in the sequence is.

The common operations for keyboard navigation and activation in the Java look and feel are summarized in the
following table. Within the table, the term "group" refers to a group of toolbar buttons, menu titles, text, or table cells.

Table 8 Common Navigation and Activation Keys

Action Keyboard Operation

Navigates in, navigates out Tab1

Navigates out of a component that accepts tabs Control-Tab1

Moves focus left one character or component within a group Left arrow

Moves focus right one character or component within a group Right arrow

Moves focus up one line or component within a group Up arrow

Moves focus down one line or component within a group Down arrow

Moves up one view Page Up

Moves down one view Page Down

Design Guidelines: Behavior

http://java.sun.com/products/jlf/dg/higi.htm (7 sur 10) [05/06/2000 14:15:33]

Moves to the beginning of data; in a table, moves to the beginning of a line Home

Moves to the end of data; in a table, moves to the last cell in a row End

Activates the default command button Enter or Return

Dismisses a menu or dialog box without changes Escape

Activates or selects the component (with keyboard focus) Spacebar

1 With Shift key, reverses direction

Keyboard Shortcuts
Keyboard shortcuts are keystroke combinations (consisting of a modifier key and a character key, like Control-Z) that
activate a menu item from the keyboard even if the menu for that command is not currently displayed. Unlike
mnemonics, keyboard shortcuts do not post menus; rather, they perform the indicated actions directly.

Figure 51 Edit Menu With Keyboard Shortcuts and Mnemonics

To use a keyboard shortcut in Java look and feel applications, users hold down the Control key (and optionally, an
additional modifier key, such as Shift) and press the character key that is shown after the menu item. Typing the
keyboard shortcut has the same effect as choosing the menu item. For instance, to undo an action, users can either
choose the Undo item from the Edit menu or hold down the Control key and press Z.

Do not use the Meta key (the Command key on the Macintosh platform) for a keyboard shortcut, except as an
alternate for Control. It is not available on many target platforms.

Specify keyboard shortcuts for frequently used menu items to provide an alternative to mouse operation. The
Java look and feel displays keyboard shortcuts using standard abbreviations for key names, separated by hyphens.

Be aware of and use the common shortcuts across platforms that are summarized in the following table.

Table 9 Common Keyboard Shortcuts

Sequence Equivalent

Ctrl-N New (File menu)

Ctrl-O Open (File menu)

Ctrl-S Save (File menu)

Ctrl-P Print (File menu)

Ctrl-W Close (File menu)

Ctrl-Z Undo (Edit menu)

Design Guidelines: Behavior

http://java.sun.com/products/jlf/dg/higi.htm (8 sur 10) [05/06/2000 14:15:33]

Ctrl-Y Redo (Edit menu)

Ctrl-X Cut (Edit menu)

Ctrl-C Copy (Edit menu)

Ctrl-V Paste (Edit menu)

Ctrl-F Find (Edit menu)

Ctrl-G Find Again (Edit menu)

Ctrl-A Select All (Edit menu)

Since keyboard shortcuts are not always equivalent on different platforms, ensure that any new keyboard
shortcuts you have created are compatible with existing shortcuts on all your target platforms.

Mnemonics
Mnemonics provide yet another keyboard alternative to the mouse. A mnemonic is an underlined letter in a menu title,
menu item, or other interface component. It reminds the user how to activate the equivalent command by
simultaneously pressing the Alt key and the character key that corresponds to the underlined letter.

Figure 52 File Menu With Mnemonics and Keyboard Shortcuts

When keyboard focus is not in a text element, the Alt modifier is not always required. Menus are an example. For
instance, to choose the Exit command from the File menu, the user can hold down the Alt key and press F to post the
File menu, and then press X.

Once users have displayed a menu with a keyboard sequence, the subsequent key they press will activate a command
only from that menu. Hence, users can press Alt-F to display the File menu and then type A to activate the Save As
command, or press Alt-E to display the Edit menu, and then type A to activate the Select All command.

You can also provide mnemonics for components within the dialog boxes in your applications. However, it is
important to note that this situation requires that you use a modifier key. For instance, within a dialog box, you might
want to provide a mnemonic for the Help button. Once keyboard focus has moved within the dialog box, users press
Alt, and then H to activate the Help button.

Do not associate mnemonics with the default button or the Cancel button in a dialog box. Use Enter or Return
for the default button and Escape for the Cancel button instead.

Choose mnemonics that avoid conflicts. For instance, you cannot use the letter P as the mnemonic for both the
Print and Page Setup commands.

Design Guidelines: Behavior

http://java.sun.com/products/jlf/dg/higi.htm (9 sur 10) [05/06/2000 14:15:33]

When you assign mnemonics, follow these guidelines in the specified order.

1. Use common mnemonics as they appear in Table 10 below.

2. If the mnemonic does not appear in the table of common mnemonics (Table 10), choose the first
letter of the menu item. (For instance, choose J for Justify.)

3. If the first letter of the menu item conflicts with those of other items, choose a prominent consonant.
(For instance, the letter S may have already been designated as the mnemonic for the Style
command. Therefore, choose the letter Z as the mnemonic for the Size command.)

4. If the first letter of the menu item and the prominent consonant conflict with those of other menu
items, choose a prominent vowel.

Table 10 Common Mnemonics

Menu Titles Menu Items

File New, Open, Close, Save, Save As, Page Setup, Print, Preferences, Exit

Edit Undo, Redo, Cut, Copy, Paste, Find, Find Again, Select All

Help Contents, Tutorial, Index, Search, About Application

The setMnemonic method can be used to specify mnemonics on buttons, checkboxes, radio buttons, toggle
buttons, and menu titles. The setDisplayedMnemonic method can be used for labels, and the setAccelerator method
for menu items.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: Behavior

http://java.sun.com/products/jlf/dg/higi.htm (10 sur 10) [05/06/2000 14:15:33]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

7: Windows, Panes, and Frames
Primary windows, secondary windows, utility windows, and plain windows provide the top-level containers for your
application. A primary window is a window in which users' main interaction with the data or document takes place. An
application can use any number of primary windows, which can be opened, closed, minimized, or resized independently. A
secondary window is a supportive window that is dependent on a primary window (or another secondary window). In the
secondary window, users can view and provide additional information about actions or objects in a primary window. A
utility window is a window whose contents affect an active primary window. Unlike secondary windows, utility windows
remain open when primary windows are closed or minimized. An example of a utility window is a tool palette that is used
to select a graphic tool. A plain window is a window with no title bar or window controls, typically used for splash
screens.

Figure 53 Primary, Utility, Plain, and Secondary Windows

Similarly, as a designer you can use panels, panes, and internal frames as lower-level containers within primary and
secondary windows. A panel is a container for organizing the contents of a window, dialog box, or applet. (You can place
panels in panes or panes in panels.) A pane is a collective term for scroll panes, split panes, and tabbed panes, which are
described in this chapter. An internal frame is a container used in MDI applications to create windows that users cannot
drag outside of the desktop pane.

Figure 54 Scroll Pane, Tabbed Pane, Split Pane, and Internal Frame

Design Guidelines: Windows, Panes, and Frames

http://java.sun.com/products/jlf/dg/higk.htm (1 sur 14) [05/06/2000 14:18:42]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Anatomy of a Primary Window
Primary windows act as top-level containers for the user interface elements that appear inside them. A primary window
might hold a series of embedded containers. For example, a primary window in your application could have this
organization, as shown in the following figure:

The window frame contains a menu bar and a panel❍

The menu bar contains menus❍

The panel contains a toolbar and a scroll pane and scrollbar❍

The toolbar contains toolbar buttons❍

The scroll pane contains an editor pane with a plug-in editor kit for styled text❍

Figure 55 Components Contained in a Primary Window

Design Guidelines: Windows, Panes, and Frames

http://java.sun.com/products/jlf/dg/higk.htm (2 sur 14) [05/06/2000 14:18:42]

Note the appearance of the embedded containers in an actual primary window and their relationship to the underlying
structure, as shown in the following figure:

Figure 56 Anatomy of a Primary Window

Design Guidelines: Windows, Panes, and Frames

http://java.sun.com/products/jlf/dg/higk.htm (3 sur 14) [05/06/2000 14:18:42]

Constructing Windows
Primary windows, secondary windows, utility windows, and plain windows serve as the top-level containers for all the
interface elements of your application.

Figure 57 Top-Level Containers

Primary windows are implemented using the JFrame component. Secondary windows and utility windows are
implemented using the JDialog component. Plain windows are implemented using the JWindow component.

Primary Windows
JFC applications display information such as documents inside primary windows. Such windows are provided by the native
operating system of the platform on which the application is running--for instance, UNIX, Microsoft Windows, OS/2, or
Macintosh.

Specifically, you cannot alter the appearance of the window border and title bar, including the window controls, which are
provided by the native operating system. Window behavior, such as resizing, dragging, minimizing, positioning, and
layering, is controlled by the native operating system.

The content provided by your application, however, assumes the Java look and feel, as shown in the following illustration
of a MetalEdit document window as it appears on the Microsoft Windows platform.

Figure 58 Primary Window on the Microsoft Windows Platform

Design Guidelines: Windows, Panes, and Frames

http://java.sun.com/products/jlf/dg/higk.htm (4 sur 14) [05/06/2000 14:18:42]

Typically, when users close or minimize a window, the operating system closes any associated secondary windows as well.
However, the operating system does not take care of this behavior automatically for JFC applications.

Keep track of the secondary windows in your application; close them if the primary window is closed or hide them if
their primary window is minimized.

Although native operating systems display a close control on the title bar of typical windows, provide a Close item or
Exit item in your File menu as well.

In the JFC, primary windows are created using the JFrame component. This component appears with the border,
title bar, and window controls of the platform on which it is running. This is the JFC component you are most likely to use
as the top-level container for a primary window.

Secondary Windows
Secondary windows, such as dialog boxes and alert boxes, are displayed in a window supplied by the native operating
system. In the JFC, this component is called JDialog. It appears with the border and title bar of the platform on which it is
running. Chapter 8 provides more guidelines for the design of dialog boxes and alert boxes. The following figure shows a
JFC-supplied Warning alert box for the sample text-editing application, MetalEdit.

Figure 59 Alert Box on the Macintosh Platform

Dialog and alert box behavior, such as dragging and closing, is controlled by the native operating system. For keyboard
operations that are appropriate to dialog and alert boxes, see Table 17.

Keep in mind that some platforms do not provide close controls in the title bar for dialog boxes. Always provide a
way to close the window in the dialog box or alert box itself.

The JOptionPane component is used to implement an alert box. If the box supplied by the JFC does not suit your
needs, you can use the JDialog component.

Plain Windows
You can create a window that is a blank plain rectangle. The window contains no title bar or window controls, as shown in
the following figure. (Note that the black border shown around this plain window is not provided by the JFC.)

Figure 60 Plain Window Used as the Basis for a Splash Screen

Design Guidelines: Windows, Panes, and Frames

http://java.sun.com/products/jlf/dg/higk.htm (5 sur 14) [05/06/2000 14:18:42]

A plain window does not provide dragging, closing, minimizing, or maximizing. You can use a plain window as the
container for a splash screen, which appears and disappears without user interaction, as shown in the preceding figure.

The JWindow component is used to implement plain windows. The JFrame component is used to implement
primary windows.

Utility Windows
In a non-MDI application with the Java look and feel, a utility window is often used to display a collection of tools, colors,
or patterns. Unlike the palette windows provided for MDI applications, utility windows do not float above all the other
windows. The following figure shows a utility window that displays a collection of tools.

Figure 61 Utility Window

Unlike secondary windows, which should be closed automatically when their associated windows are closed, utility
windows should not be closed when primary windows are closed.

User choices made in a utility window refer to and affect the active primary window. A utility window remains on screen
for an extended period of time while users go back and forth between the utility window and primary windows. In contrast,
a secondary window is designed to enable users to resolve an issue in an associated primary window and is usually
dismissed once users have resolved the issue.

For information on keyboard operations appropriate for utility windows, see Table 17.

Since utility windows are not dependent on a primary window, do not automatically dismiss utility windows when
primary windows are closed.

Utility windows in your application are implemented using the JDialog component. Palettes to be used within MDI
applications are implemented as a form of the JInternalFrame component.

Design Guidelines: Windows, Panes, and Frames

http://java.sun.com/products/jlf/dg/higk.htm (6 sur 14) [05/06/2000 14:18:42]

Organizing Windows
The JFC provides a number of user interface elements you can use for the organization of windows: panels, tabbed panes,
split panes, and scroll panes. Panels and panes can be used to organize windows into one or more viewing areas. A panel is
a JFC component that you can use for grouping other components inside windows or other panels. A pane is a collective
term for scroll panes, split panes, and tabbed panes.

Figure 62 Lower-Level Containers

Panels
In contrast to scroll panes and tabbed panes, which typically play an interactive role in an application, a panel simply
groups components within a window or another panel. Layout managers enable you to position components visually within
a panel. For a thorough treatment of the visual layout and alignment of components, see Layout and Visual Alignment. For
more information on layout managers, see The Java Tutorial at http://java.sun.com/docs/books/tutorial.

Scroll Panes
A scroll pane is a specialized container offering vertical and horizontal scrollbars that enable users to change the visible
portion of the window contents.

Here is an example of a scroll pane with a vertical scrollbar. The size of the scroll box indicates the proportion of the
content currently displayed.

Figure 63 Scroll Pane in a Document Window

Design Guidelines: Windows, Panes, and Frames

http://java.sun.com/products/jlf/dg/higk.htm (7 sur 14) [05/06/2000 14:18:42]

http://java.sun.com/docs/books/tutorial

You can choose whether scrollbars are always displayed in the scroll pane or whether they appear only when needed.

Unless otherwise indicated, use the default setting for horizontal scrollbars, which specifies that they appear only
when needed.

If the data in a list is known and appears to fit in the available space (for example, a predetermined set of colors),
specify that a vertical scrollbar should appear only if needed. For instance, if users change the font, the list items might
become too large to fit in the available space, and a vertical scrollbar would be required.

If the data in a scroll pane sometimes requires a vertical scrollbar, specify that the vertical scrollbar always be
present. Otherwise, the data must be reformatted whenever the vertical scrollbar appears or disappears.

Scrollbars are obtained by placing the component, such as a text area, inside a scroll pane.

Scrollbars

A scrollbar is a component that enables users to control what portion of a document or list (or similar information) is
visible on screen. In locales with left-to-right writing systems, scrollbars appear along the bottom and the right sides of a
scroll pane, a list, a combo box, a text area, or an editor pane. In locales with right-to-left writing systems, such as Hebrew
and Arabic, scrollbars appear along the bottom and left sides of the relevant component. By default, scrollbars appear only
when needed to view information that is not currently visible, although you can specify that the scrollbar is always present.

The size of the scroll box represents the proportion of the window content that is currently visible. The position of the
scroll box within the scrollbar represents the position of the visible material within the document. As users move the scroll
box, the view of the document changes accordingly. If the entire document is visible, the scroll box fills the entire channel.

Both horizontal and vertical scroll boxes have a minimum size of 16 x 16 pixels so that users can still manipulate them
when viewing very long documents or lists.

At either end of the scrollbar is a scroll arrow, which is used for controlling small movements of the data.

The following figure shows horizontal and vertical scrollbars. Each scrollbar is a rectangle consisting of a textured scroll
box, a recessed channel, and scroll arrows.

Figure 64 Vertical and Horizontal Scrollbars

Design Guidelines: Windows, Panes, and Frames

http://java.sun.com/products/jlf/dg/higk.htm (8 sur 14) [05/06/2000 14:18:42]

Do not confuse the scrollbar with a slider, which is used to select a value. For details on sliders, see here.

Users drag the scroll box, click the scroll arrows, or click in the channel to change the contents of the viewing area. When
users click a scroll arrow, more of the document or list scrolls into view. The contents of the pane or list move in
increments based on the type of data. When users hold down the mouse button, the pane or list scrolls continuously.

For a description of keyboard operations for scrollbars, see Table 22.

Scroll the content approximately one view at a time when users click in the scrollbar's channel. For instance, in a
document, a view might represent a page of text. Leave one small unit of overlap from the previous view to provide context
for the user. For instance, in scrolling through a long document, help users become oriented to the new page by providing
one line of text from the previous page.

Scroll the content one small unit at a time when users click a scroll arrow. (A small unit might be one line of text, one
row in a table, or 10 to 20 pixels of a graphic.)

Display a horizontal scrollbar if the view cannot show everything that is important--for instance, in a word-processing
application that prepares printed pages, users might want to look at the margins as well as the text.

If you are using the Java 2 SDK, place scrollbars in the orientation that is suitable for the writing system of your target
locale. For example, in the U.S. locale, the scrollbars appear along the right side of the scroll pane or other component. In
other locales, they might appear along the left side of the scroll pane.

Tabbed Panes
A tabbed pane is a container that enables users to switch between several content panes (usually JPanel components) that
appear to share the same space on screen.

The tabs themselves can contain text or images or both. A typical tabbed pane appears with tabs displayed at the top.
Alternatively, the tabs can be displayed on one of the other three sides. If the tabs cannot fit in a single row, additional rows
are created automatically. Note that tabs do not change position when they are selected. For the first row of tabs, there is no
separator line between the selected tab and the pane.

The following figure shows the initial content pane in the JFC-supplied color chooser. Note that the tabbed pane is
displayed within a dialog box that uses the borders, title bar, and window controls of the platform on which its associated
application is running.

Figure 65 Swatches Content Pane in the JFC Color Chooser

Design Guidelines: Windows, Panes, and Frames

http://java.sun.com/products/jlf/dg/higk.htm (9 sur 14) [05/06/2000 14:18:42]

Users choose which content pane to view by clicking the corresponding tab. The content pane changes accordingly, as
shown in the following figure of the content pane associated with the third tab in the color chooser.

For a list of keyboard operations appropriate for tabbed panes, see Table 25.

Figure 66 RGB Content Pane in the JFC Color Chooser

You can use tabbed panes to good advantage in dialog boxes, such as a preferences dialog box, that require you to fit a lot
of information into a small area.

You can also use tabbed panes to provide a way for users to switch between content panes that represent:

Different ways to view the same information, like a color chooser's RGB and HSB panes❍

Different parts of an informational unit, like worksheets that are part of a workbook in a spreadsheet application❍

Use headline capitalization for tab names.

Provide mnemonics so users can navigate from tab to tab and from tabs to associated content panes using keyboard
operations.

Do not nest tabbed panes.

If your tabbed pane requires multiple rows of tabs, consider dividing the content among several dialog boxes or
components. Multiple rows of tabs can be confusing.

Design Guidelines: Windows, Panes, and Frames

http://java.sun.com/products/jlf/dg/higk.htm (10 sur 14) [05/06/2000 14:18:42]

Split Panes
A split pane is a container that divides a pane into resizable panes. Split panes enable users to adjust the relative sizes of
two adjacent panes. The Java look and feel drag texture (along with a pointer change) indicates that users can resize split
panes.

To adjust the size of the split panes, users drag the splitter bar, as shown in the following figure.

Figure 67 Split Pane (Horizontal Orientation)

Users can also control the splitter bar by clicking one of the optional zoom buttons shown in the following figure. Clicking
a button moves the splitter bar to its extreme upper or lower position. If the splitter bar is already at its extreme, clicking
restores the panes to the size they were before the zoom operation (or before the user dragged the splitter bar to close one of
the panes).

For a list of keyboard operations appropriate for split panes, see Table 24.

Figure 68 Zoom Buttons in a Split Pane (Vertical Orientation)

Include zoom buttons in split panes because they are very convenient for users.

Nested Split Panes

In addition to splitting panes either horizontally or vertically, you can nest one split pane inside another. The following
figure portrays a mail application in which the top pane of a vertically split pane has another split pane embedded in it.

Figure 69 Nested Split Panes

Design Guidelines: Windows, Panes, and Frames

http://java.sun.com/products/jlf/dg/higk.htm (11 sur 14) [05/06/2000 14:18:42]

Working With Multiple Document Interfaces
A multiple document interface (MDI) provides a way to manage multiple windows that are confined inside a main window.
A limitation to using the MDI application model is that users cannot drag the application's windows outside the main
window. To support MDI designers, the JFC provides the internal frame and palette window.

If you are working with an MDI using the Java look and feel, the JDialog component can be used to create
secondary windows.

Internal Frames
To get standard window features in an MDI, you must put an internal frame inside the desktop pane. A desktop pane is a
component placed inside a window that holds internal frames for an MDI application.

The internal frame is a container used in MDI applications to create windows that users cannot drag outside of the desktop
pane. In an MDI application that uses the Java look and feel, internal frames have a window border, title bar, and standard
window controls with the Java look and feel. However, the window that contains the desktop pane is a native platform
window with the native look and feel, as shown in the following figure.

Figure 70 Internal Frames in an MDI Application

Design Guidelines: Windows, Panes, and Frames

http://java.sun.com/products/jlf/dg/higk.htm (12 sur 14) [05/06/2000 14:18:42]

Users can use the mouse to:

Activate a window (and deactivate the previously activated window) by clicking anywhere in the window❍

Adjust the size of a resizable internal frame by dragging from any side or corner❍

Drag the internal frame by the title bar within the desktop pane❍

Minimize, maximize, restore, and close the internal frame by clicking the appropriate window controls❍

For keyboard operations appropriate to internal frames, see Table 16.

A minimized internal frame is a horizontally oriented component (shown in the following figure) that represents an
internal frame that has been minimized. The width of these minimized internal frames is sized to accommodate the window
title. Minimized internal frames consist of a drag area followed by an area containing an application-specific icon and text,
which displays the name of the internal frame.

Figure 71 Minimized Internal Frame

Users can rearrange minimized internal frames by dragging the textured area. Users can click the icon and text area in a
minimized internal frame to restore the frame to its previous location and size.

For details on the keyboard operations appropriate for minimized internal frames, see Table 16.

Palettes
A palette window is a type of internal frame that can float above other internal frames within the desktop pane for an MDI
application. The close control is optional.

The following figure shows a palette window from a hypothetical graphical interface builder with a set of buttons that lets
users construct menus.

Figure 72 Palette Window

Design Guidelines: Windows, Panes, and Frames

http://java.sun.com/products/jlf/dg/higk.htm (13 sur 14) [05/06/2000 14:18:42]

Palette windows often contain toggle buttons; users can click the toggle buttons to select them. However, palette windows
can contain any component. Users can close palette windows (if you provide a close control), but they cannot resize,
minimize, or maximize them.

For keyboard operations for palette windows, see Table 16.

If you are writing a non-MDI application, use utility windows instead of palette windows so that the user can drag
them anywhere on the screen.

A palette window is a specific style of JInternalFrame and, therefore, can be used only within a desktop pane. Use
the client properties mechanism to set the JInternalFrame.isPalette to true.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: Windows, Panes, and Frames

http://java.sun.com/products/jlf/dg/higk.htm (14 sur 14) [05/06/2000 14:18:42]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

8: Dialog Boxes
A dialog box is a temporary, secondary window in which users perform a task that is supplemental to the task in the primary
window. For example, a dialog box might enable users to set preferences or choose a file from the hard disk. A dialog box
can contain panes and panels, text, graphics, controls (such as checkboxes, radio buttons, or sliders), and one or more
command buttons. Dialog boxes use the native window frame of the platform on which they are running.

An alert box is a dialog box that provides for brief interaction with users. Alert boxes present error messages, warn of
potentially harmful actions, obtain information from users, and display informational messages. The basic alert box has a
symbol that identifies the type of the alert, a textual message, and one or more command buttons. The layout of these
components is supplied by the Java look and feel.

Figure 73 Dialog Box and Alert Box

If your application is based on a multiple document interface (MDI), use the dialog boxes and alert boxes presented in
this chapter. Because these secondary windows use the platform's native windows (and not the JFC-supplied internal frame),
they are free to move outside the desktop pane.

Modal and Modeless Dialog Boxes
Dialog boxes can be modal or modeless. A modal dialog box prevents users from interacting with the application until the
dialog box is dismissed. However, users can move a modal dialog box and interact with other applications while the modal
dialog box is open. This behavior is sometimes called "application-modal."

A modeless dialog box does not prevent users from interacting with the application they are in or with any other
application. Users can go back and forth between a modeless dialog box and other application windows.

Design Guidelines: Dialog Boxes

http://java.sun.com/products/jlf/dg/higl.htm (1 sur 12) [05/06/2000 14:16:11]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Use modeless dialog boxes whenever possible. The order in which users perform tasks might vary, or users might
want to check information in other windows before dismissing the dialog box. Users might also want to go back and forth
between the dialog box and the primary window.

Use modal dialog boxes when interaction with the application cannot proceed while the dialog box is displayed. For
example, a progress dialog box that appears while your application is loading its data should be a modal dialog box.

Dialog Box Design
The following figure illustrates dialog box design guidelines for the Java look and feel. The dialog box has a title in the
window's title bar, a series of user interface elements, and a row of command buttons. The default command button is the
OK button, indicated by its heavy border. The underlined letters are mnemonics, which remind users how to activate
components by pressing the Alt key and the appropriate character key. The noneditable Ruler Units combo box has initial
keyboard focus, indicating that the user's next keystrokes will take effect in that component.

Figure 74 Sample Dialog Box

Use the form "Application Name: Title" for the title of the dialog box (which is displayed in the title bar).

Include mnemonics for all user interface elements except the default button and the Cancel button.

When opening a dialog box, provide initial keyboard focus to the component that you expect users to operate first.
This focus is especially important for users who must use a keyboard to navigate your application (for example, users with
visual and mobility impairments).

Consider the effect of internationalization on your design. Use a layout manager, which allows for text strings to
become bigger or smaller when translated to another language.

For more information on internationalization, see Planning for Internationalization and Localization. For details on keyboard
support for navigating through dialog boxes, see Table 17. For information on how to capitalize text in dialog boxes, see
Capitalization of Text in the Interface.

Tab Traversal Order

Design Guidelines: Dialog Boxes

http://java.sun.com/products/jlf/dg/higl.htm (2 sur 12) [05/06/2000 14:16:11]

The tab traversal order is the order in which the components in the dialog box receive keyboard focus on successive presses
of the Tab key. If users press the Tab key when keyboard focus is on the last component in the dialog box, you should return
keyboard focus to the first component. The following figure shows the tab traversal order that the designer has set for this
preferences dialog box.

Figure 75 Tab Traversal Order in the Sample Dialog Box

Specify a logical tab traversal order for the user interface elements. The traversal order should match the reading order
for your application's specified locale. For example, in English, the traversal order is left to right, top to bottom. By default,
the traversal order is the sequence in which you added the components to the dialog box.

The setNextFocusableComponent method from JComponent can be used to specify the next component to receive
keyboard focus.

Spacing in Dialog Boxes
The following figure shows the spacing you must provide between the borders of the dialog box and the components in the
dialog box.

Figure 76 Spacing Between the Border and Components of a Dialog Box

Include 12 pixels between the top and left borders of the dialog box and its components. Include 11 pixels between the
bottom and right borders of the dialog box and its components. (To the eye, the 11-pixel spacing appears to be 12 pixels
because the white borders on the lower and right edges of the components are not visually significant.)

Design Guidelines: Dialog Boxes

http://java.sun.com/products/jlf/dg/higl.htm (3 sur 12) [05/06/2000 14:16:11]

See Design Grids for a general description of how to place text and components in a dialog box.

Command Buttons in Dialog Boxes
In dialog boxes, you can place command buttons alone or in a command button row at the bottom of the dialog box, as
shown in Figure 74. The most common command buttons that you might use in a command button row are the Help, Close,
OK, Cancel, Apply, and Reset buttons. If you use other command buttons, make sure their labels describe the action they
perform.

Place command buttons that apply to the dialog box as a whole in the command button row at the bottom of the dialog
box. This includes all buttons that dismiss the dialog box as one of their actions.

Align buttons in the command button row along the lower-right edge of the dialog box. (The alignment of the
command button row in JFC-supplied alert boxes is different from the alignment in dialog boxes.)

For consistency in the look and spacing of command buttons, follow the guidelines on Command Buttons. For keyboard
operations appropriate to command buttons, see Table 15.

Help Buttons

You can use a Help button in any dialog box. A Help button enables users to obtain additional information about the dialog
box. For example, when users click Help in the Error alert box on page 125, the application opens a window with additional
information on the cause of the error.

When users click the Help button, open a secondary or utility window that displays the help information.

Place the Help button last in a group of command buttons. For languages that read from left to right, the Help button
should be the rightmost button.

Close Buttons

The Close button is commonly used to dismiss simple dialog boxes, such as an Info alert box. The Close button is also
commonly used to dismiss dialog boxes in which user actions take effect immediately. In these dialog boxes, users do not
need to press an OK button for the settings to take effect. A Close button is appropriate in both modal and modeless dialog
boxes.

The following dialog box, which contains a schedule reminder, includes a Close button that users can click to dismiss the
dialog box.

Figure 77 Dialog Box With a Close Button

When users click the Close button, dismiss the dialog box and do not make additional changes to the system.

OK and Cancel Buttons

The OK and Cancel buttons work well in dialog boxes in which users specify options or settings. OK enables users to save
the settings, whereas Cancel enables users to ignore any changed settings. In most cases, OK is the default button. OK and
Cancel are appropriate in both modal and modeless dialog boxes. The following figure shows a preferences dialog box with
OK, Cancel, and Help buttons.

Design Guidelines: Dialog Boxes

http://java.sun.com/products/jlf/dg/higl.htm (4 sur 12) [05/06/2000 14:16:11]

Figure 78 Dialog Box With OK, Cancel, and Help Buttons

When users click the OK button, save the settings or carry out the commands specified in the dialog box and close the
dialog box. Whenever possible, use a command name that describes the action (such as Print or Find) instead of OK.

When users click the Cancel button, close the dialog box and restore the settings in the dialog box to the state they
were in when the dialog box was opened.

Activate the Cancel button when users press the Escape key. The Cancel button does not need keyboard focus for this
interaction; only the dialog box must have focus. The Cancel button and its keyboard equivalent are not built into the JFC;
you must implement them yourself.

Do not add a mnemonic to the Cancel button.

Do not use the Cancel button in a dialog box where settings become persistent before the dialog box is closed (for
example, in a dialog box that has an Apply button). Users might be confused about whether the changes will be undone
when they press Cancel. In dialog boxes where you want users to be able to view changes without committing to them, use
Preview, OK, and Cancel buttons. Use Preview to show the effects of the changes in the document window without
dismissing the dialog box. Use OK to make the changes persistent, and use Cancel to undo the changes. OK and Cancel
should dismiss the dialog box as usual.

Apply and Reset Buttons

The Apply and Reset buttons work well in dialog boxes that remain open for repeated use, as shown in the properties dialog
box in the following figure. Apply and Reset often appear together in modeless dialog boxes.

Figure 79 Dialog Box With Apply, Reset, and Close Buttons

Design Guidelines: Dialog Boxes

http://java.sun.com/products/jlf/dg/higl.htm (5 sur 12) [05/06/2000 14:16:11]

Use the Apply button to carry out the changes users specify in the dialog box without closing the dialog box.

Use the Reset button to restore the values in the dialog box to the values specified by the last Apply command. If users
have not activated Apply, restore the values in effect when the dialog box was opened. Do not close the dialog box when
users choose Reset.

If you include the Close button in a dialog box with Apply and Reset buttons, make Close dismiss the dialog box
without applying changes.

Default Command Buttons
The default command button is the button that the application activates when users press Enter or Return. The JFC gives the
default command button a heavier border than other command buttons. In most cases, you should assign the default button
the action that users are most likely to perform, as shown with the OK button in the following figure. The default button
does not need to have keyboard focus when users press Enter or Return.

Figure 80 Dialog Box With a Default Command Button

In cases where keyboard focus is on a component that accepts the Enter or Return key, such as a multiline text area, the
default button is not activated when users press the key. Instead, the insertion point moves to the beginning of a new line. To
operate the default button, users must move focus to a component that does not accept Enter or Return.

If the dialog box has a default button, make it the first command button in the group. For example, in languages that
read from left to right, the default button is the leftmost button.

Do not add a mnemonic for the default command button.

You are not required to have a default command button in every dialog box and alert box. A command that might cause
users to lose data should never be the default button, even if it is the action that users are most likely to perform. The
following alert box asks users if they want to replace an existing file. The alert box has Replace and Cancel buttons, neither
of which is the default command button.

Figure 81 Alert Box Without a Default Button

Common Dialog Boxes
The find, login, preferences, print, and progress dialog boxes are common in many applications. These dialog boxes are not
supplied by the Java Foundation Classes. The following sections show simple versions of these dialog boxes that are
consistent with the Java look and feel. You can adapt the designs for these dialog boxes to suit your needs.

Design Guidelines: Dialog Boxes

http://java.sun.com/products/jlf/dg/higl.htm (6 sur 12) [05/06/2000 14:16:11]

Find Dialog Boxes
A find dialog box enables users to search for a specified text string. In most cases, you should make this dialog box
modeless. An example is shown in the following figure.

Figure 82 Sample Find Dialog Box

Login Dialog Boxes
A login dialog box (shown in the following figure) enables users to identify themselves and enter a password. Depending on
where you use this dialog box in your application, you can make it modal or modeless.

Figure 83 Sample Login Dialog Box

Preferences Dialog Boxes
A preferences dialog box (shown in the following figure) enables users to view and modify the characteristics of an
application. In most cases, you should make this dialog box modeless.

Figure 84 Sample Preferences Dialog Box

Design Guidelines: Dialog Boxes

http://java.sun.com/products/jlf/dg/higl.htm (7 sur 12) [05/06/2000 14:16:11]

If your preferences dialog box is very complex, you can simplify it by using a tabbed pane to organize the options, as shown
in Figure 78.

Print Dialog Boxes
A print dialog box enables users to print and to specify print settings (such as the number of copies).

Use the print dialog box available from the AWT. On Microsoft Windows and Macintosh platforms, the AWT uses
the native print dialog box. For other environments, the AWT uses the print dialog box supplied with the JDK.

Progress Dialog Boxes
A progress dialog box provides feedback for long operations and lets users know that the system is working on the previous
command. The following progress dialog box monitors the progress of a file copy operation. The dialog box includes the
JFC progress bar, a command button that users can click to stop the process, and labels to further explain the progress of the
operation. In most cases, you should make a progress dialog box modeless.

Figure 85 Sample Progress Dialog Box

Display a progress dialog box (or supply a progress bar elsewhere in your application) if an operation takes longer
than two seconds.

If you include a button to stop the process, place it after the progress bar. (In languages that read from left to right, the
button appears to the right of the progress bar.) If the state will remain as it was before the process started, use a Cancel
button. If the process might alter the state as it progresses (for example, deleted records will not be restored), use a Stop
button. If stopping the process could lead to data loss, give users a chance to confirm the Stop command by displaying a
Warning alert box.

Close the progress dialog box automatically when the operation is complete.

Design Guidelines: Dialog Boxes

http://java.sun.com/products/jlf/dg/higl.htm (8 sur 12) [05/06/2000 14:16:11]

If delays are a common occurrence in your application (for example, in a web browser), build a progress bar into the
primary window so that you don't have to keep displaying a progress dialog box.

Because translation of the word "Stop" can result in words with subtly different meanings, point out to your translators
the specialized meaning of the Stop button in a progress dialog box. Stop indicates that the process might leave the system in
an altered state.

Alert Boxes
An alert box, which conveys a message or warning to users, provides an easy way for you to create a dialog box. The JFC
provides four types of alert boxes: Info, Warning, Error, and Question. Each alert box is provided with a symbol that
indicates its type. You provide the title, the message, and the command buttons and their labels.

The layout of an alert box is provided in the JFC, so you don't have to worry about the spacing and alignment of the
message, symbol, and command buttons. If you provide additional components, such as a text field, follow the layout
guidelines for that component. You can make an alert box modal or modeless.

Figure 86 Standard Components in an Alert Box

In an alert box, begin your message with a brief heading in boldface. Start the body of the message on a separate line.

In the message for an alert box, the ... tags can be used to render a heading in boldface. The
 tag can
be used to create a line break between the heading and the message body.

An alert box is created using the JOptionPane component.

Info Alert Boxes
An Info alert box presents general information to users. The symbol in the Info alert box is a blue circle with the letter i. The
following Info alert box from an encyclopedia application provides information about a sponge.

Figure 87 Info Alert Box

Provide a Close button to dismiss the Info alert box. Provide additional command buttons, such as a Help button, if
needed.

Design Guidelines: Dialog Boxes

http://java.sun.com/products/jlf/dg/higl.htm (9 sur 12) [05/06/2000 14:16:11]

Warning Alert Boxes
A Warning alert box warns users about the possible consequences of an action and asks users for a response. The symbol in
the Warning alert box is a yellow triangle with an exclamation point. The following alert box warns users that a file save
operation will replace an existing file.

Figure 88 Warning Alert Box

Keep the message in the Warning alert box brief, and use terms that are familiar to users.

Include at least two buttons in a Warning alert box: one button to perform the action and the other to cancel the action.
Provide the command buttons with labels that describe the action they perform.

If appropriate, provide a Help button that opens a secondary or utility window that gives background information
about the warning. Do not close the alert box when users click the Help button.

Do not make a command button whose action might cause loss of data the default button. Users might press the Enter
or Return key without reading the message. In such a case, you might not provide a default button.

Error Alert Boxes
An Error alert box reports system and application errors to users. The symbol in the Error alert box is a red octagon with a
rectangle. The following Error alert box reports that a printer is out of paper and provides users with three options. Clicking
the Continue button resumes printing and dismisses the alert box. Clicking the Cancel button terminates the print job and
dismisses the alert box. Clicking the Help button opens a secondary window that gives background information about the
error.

Figure 89 Error Alert Box

Include an error number in the title bar of an Error alert box. The error number is helpful for users in obtaining
technical assistance, especially if the error message is localized in a language not spoken by the technical support personnel.

In the message of an Error alert box, explain what happened, the cause of the problem, and what the user can do about

Design Guidelines: Dialog Boxes

http://java.sun.com/products/jlf/dg/higl.htm (10 sur 12) [05/06/2000 14:16:11]

it. Keep the message brief and use terms that are familiar to users.

If appropriate, provide a Help button to open a separate online help window that gives background information about
the error. Do not close the alert box when users click the Help button.

If possible, provide buttons or other controls to resolve the error noted in the Error alert box. Label the buttons
according to the action they perform. If users cannot resolve the error from the alert box, provide a Close button.

Question Alert Boxes
A Question alert box requests information from users. You can add components to this alert box (for example, a text field,
list, or combo box) in which users can type a value or make a selection. The layout of the standard components (the symbol,
message, and command buttons) is provided by the JFC. If you add components, follow the layout guidelines for that
component. The symbol in the Question alert box is a green rectangle with a question mark.

The following Question alert box includes a label and text field in addition to the standard components.

Figure 90 Question Alert Box

When you add components to a Question alert box, align them with the leading edge of the message. For languages
that read from left to right, the leading edge is the left edge.

Color Choosers
A color chooser provides one or more content panes from which users can select colors and a preview panel from which
users can view the selected colors in context. You can display a color chooser in a dialog box, as shown in the following
figure. The three command buttons (OK, Cancel, and Help) are part of the dialog box, not the color chooser.

Figure 91 Standard Color Chooser

Design Guidelines: Dialog Boxes

http://java.sun.com/products/jlf/dg/higl.htm (11 sur 12) [05/06/2000 14:16:11]

As supplied by the JFC, the color chooser offers users three methods for selecting a color:

Swatches. Users can select a color from a palette (as shown in the preceding figure).❍

HSB. Users can choose the hue, saturation, and brightness values for a color.❍

RGB. Users can choose the red, green, and blue values for a color.❍

If your application requires a different method for choosing colors, you can add a content pane with that feature. You can
also remove existing content panes. If you use only one content pane, the tab disappears. In addition, you can specify your
own preview panel.

The color chooser is a panel. The color panel can be inserted in a dialog box by using the JDialog container.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: Dialog Boxes

http://java.sun.com/products/jlf/dg/higl.htm (12 sur 12) [05/06/2000 14:16:11]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

9: Menus and Toolbars
A menu displays a list of choices (menu items) for users to choose or browse through. Typically, menus are
logically grouped and displayed by an application so that a user need not memorize all available commands or
options. Menus in the Java look and feel are "sticky"--that is, they remain posted on screen after users click the
menu title. Usually the primary means to access your application's features, menus also provide a quick way for
users to see what those features are.

A toolbar is a collection of frequently used commands or options that appear as a row of toolbar buttons.
Toolbars normally appear horizontally beneath a primary window's menu bar, but they can be dragged
anywhere in the window or into a separate window. Toolbars typically contain buttons, but you can provide
other components (such as text fields and combo boxes) as well.

In Java look and feel applications, you can provide three kinds of menus: drop-down menus, submenus, and
contextual menus. A drop-down menu is a menu whose titles appear in the menu bar. A submenu appears
adjacent to a menu item in a drop-down menu; its presence is indicated by an arrow next to the item. A
contextual menu displays lists of commands, settings, or attributes that apply to the item or selected items
under the pointer.

Figure 92 Drop-down Menu, Submenu, Contextual Menu, and Toolbar

Menu Elements

Design Guidelines: Menus and Toolbars

http://java.sun.com/products/jlf/dg/higm.htm (1 sur 14) [05/06/2000 14:13:59]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

In the Java look and feel, menus use a highlight color (primary 2) for the background of selected menu titles and
menu items. The following figure shows an example of a drop-down menu that is selected and displayed.
Within the Text menu, the Style item is selected; a submenu appears that includes the Bold, Italic, and
Underline checkbox menu items. (The Italic checkbox menu item is highlighted.)

A separator divides the menu items for specifying font, style, and size from the alignment radio button items.
Keyboard shortcuts appear to the right of the frequently used menu items, and mnemonics are included for each
menu title and menu item.

Figure 93 Menu Elements

Menu Bars
The menu bar appears at the top of a primary window and contains menu titles, which describe the content of
each menu. Menu titles usually appear as text; however, it is possible to use a graphic or a graphic with text as a
menu title. Menu titles in the Java look and feel contain mnemonics only if they are explicitly set by the
developer. See Mnemonics for details.

A drop-down menu appears when users choose a menu title in the menu bar.

If the primary window has a menu bar, display it as a single line across the top of the window.

Do not display menu bars in secondary windows unless you have a compelling reason to do so (such as a
complex set of activities in the secondary window).

Be sure to include mnemonics for every menu title in your menu bar.

If your applet runs in the user's current browser window (with the browser menu bar), do not display your
own menu bar in the applet. Although applets displayed inside a browser window can theoretically have their
own menu bars, users are often confused when both the browser window and the applet have menu bars. If your
applet requires a menu bar, display the applet in a separate browser window without its own menu bar or
navigation controls.

Even on Macintosh systems, which ordinarily place a menu bar only at the top of the screen, display
menu bars in windows for a Java look and feel application. On the Macintosh, the screen-top menu bar remains,
but, since all the application menus are in the windows, the only command in the screen-top menu bar should be
Quit in the File menu.

Drop-down Menus
The menu bar contains all of the drop-down menus and submenus in your application. Each menu in the menu

Design Guidelines: Menus and Toolbars

http://java.sun.com/products/jlf/dg/higm.htm (2 sur 14) [05/06/2000 14:13:59]

bar is represented by its menu title. The titles describe the content of each menu. (The title for a submenu is its
menu item in the drop-down menu.)

Users can display menus in two ways:

To post a menu (that is, to display it and have it stay up until the next click even though the mouse
button has been released), users click the menu title. Users can then move the pointer over other menu
titles to view other menus.

❍

To pull down a menu, users press the mouse button over the menu title. The menu title is highlighted,
and the menu drops down. When users choose a command and release the mouse button, the menu
closes.

❍

For details on keyboard navigation, selection, and activation in menus, see Table 20.

Use single words for your menu titles.

Use menu titles that help users guess which menu contains the item of particular interest at a given
moment. For example, the Edit menu typically contains commands that enable users to change or edit the
contents of their documents or data.

Include mnemonics in all your menu titles.

Submenus
A submenu is a menu that users open by highlighting a menu item in a higher-level menu. Sometimes you can
shorten a menu by moving related choices to a submenu. Submenus (such as the Style submenu shown in the
following figure) appear adjacent to the submenu indicator. For instance, the Style item opens a submenu
consisting of three items: Bold, Italic, and Underline. Note that the items in the Style submenu include both
keyboard shortcuts and mnemonics.

Users display submenus by clicking or by dragging over the corresponding menu item. The first item in the
submenu aligns with the submenu indicator, slightly overlapping the main menu. Just as in other menus, items
in the submenu are highlighted when the user moves the pointer over them.

For a list of keyboard operations in submenus, see Table 20.

Figure 94 Menu Item With Its Submenu

Since many people find submenus difficult to use, avoid the use of a second level of submenus. If you
want to present a large or complex set of choices, display them in a dialog box.

Submenus are created using the JMenu component.

Menu Items
A simple menu item consists of the command name, such as Undo. When a menu item is available for use, its
text is displayed in black, as shown in the following figure.

Design Guidelines: Menus and Toolbars

http://java.sun.com/products/jlf/dg/higm.htm (3 sur 14) [05/06/2000 14:13:59]

Figure 95 Typical Menu Items

When users position the pointer over an individual item within a menu, the menu item (if available) is
highlighted.

Users can choose menu items in two ways:

In a posted menu, users click a menu item to choose it and close the menu.❍

In a pulled-down menu, users drag over a menu item to highlight it. Releasing the mouse button chooses
the command and closes the menu.

❍

For a list of keyboard operations for menu items, see Table 20.

Available and Unavailable Items

Here are some guidelines for handling available and unavailable menu items in your application.

If an application feature is not currently available in a window, but users can do something to make it
available, make the corresponding menu item unavailable and dim its text. For example, the Undo command
might not be available until the user has made a change in a document window.

If all the items in a menu are unavailable, do not make the menu unavailable. In this way, users can still
display the menu and view all its (inactive) items. Similarly, if all the items in a submenu are currently not
available, do not make the original menu item unavailable.

If there is nothing users can do to make a menu item available, omit the item entirely rather than just
making it unavailable. Making an item unavailable implies that users can do something to make the item
available. A similar rule applies to submenu items and contextual menus.

Composition and Construction of Items

Here are some recommendations for the use of concise language, consistent capitalization, and keyboard
operations in menu items.

Make your menu items brief, and confine them to a single line.

Use headline capitalization in menu titles and menu items.

Include mnemonics for all menu items.

Offer keyboard shortcuts for frequently used menu items.

Use the same keyboard shortcut if a menu item appears in several menus--for instance, if a Cut item
appears in a contextual menu as well as in a drop-down Edit menu, use Ctrl-X for both.

Design Guidelines: Menus and Toolbars

http://java.sun.com/products/jlf/dg/higm.htm (4 sur 14) [05/06/2000 14:13:59]

Commonly used keyboard shortcuts are described in Typical File Menu, Typical Edit Menu, and Typical Help
Menu.

Ellipses in Items

Ellipses (...) are punctuation marks that indicate the omission of one or more words that must be supplied in
order to make a construction complete. In your menus, you can use ellipses in a similar way: to indicate that the
command issued by a menu item needs more specification in order to make it complete.

If a menu item does not fully specify a command and users need a dialog box to finish the specification,
use an ellipsis after the menu item. For example, after choosing Save As..., users are presented with a file
chooser to specify a file name and location.

Do not use an ellipsis mark simply to indicate that a secondary or utility window will appear. For
example, choosing Preferences displays a dialog box; because that display is the entire effect of the command,
however, Preferences is not followed by an ellipsis.

Organization of Items

You can group menu items with separators or, in the case of lengthy extensible menus, with a grid layout. Here
are the guidelines:

Use separators to group similar menu items in a way that helps users find items and better understand their
range of choices. For instance, in a typical File menu, the commands that affect saving are separated from those
that are relevant to printing.

If a menu is or has the potential to become very long (for instance, in menus that present lists of
bookmarks or email recipients), a grid layout should be used to display the menu choices in multiple columns.

Checkbox Menu Items
A checkbox menu item is a menu item that appears with a checkbox next to it to represent an on or off setting.
A check mark in the adjacent checkbox graphic indicates that the value associated with that menu item is
selected. A dimmed checkbox menu item shows a gray box (checked or unchecked) that indicates that the
setting cannot be changed. The following figure shows checked, unchecked, and unavailable menu items.

Figure 96 Checkbox Menu Items

You can use checkbox menu items to present users with a nonexclusive choice.

For a list of keyboard operations for checkbox menu items, see Table 20.

For consistency, use the standard checkbox graphic for checkbox menu items.

As with all menu items, after users choose a checkbox menu item, the menu is dismissed. To choose
another item, users must reopen the menu. Therefore, use checkbox menu items with restraint. If users must set
more than one or two related preferences, place the checkboxes in a dialog box (or provide a palette or toolbar
buttons for the preferences).

Design Guidelines: Menus and Toolbars

http://java.sun.com/products/jlf/dg/higm.htm (5 sur 14) [05/06/2000 14:13:59]

Radio Button Menu Items
A radio button menu item is a menu item that appears with a radio button next to it to represent an off or on
setting. Each radio button menu item offers users a single choice within a set of radio button menu items, as
illustrated in the following set of alignment options.

Figure 97 Radio Button Menu Items

For a list of keyboard operations for radio button menu items, see Table 20.

To indicate that the radio button items are part of a set, group them and use separators to distinguish them
from other menu items.

As with all menu items, after users choose a radio button menu item, the menu is dismissed. To choose
another item, users must reopen the menu. Therefore, use radio button menu items with restraint. If users must
set more than one or two related preferences, place the radio buttons in a dialog box (or provide a palette or
toolbar buttons for the preferences).

Separators
A separator is a line graphic that is used to divide menu items into logical groupings, as shown in the following
figure.

Figure 98 Separators in a Menu

Users can never choose a separator.

You can use separators to make lengthy menus easier to read.

While separators serve important functions on menus, avoid using them elsewhere in your application.
Instead, use blank space or an occasional titled border to delineate areas in dialog boxes or other components.

Common Menus
Several drop-down menus, such as File, Edit, and Help, occur in many applications. These menus are not
supplied by the Java Foundation Classes. The following sections show simple versions of these menus that are
consistent with the Java look and feel. You can adapt these menus to suit your needs.

Design Guidelines: Menus and Toolbars

http://java.sun.com/products/jlf/dg/higm.htm (6 sur 14) [05/06/2000 14:13:59]

If your application needs these commonly used menus, place the menu titles in this order: File, Object,
Edit, Format, View, and Help. If needed, insert other menus between the View and Help menus.

Typical File Menu
The first menu displays commands that apply to an entire document or the application as a whole. Typically,
this is called the File menu, but in some cases another title might be more appropriate. The following figure
illustrates common File menu items in order, with mnemonics and keyboard shortcuts.

You can add or remove menu items as needed.

Figure 99 Typical File Menu

Place commands that apply to the document (or another object) or application as a whole in the File menu.

If your application manipulates objects that your users might not think of as "files," give the first menu
another name. Ensure that the name corresponds to the type of object or procedure represented by the entire
window in your application. For example, a project management application could have Project as its first
menu, or a mail application could have a Mailbox menu.

Since the Close item dismisses the active window, close any dependent windows at the same time.

If you provide an Exit item, have it close all associated windows and terminate the application. (Be sure to
use the term Exit, not Quit.)

Object Menu
Object menu items provide actions that users can perform on an object or objects. An object might be almost
anything--for instance, an icon representing a person for whom you want to add an email alias.

Typical Edit Menu
The Edit menu displays items that enable users to change or edit the contents of their documents or other data.
These items give users typical text-editing features. The following figure shows common Edit menu items in
order, with mnemonics and keyboard shortcuts.

Figure 100 Typical Edit Menu

Design Guidelines: Menus and Toolbars

http://java.sun.com/products/jlf/dg/higm.htm (7 sur 14) [05/06/2000 14:13:59]

Place commands that modify the contents of documents or other data in the Edit menu, including Undo,
Redo, Cut, Copy, Paste, and Find.

The Swing Undo package can be used to provide the Undo and Redo commands.

Typical Format Menu
The Format menu displays items that enable users to change such formatting elements in their documents as
font, size, styles, characters, and paragraphs. The following figure shows common Format menu items with their
mnemonics.

Figure 101 Typical Format Menu

View Menu
View menu items provide ways for users to adjust the view of data in the active window. For instance, the View
menu in a network management application might have items that enable users to view large or small icons for
network objects.

Typical Help Menu
Help menu items provide access to online information about the features of an application. This menu also
provides access to the application's About box, which displays basic information about the application. For
details, see Designing About Boxes. The following figure shows common Help menu items (in the typical
order) with their mnemonics.

These menu items will vary according to the needs of your application.

Design Guidelines: Menus and Toolbars

http://java.sun.com/products/jlf/dg/higm.htm (8 sur 14) [05/06/2000 14:13:59]

Figure 102 Typical Help Menu

In your Help menu, allow access to online information about the features of the application.

Place a separator before an About Application item that displays a dialog box with the product name,
version number, company logo, product logo, legal notices, and names of contributors to the product.

JavaHelpTM, a standard extension to the Java Development Kit and the Java 2 SDK, can be used to build
a help system for your applications.

Contextual Menus
Sometimes called a "pop-up menu," a contextual menu offers only menu items that are applicable or relevant to
the object or region at the location of the pointer. The appearance of contextual menus in the Java look and feel
is similar to that of drop-down menus, including the display of mnemonics and keyboard shortcuts. Contextual
menus do not have a menu title. The following figure shows a contextual menu offering editing commands.

Figure 103 Contextual Menu

Users can display a contextual menu by clicking or pressing mouse button 2 while the pointer is over an object
or area that is associated with that menu. (On the Macintosh platform, users click while holding down the
Control key.)

For keyboard operations appropriate to contextual menus, see Table 20.

Ensure that any features you present in contextual menus are also available in more visible and accessible
places, like drop-down menus. Users might not know contextual menus are available, especially if your
application does not use this kind of menu consistently throughout the application.

Display keyboard shortcuts and mnemonics in contextual menus that are consistent with their usage in
corresponding drop-down menus.

Contextual menus are created using the JPopupMenu component.

Toolbars
A toolbar provides quick and convenient access to a set of frequently used commands or options. Toolbars
typically contain buttons, but other components (such as text fields and combo boxes) can be placed in the
toolbar as well. An optional, textured "drag area" on the toolbar indicates that users can drag the toolbar
anywhere in the window or into a separate window. The drag area is on the leading edge when the toolbar is
horizontal and on the top when it is vertical.

Design Guidelines: Menus and Toolbars

http://java.sun.com/products/jlf/dg/higm.htm (9 sur 14) [05/06/2000 14:13:59]

The following figure shows a toolbar with a drag area on the leading edge. For another example, see Figure 8.

Figure 104 Horizontal Toolbar

Users typically access the components in the toolbar by clicking. For information on the keyboard operations
that are appropriate for toolbars, see Table 31.

Include commonly used menu items as buttons or components in your toolbar.

Make special provisions for toolbar accessibility if your window does not have menus. Such provisions
might include a text identifier, either as button text or in text below the button. Be sure to provide a mnemonic
for such text.

Toolbar Placement
In general, a toolbar is located at the edge of the window or area on which it operates.

If your window has a menu bar, place the toolbar horizontally immediately under the menu bar.

Limit your window to a single toolbar with a single row of buttons or components. Multiple toolbar rows
create clutter and make the features harder to find.

Draggable Toolbars
You can specify that your toolbar be draggable. Users can then move it or display it in a separate window. Users
drag the toolbar by holding the mouse button down over the drag area. An outline of the toolbar moves as the
user moves the pointer. The outline provides an indication of where the toolbar will appear when the user
releases the mouse button. When the pointer is over a "hot spot," the outline has a dark border, indicating the
toolbar will anchor to an edge of the container, as shown in the following figure. The toolbar automatically
changes its orientation between horizontal and vertical depending on the edge of the window where it anchors.

Figure 105 Outline of a Toolbar Being Dragged

Design Guidelines: Menus and Toolbars

http://java.sun.com/products/jlf/dg/higm.htm (10 sur 14) [05/06/2000 14:13:59]

If the pointer is outside a hot spot, the outline has a light border, indicating that the toolbar will be displayed in a
separate window. The following figure shows the toolbar in a separate window. When the user closes the
window, the toolbar returns to its original location.

Figure 106 Toolbar in a Separate Window

A toolbar can dock (attach) along the top, bottom, left, or right edge of a container.

Toolbar Buttons
A toolbar button is a command button or toggle button that appears in a toolbar, typically as part of a set of
such buttons. Toolbar buttons can also act as titles to display menus. In other contexts, command buttons
typically use text to specify the operation or state they represent, but toolbar buttons typically use graphics.

Toolbar graphics can be difficult for users to understand. Weigh the comprehensibility of your graphics against
the space taken up by button text before deciding whether to use button text in addition to the button graphics.

Use button graphics that are either 16 x 16 or 24 x 24 pixels (but not both in the same toolbar), depending
on the space available in your application.

If you use text on the toolbar buttons, provide a user setting to display only the graphics. Using this mode,
you can conserve space and display more commands and settings in the toolbar.

To facilitate keyboard access, define a mnemonic for each toolbar button (or other component) that has
text.

Toolbar Button Spacing and Padding

This section contains the vertical (padding) and horizontal (spacing) measurements for toolbar buttons in
toolbars. The following figure shows the padding and spacing between individual toolbar buttons and groups of
toolbar buttons.

Space individual toolbar buttons 2 pixels apart. Space groups of toolbar buttons 11 pixels apart.

Include 3 pixels of padding above and below toolbar buttons. This actually means 2 pixels of padding
below the toolbar because of the white border on the buttons.

Figure 107 Toolbar Button Spacing

The inset on toolbar buttons should be 0.

Design Guidelines: Menus and Toolbars

http://java.sun.com/products/jlf/dg/higm.htm (11 sur 14) [05/06/2000 14:13:59]

Mouse-over Borders

To conserve space, you can use mouse-over borders (also called "rollover borders") on toolbar buttons. This
border appears around a button when users move the pointer over it; otherwise, the border is invisible.

The following figure shows a toolbar button with a mouse-over border activated for the Open button.

Figure 108 Mouse-over Border on a Toolbar Button

When you use mouse-over borders, space individual toolbar buttons zero pixels apart within a group.

The JToolBar.isRollover client property is set to true to enable mouse-over borders.

Drop-down Menus in Toolbar Buttons

You can attach a drop-down menu to a toolbar button. The menu appears when the user clicks (or presses and
holds the mouse button over) the toolbar button. The following figure shows a drop-down menu indicated by a
drop-down arrow on the Open button. The menu provides a list of files to open.

Figure 109 Toolbar Button With a Drop-down Menu

Provide a drop-down arrow in the graphic for any toolbar button that has a drop-down menu.

Tool Tips for Toolbar Buttons

You can provide tool tips for the toolbar components. The tool tip displays information about the component
when the user rests the pointer on it. If you specify a keyboard shortcut for a toolbar component, the JFC
displays it in the tool tip. The following figure shows a tool tip that describes the Cut button.

Figure 110 Tool Tip for a Toolbar Button

Keyboard shortcuts for toolbar buttons should match the keyboard shortcuts for the corresponding menu

Design Guidelines: Menus and Toolbars

http://java.sun.com/products/jlf/dg/higm.htm (12 sur 14) [05/06/2000 14:13:59]

items.

Attach tool tips to all toolbar components that do not include text identifiers. Tool tips are valuable for all
toolbar components because they display keyboard shortcuts.

If your application does not have menus, attach tool tips to the toolbar buttons in order to display
keyboard shortcuts.

Tool Tips
A tool tip provides information about a component or area when the user rests the pointer on it (and does not
press a mouse button). These small rectangles of text can be used anywhere in your application. A tool tip is
commonly associated with an interface element, where it provides a short description of the component's
function. If a component has a keyboard shortcut, the shortcut is automatically displayed in the tool tip.

The following figure shows a tool tip that describes a slider.

Figure 111 Tool Tip for a Slider

You can also use tool tips with graphics. A graphic might have one tool tip that provides the name and size of
the graphic or several tool tips that describe different areas of the graphic.

The following figure shows a tool tip on an area of the bar chart in the sample applet, Retirement Savings
Calculator.

Figure 112 Tool Tip on an Area Within a Graphic

You can adjust the timing of the tool tips in your application. By default, a tool tip appears after the user rests
the pointer on the component or area for 750 milliseconds. It disappears after four seconds or when the user
activates the component or moves the pointer off the component.

For keyboard operations in tool tips, see Table 30.

Make tool tips active by default, but provide users a way to turn them off. For example, you might provide
a checkbox in either a menu or in a preferences dialog box.

Design Guidelines: Menus and Toolbars

http://java.sun.com/products/jlf/dg/higm.htm (13 sur 14) [05/06/2000 14:13:59]

A tool tip is specified in its associated component (and not by calling the JToolTip class directly).

All components need to have an AccessibleName set. However, interactive components that provide a
descriptive tool tip don't need to have an AccessibleDescription set.

For details on the Java 2 Accessibility API, see Support for Accessibility.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: Menus and Toolbars

http://java.sun.com/products/jlf/dg/higm.htm (14 sur 14) [05/06/2000 14:13:59]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

10: Basic Controls
Buttons, combo boxes, and sliders are examples of controls--interface elements users can manipulate to perform an
action, select an option, or set a value. A button is a control that users click to perform an action, set or toggle a state,
or set an option. In the Java look and feel, buttons include command and toggle buttons, toolbar buttons, checkboxes,
and radio buttons. A combo box is a control that enables users to select one option from an associated list; users can
also type a choice into an editable combo box. A slider is a control that enables users to set a value in a range.

A progress bar is an interface element that indicates one or more operations are in progress and shows users what
proportion of the operation has been completed. In contrast to the other components in this chapter, no user
manipulation is involved.

Figure 113 Buttons, Combo Box, Slider, and Progress Bar

For text in buttons, sliders, and combo boxes, use headline capitalization.

Make sure you use the appropriate layout manager to lay out your controls so they allow for the longer text
strings frequently associated with localization.

Command Buttons
A command button is a button with a rectangular border that contains text, a graphic, or both. These buttons
typically use button text, often a single word, to identify the action or setting that the button represents. See Command
Buttons in Dialog Boxes for a list of commonly used command button names and their recommended usage.

Design Guidelines: Basic Controls

http://java.sun.com/products/jlf/dg/hign.htm (1 sur 11) [05/06/2000 14:18:16]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Command buttons can stand alone or appear in a row, as shown in the following illustration.

Figure 114 Command Buttons

Command buttons that appear in toolbars are called "toolbar buttons." The following figure shows toolbar buttons for
a text-editing application. See Toolbar Buttons for details.

Figure 115 Toolbar Buttons

When a command button is unavailable, the dimmed appearance indicates that it cannot be used. The following figure
shows the appearance of available, pressed, and dimmed command buttons.

Figure 116 Available, Pressed, and Unavailable Command Buttons

Users can click command buttons to specify a command or initiate an action, such as Save, Cancel, or Submit
Changes.

For a list of keyboard operations for the activation of command buttons, see Table 15.

Display mnemonics in button text, with the exception of default command buttons and the Cancel button in
dialog boxes. To make command buttons without text more accessible, set tool tips that describe or name the
functions of the buttons.

For general details on keyboard operations and mnemonics, see Keyboard Operations and Mnemonics. For details on
displaying a command button's tool tip, see Table 30.

For details on layout and spacing of command buttons, see Command Button Spacing.

Default Command Buttons
One of the buttons in any window can be the default command button. The JFC gives default command buttons a
heavier border.

Default command buttons typically appear in dialog boxes. The default command button is activated when users press
Return or Enter. A default command button (such as Save in the following figure) should represent the action most
often performed, assuming that the action will not lead to loss of user data.

Figure 117 Default and Nondefault Command Buttons

Design Guidelines: Basic Controls

http://java.sun.com/products/jlf/dg/hign.htm (2 sur 11) [05/06/2000 14:18:16]

The Enter and Return equivalents work unless keyboard focus is currently on a component that accepts the Enter or
Return key. For instance, if the insertion point is in a multiline text area and the user presses Return, the insertion
point moves to the beginning of a new line rather than activating a default button. Keyboard focus must be moved to
another component before the default button can be activated with the keyboard.

The JFC does not automatically implement the Escape key as the keyboard equivalent for the Cancel button, so you
must implement this behavior. As with the Enter and Return keys for the default command button, the Cancel button
should not require keyboard focus to be activated by the Escape key.

Since you are not required to have a default button in every circumstance, you can use discretion about including
them in your interface elements.

Never make an unsafe choice the default button. For instance, a button that would result in discarding unsaved
changes should not be the default command button.

Do not supply mnemonics for the default and Cancel buttons.

Combining Graphics With Text in Command Buttons
In some circumstances, you might use a graphic along with text to identify the action or setting represented by a
command button.

Figure 118 Command Buttons Containing Both Text and Graphics

Place the text after or below the image in command buttons containing both text and graphics.

Include mnemonics in your command button text--with the exception of the default and Cancel buttons.

For a list of commonly used mnemonics, see Table 10.

Using Ellipses in Command Buttons
In circumstances in which a command button does not fully specify an action or operation and a dialog box finishes
the specification, you can notify the user that this situation is about to occur by placing an ellipsis mark after the
button text. For example, after clicking a Print... button, users are presented with a dialog box in which to specify
printer location, how many copies to print, and so forth. By contrast, a Print command that prints one copy to the
default printer without displaying a dialog box would not require an ellipsis mark.

When users must view a dialog box to finish the specification of a command initiated in a command button, use
an ellipsis mark (...) after the button text. When a full specification of the command is made in the button text, do not
use ellipses.

Command Button Spacing
For a consistent appearance, follow the guidelines described in this section to create padding within and space
between command buttons. The following figure shows button text (Help) centered in a command button.

Center the button text within buttons.

Figure 119 Command Button Text With Centered Text

Design Guidelines: Basic Controls

http://java.sun.com/products/jlf/dg/hign.htm (3 sur 11) [05/06/2000 14:18:16]

Since the length and height of translated text varies, use layout managers properly to allow for differences.

Command Button Padding
The blank space between the button text and the button border is referred to as "command button padding." Often
command buttons appear in groups within a dialog box or an applet. In such a case, the button in the group with the
widest text determines the inner padding, as shown in the following figure. Here the Cancel button has the widest text.
The padding is 12 pixels on either side of the button text. The other buttons in the group (OK and Help) have the same
width as the Cancel button.

Determine which button has the widest button text, and insert 12 pixels of padding on either side of the text.
Make all the remaining buttons in the group the same size as the button with the longest text.

Space buttons in a group 5 pixels apart. (Because of the white border on the right side of a button, the apparent
spacing will be 6 pixels.)

Figure 120 Spacing in Command Button Groups

Toggle Buttons
A toggle button is a button that represents a setting with two states--on and off. Toggle buttons look similar to
command buttons and display a graphic or text that identifies the button. The graphic or button text should remain the
same whether the button is in the on or off state.

Users can click toggle buttons to turn a setting on or off--for instance, to toggle between italic and plain style in
selected text.

You can use toggle buttons to represent an independent choice, like checkboxes (see here), or an exclusive choice
within a set, like radio buttons (see here).

Toggle buttons can be placed in a button group to get radio button behavior.

Independent Choice
An independent toggle button behaves like a checkbox. Whether it appears alone or with other buttons, its setting is
independent of other controls. An example of an independent toggle button is a Bold button on a toolbar, as shown in
the following illustration.

Figure 121 Independent Toggle Buttons in a Toolbar

Design Guidelines: Basic Controls

http://java.sun.com/products/jlf/dg/hign.htm (4 sur 11) [05/06/2000 14:18:16]

When users click the Bold button, it is highlighted to indicate that the bold style has been applied to the selection or
that text to be entered will be bold. If the button is clicked again, it reverts to the normal button appearance and the
bold style is removed from the selection.

Although checkboxes and independent toggle buttons have the same function, as a general rule, use checkboxes
in dialog boxes and toggle buttons with a graphic in toolbars.

When toggle buttons are independent (like checkboxes) and used outside a toolbar, separate them with 5 pixels.
Within a toolbar, separate independent toggle buttons by 2 pixels.

For details on the spacing of toggle buttons, see Command Button Spacing.

Exclusive Choice
A toggle button can also work as part of a group to represent an exclusive choice within the set. A common example
is a set of toolbar toggle buttons representing left, centered, and right text alignment along with justification, as shown
in the following figure.

Figure 122 Standard Separation of Exclusive Toggle Buttons

If users click the button representing left alignment, the button is highlighted to indicate that text is aligned flush with
the left border of the document. If users then click the button representing centered alignment, the appearance of the
Align Left button reverts to the normal button appearance and the Center button is highlighted to indicate centered
alignment of the selected text.

You can use grouped toggle buttons with labels equally well in toolbars or dialog boxes. In the following example, the
label identifies the abbreviations in the button text in a dialog box.

Figure 123 Grouped Toggle Buttons With a Label

Design Guidelines: Basic Controls

http://java.sun.com/products/jlf/dg/hign.htm (5 sur 11) [05/06/2000 14:18:16]

When toggle buttons form a radio set, separate them with 2 pixels.

Checkboxes
A checkbox is a control that represents a setting or value with an on or off choice. The setting of an individual
checkbox is independent of other checkboxes--that is, more than one checkbox in a set can be checked at any given
time.

A check mark within the checkbox indicates that the setting is selected. The following figure shows both active and
inactive checkboxes in selected and nonselected states.

Figure 124 Checkboxes

When the user clicks a checkbox, its setting toggles between off and on. When a checkbox is disabled, the user cannot
change its setting.

For a list of keyboard operations for checkboxes, see Table 13.

Use the checkbox graphic that is supplied with the component (the square box with the check mark inside).

Display checkbox text to the right of the graphic unless the application is designed for locales with right-to-left
writing systems, such as Arabic and Hebrew. In this case, display the text to the left of the graphic.

Although checkboxes and independent toggle buttons have the same function, use checkboxes in dialog boxes
and use toggle buttons with a graphic in toolbars.

The setMnemonic method can be used to specify mnemonics in checkboxes.

In addition to standard checkboxes, the JFC includes a component that is the functional equivalent of the checkbox for
use in menus. See Checkbox Menu Items for more information.

Checkbox Spacing
This section provides the spacing guidelines for checkbox components. As shown in the following figure, the height
of the checkbox square doesn't change in an inactive checkbox even though the white highlight border is not drawn.
Hence, while the checkbox is the same size, the last row and column of pixels on the bottom and right are the same
color as the background canvas. The apparent spacing is 6 pixels between components; however, the actual spacing is
5 pixels.

Figure 125 Checkbox Spacing

Space checkboxes 5 pixels apart.

Design Guidelines: Basic Controls

http://java.sun.com/products/jlf/dg/hign.htm (6 sur 11) [05/06/2000 14:18:16]

Use the appropriate layout manager to achieve consistent spacing in checkbox button groups.

Radio Buttons
A radio button represents an exclusive choice within a set of related options. Within a set of radio buttons, only one
button can be on at any given time. The following figure shows active radio buttons and inactive radio buttons in both
on and off states.

Figure 126 Radio Buttons

When users click a radio button, its setting is always set to on. An inner filled circle within the round button indicates
that the setting is selected. If another button in the set has previously been selected, its state changes to off. When a
radio button is inactive, users cannot change its setting.

For a list of keyboard operations for radio buttons, see Table 21.

Use the supplied radio button graphics (the open buttons with inner filled circles).

Display radio button text to the right of the graphic unless the application is designed for locales with
right-to-left writing systems, such as Arabic and Hebrew. In those locales, place the text to the left of the graphic.

Although radio buttons and toggle buttons in a radio set have the same function, use radio buttons in dialog
boxes and use grouped toggle buttons with graphics in toolbars. Grouped toggle buttons with text identifiers work
well in either situation.

The JFC includes a component that is the functional equivalent of the radio button for use in menus. See Radio Button
Menu Items for more information.

Radio Button Spacing
This section provides guidelines for the spacing of radio buttons. The height of the radio button is 12 pixels, not
counting the white highlight border. Inactive radio buttons do not have white borders. Hence, while the radio button is
the same size, the last row and column of pixels on the bottom and right are the same color as the background canvas.
As shown in the following figure, the apparent spacing is 6 pixels between components; however, the actual spacing
is 5 pixels.

Figure 127 Radio Button Spacing

Space radio buttons 5 pixels apart, as shown in the preceding figure.

Use the appropriate layout manager to achieve consistent spacing in radio button groups.

Design Guidelines: Basic Controls

http://java.sun.com/products/jlf/dg/hign.htm (7 sur 11) [05/06/2000 14:18:16]

Combo Boxes
A combo box is a component with a drop-down arrow that users click to display an associated list of choices. If the
list is too long to display fully, a vertical scrollbar appears.

The currently selected item appears in the combo box. As users move the pointer over the list, each option under the
pointer is highlighted. An option chosen from the list will replace the current selection. In the following figure, the
currently selected option is Vanilla, and the Guanabana option will replace Vanilla when the combo box is closed.

Figure 128 Combo Box Display

Users can close either editable or noneditable combo boxes by clicking the drop-down arrow in the combo box again,
choosing an item from the list, or clicking anywhere outside the combo box.

For a list of keyboard operations appropriate for combo boxes, see Table 14.

You can use combo boxes to provide a way for users to indicate a choice from a set of mutually exclusive options.
Noneditable combo boxes enable users to choose one item from a limited set of items. Editable combo boxes provide
users the additional option of typing in an item.

Use headline capitalization for the text in the items in the combo box list.

To facilitate keyboard access, provide labels with mnemonics for combo boxes.

In the JFC, the term "combo box" includes both of what Microsoft Windows applications call "list boxes" and
"combo boxes."

Noneditable Combo Boxes
Noneditable combo boxes (sometimes called "list boxes" or "pop-up menus") display a list from which users can
select one item.

The following figure shows a noneditable combo box with a drop-down arrow to the right of the currently selected
item. (Note the gray background in the default Java look and feel theme, indicating that users cannot edit text.)

Figure 129 Noneditable Combo Box

Design Guidelines: Basic Controls

http://java.sun.com/products/jlf/dg/hign.htm (8 sur 11) [05/06/2000 14:18:16]

To make a selection, users have two options:

They can click the combo box to display the list, position the pointer over the desired option to highlight it,
and click.

❍

They can drag through the combo box to the desired choice and release the mouse button.❍

In either case, the currently selected item changes to reflects the choice.

You can use a noneditable combo box instead of a group of radio buttons or a list if space is limited in your
application.

Editable Combo Boxes
Editable combo boxes combine a text field with a drop-down arrow that users click to display an associated list of
options. As shown in the following figure, editable combo boxes initially appear as editable text fields with a
drop-down arrow. The white background of the editable combo box indicates that users can type, select, and edit text.

Figure 130 Editable Combo Box

To make a choice, users have three options:

They can click the drop-down arrow to display the list, position the pointer over the desired option to highlight
it, and click.

❍

They can drag from the drop-down arrow to the desired choice and release the mouse button.❍

To make a customized choice, they can type text in the field and press Enter or Return or move focus to
another component. If the list is open, it will close.

❍

You can use an editable combo box to save users time by making the most likely menu choices available while still
enabling users to type other values in the text field. An example might be the specification of a font size. The combo
box might initially display the current size, say 12. Users could select from a list of standard sizes (10, 12, 14, 18, or
24 points) or type in their own values--for instance, 22 points.

Whenever possible, interpret user input into an editable combo box in a case-insensitive way. For example, it
should not matter whether the user types Blue, blue, or BLUE.

You can specify the maximum number of items to be displayed before a scrollbar appears.

Design Guidelines: Basic Controls

http://java.sun.com/products/jlf/dg/hign.htm (9 sur 11) [05/06/2000 14:18:16]

Sliders
A slider is a control that is used to select a value from a continuous or discontinuous range. The position of the
indicator reflects the current value. Major tick marks indicate large divisions along the range of values (for instance,
every ten units); minor tick marks indicate smaller divisions (for instance, every five units).

The default slider in the Java look and feel is a nonfilling slider. An example is a slider that adjusts left-right balance
in a stereo speaker system, as shown in the following figure.

Figure 131 Nonfilling Slider

A filling slider is also available. The filled portion of the channel, shown in the following figure, represents the range
of values below the current value.

Figure 132 Filling Slider

Users can drag the indicator to set a specific value or click the channel to move back and forth by one unit. Sliders can
represent a series of discrete values, in which case the indicator snaps to the value closest to the end point of the drag
operation.

For a list of keyboard operations for sliders, see Table 23.

You can:

Indicate values along the slider with major and minor tick marks, which can also have associated text❍

Choose a filling or nonfilling slider❍

If the slider represents a continuous range or a large number of discrete values and the exact value that is chosen
is important, provide a text field where the chosen value can be displayed. For instance, a user might want to specify
an annual retirement savings contribution of 2.35%. In such a situation, consider making the text field editable to give
users the option of typing in the value directly.

The JSlider.isFilled client property can be used to enable the optional filling slider.

Progress Bars
A progress bar indicates that one or more operations is under way and shows users what proportion of the operation
has been completed. The progress bar consists of a rectangular bar that fills as the operation progresses, as shown in
the following figure.

Figure 133 Progress Bar

Users cannot interact with a progress bar. If you would like to enable users to set a value in a range, use the slider
component, described here.

Design Guidelines: Basic Controls

http://java.sun.com/products/jlf/dg/hign.htm (10 sur 11) [05/06/2000 14:18:16]

You can orient the progress bar horizontally, so it fills from left to right, or vertically, so it fills from bottom to top.
Within the bounds of the progress bar, you can display a text message that is updated as the bar fills. By default, the
message shows the percentage of the process completed--for example, 25%.

The following figure shows another use of the progress bar. In this example of a process control application, the
progress bar is not used to track the progress of an operation; rather, it is used as a gauge to show the temperature of a
vat in a candy factory. The temperature indicates the proportion of the maximum temperature that has been reached
(more than three-quarters), and the text message within the progress bar specifies the exact value (114 degrees).

Figure 134 Text Inside a Progress Bar

If you create your own message to display inside the progress bar, make it concise.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: Basic Controls

http://java.sun.com/products/jlf/dg/hign.htm (11 sur 11) [05/06/2000 14:18:16]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

11: Text Components
Text components enable users to view and edit text in an application. The simplest text component you can provide is a
label, which presents read-only information. A label is usually associated with another component and describes its
function. A text field is a rectangular area that displays a single line of text, which can be editable or noneditable. A
password field is an editable text field that displays masking characters in place of the characters that the user types.

Other text components display multiple lines of text. A text area displays text in a single font, size, and style. You can
configure an editor pane to display different types of text through the use of a plug-in editor. These editors include a
plain text editor, a styled text editor, an RTF (rich text format) editor, and an HTML (Hypertext Markup Language)
editor.

Figure 135 Text Components

Make your text easier to localize by using resource bundles. A resource bundle stores text separately so that
localizers don't have to change the application's source code to accommodate translation.

For guidelines on translating text, see Planning for Internationalization and Localization.

Design Guidelines: Text Components

http://java.sun.com/products/jlf/dg/higo.htm (1 sur 8) [05/06/2000 14:19:01]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Labels
A label consists of read-only text, graphics, or both. Labels serve two functions in an application: to identify
components and to communicate status and other information. Users cannot select a label.

Labels That Identify Controls
You can associate a label with a component (such as a text field, slider, or checkbox) to describe the use of the
component. In the following figure, the Salary Contribution: label lets users know they can use the slider to adjust their
salary contribution.

Figure 136 Label That Describes the Use of a Slider

You can also use a label to describe a group of components. In the following figure, the Color: label describes a group
of three radio buttons. The text (Red, Yellow, and Blue) is part of the radio buttons and not a separate component, as is
the Color: label.

Figure 137 Label That Describes a Radio Button Group

Keep the text of the label brief, and use terminology that is familiar to users.

Active and Inactive Labels

You can make a label active or inactive so that its state is the same as the component it describes. Active labels are
drawn in the primary 1 color defined in the application's color theme. Inactive labels are drawn in the secondary 2 color
defined in the application's color theme. The following figure shows an active and inactive label.

Figure 138 Active and Inactive Labels

Make a label inactive when the component it describes is inactive.

Spacing, Position, and Capitalization of Labels

The following figure shows the recommended spacing, position, and capitalization of labels.

Figure 139 Spacing Between a Label and a Component

Design Guidelines: Text Components

http://java.sun.com/products/jlf/dg/higo.htm (2 sur 8) [05/06/2000 14:19:01]

Insert 12 pixels between a label and the component it describes when labels are right aligned. When labels are
left aligned, insert 12 pixels between the longest label and its associated component.

Display a label before or above the component it describes. For languages that read from left to right, "before" is
to the left of the component.

Use headline capitalization in the label text and place a colon at the end of the text.

For more information on aligning labels in the user interface, see Text Layout. For more information on capitalization,
see Capitalization of Text in the Interface.

Mnemonics in Labels

You can specify a mnemonic for a label. When the mnemonic is activated, it gives focus to the component that the
label describes. This technique is often used with a label that accompanies an editable text field. In the following figure,
the text field gets focus when users press Alt-N.

Figure 140 Label With a Mnemonic

If you can't add a mnemonic directly to the component that requires one, as in the case of an editable text field,
place the mnemonic in the component's label.

The displayedMnemonic property can be used to specify the mnemonic in a label.

The labelFor property can be used to associate a label with another component so that the component gains
focus when the label's mnemonic is activated.

Labels That Communicate Status and Other Information
You can use a label to communicate status or give instructions to users. In addition, you can instruct your application to
alter a label to show a change in state. The progress bar in the following figure uses two labels that change as the
operation progresses. The application changes the top label to reflect the file currently being copied, and it updates the
bottom label as the progress bar fills.

Figure 141 Labels That Clarify the Meaning of a Progress Bar

Use sentence capitalization in the text of a label that communicates status.

Design Guidelines: Text Components

http://java.sun.com/products/jlf/dg/higo.htm (3 sur 8) [05/06/2000 14:19:01]

Text Fields
A text field is a rectangular area that displays a single line of text. A text field can be editable or noneditable.

Noneditable Text Fields
In a noneditable text field, users can select and copy text, but they cannot change it. Only the application can change
the contents of a noneditable text field. The background of a noneditable text field is the secondary 3 color defined in
the application's color theme. In the default theme, the background color is gray, as shown in the following figure.

Figure 142 Noneditable Text Field

Editable Text Fields
In an editable text field, users can type or edit a single line of text. For example, a find dialog box has a text field in
which users type a string for which they want to search. A text field has keyboard focus when it displays a blinking bar
that indicates the insertion point. When users type in text that is too long to fit in the field, the text scrolls horizontally.
By default, the background of an editable text field is white.

The following figure shows an editable text field with keyboard focus. The Language: label is a separate component
from the text field.

Figure 143 Editable Text Field With Blinking Bar

In an editable text field, users can:

Set the insertion point by single-clicking❍

Select a word by double-clicking❍

Select the entire line of text by triple-clicking❍

Select a range of characters by dragging❍

Insert characters and replace selected text by typing at the insertion point❍

Cut, copy, and paste text by using menu commands or keyboard shortcuts (Ctrl-X for cut, Ctrl-C for copy, and
Ctrl-V for paste)

❍

The following figure shows a text field with the letters Jeffer selected. The insertion point is at the end of the selected
text and indicates that the text field has keyboard focus. The selected text is overwritten when the user types or pastes
new text.

Figure 144 Editable Text Field With Selected Text

To associate a mnemonic with a text field, you must give the text field a label. You can then assign a mnemonic to the
label, and make the mnemonic give focus to the text field. For details, see Mnemonics in Labels. For keyboard
operations appropriate to text fields, see Table 28.

Depending on the type of data, you might be able to check individual characters for errors as they are typed--for
example, if users try to type a letter into a text field that should contain only numbers. In this case, do not display the
character in the field. Instead, sound the system beep. If the user types three illegal characters in a row, post an Error
alert box that explains the legal entries for the text field.

Design Guidelines: Text Components

http://java.sun.com/products/jlf/dg/higo.htm (4 sur 8) [05/06/2000 14:19:01]

If you plan an action based on the string in the text field (such as searching for the string or performing a
calculation) do so when users signify that they have completed the entry by typing Enter or Return or by moving
keyboard focus outside the text field.

Password Fields
The password field is an editable text field that displays a masking character instead of the characters that users type.
Asterisks are displayed in the password field by default. You can designate any Unicode character as the masking
character (but make sure the character is available in the current font).

The password field is commonly used in a login dialog box, as shown in the following figure. The Password: label is a
separate component from the password field.

Figure 145 Password Field

A password field provides users some of the same editing capabilities as an editable text field, but not the cut and copy
operations. For keyboard operations appropriate to password fields, see Table 28.

The setEchoChar method can be used to change the masking character--for example, from asterisks to pound
signs.

Text Areas
A text area provides a rectangular space in which users can view, type, and edit multiple lines of text. The JFC renders
such text in a single font, size, and style, as shown in the following figure.

Figure 146 Text Area

Users can type and replace text in a text area. See Text Fields for a description of text-editing features supplied by the
JFC. For keyboard operations appropriate to text areas, see Table 27.

You can enable word wrap so that the text wraps to the next line when it reaches the edge of the text area, as shown in
the preceding figure. You can enable scrolling by placing the text area inside a scroll pane. In this case, the text scrolls
horizontally and vertically when it is too long to fit in the text area.

The following figure shows a text area inside a scroll pane. For information on scrolling, see Scroll Panes.

Figure 147 Text Area in a Scroll Pane

Design Guidelines: Text Components

http://java.sun.com/products/jlf/dg/higo.htm (5 sur 8) [05/06/2000 14:19:01]

The lineWrap and wrapStyleWord properties of the text area can be set to true to enable word wrap on word
boundaries.

Editor Panes
An editor pane is a multiline text pane that uses a plug-in editor kit to display a specific type of text, such as RTF (rich
text format) or HTML (Hypertext Markup Language). An editor kit is capable of displaying all fonts provided in the
AWT. The JFC provides four kits that you can plug into an editor pane:

Default editor kit❍

Styled text editor kit❍

RTF editor kit❍

HTML editor kit❍

You can also create your own editor kit or use a third-party editor kit. For an example of how to create an editor kit, see
Java Swing by Robert Eckstein, Marc Loy, and Dave Wood.

The setEditable method can be used to turn text editing on or off in an editor kit.

Default Editor Kit
You can use the default editor kit to display text in a single font, size, and style. This kit is functionally equivalent to a
text area.

Styled Text Editor Kit
You can use a styled text editor kit to display multiple fonts, sizes, and styles, as shown in the following figure. You
can also embed images and components (such as tables) in a styled text editor kit.

Figure 148 Styled Text Editor Kit

Design Guidelines: Text Components

http://java.sun.com/products/jlf/dg/higo.htm (6 sur 8) [05/06/2000 14:19:01]

RTF Editor Kit
You can use an RTF editor kit to read, write, and display RTF text, as shown in the following figure. The RTF editor
kit also provides the capabilities provided by the styled editor kit.

Figure 149 RTF Editor Kit

HTML Editor Kit
You can use an HTML editor kit to display text in HTML 3.2. Users can click a link on the HTML page to generate an
event, which you can use to replace the contents in the pane.

Figure 150 HTML Editor Kit

Design Guidelines: Text Components

http://java.sun.com/products/jlf/dg/higo.htm (7 sur 8) [05/06/2000 14:19:01]

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: Text Components

http://java.sun.com/products/jlf/dg/higo.htm (8 sur 8) [05/06/2000 14:19:01]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

12: Lists, Tables, and Trees
Lists, tables, and trees provide a way to organize related information so users can easily make comparisons of the data.
A list is a one-dimensional arrangement of data, and a table is a two-dimensional arrangement of data. A tree view is
an outline of hierarchical relationships.

Figure 151 List, Table, and Tree View

Lists
A list displays a set of items, which can be text, graphics, or both. You can use a list to present users with a set of
exclusive or nonexclusive choices. For example, you might use a list to present the days of the week, from which users
could choose one day on which to start their calendars. Or, you might use a list to display pizza toppings, from which
users could make several selections, as shown in the following figure.

Figure 152 Nonexclusive List

Design Guidelines: Lists, Tables, and Trees

http://java.sun.com/products/jlf/dg/higp.htm (1 sur 13) [05/06/2000 14:17:53]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

For other components that enable users to select one item from a limited set of items, see Noneditable Combo Boxes
and Radio Buttons. For a component that enables users to select one item from a limited set of items or type in an
alternative item, see Editable Combo Boxes. For a component that enables users to select one value from a continuous
or discontinuous range of values, see Sliders.

For the keyboard operations appropriate for lists, see Table 19.

When resizing a list, be sure that it always displays a whole number of lines.

Scrolling
You can provide vertical and horizontal scrolling of the items in a list by placing the list inside a scroll pane. Users can
then scroll the list as described in Scroll Panes.

If you place a list in a scroll pane, make the vertical and horizontal scrollbars appear only when needed. This
behavior is the default behavior of scroll panes.

Selection Models for Lists
The JFC provides three selection models that you can use to enable users to select list items: single item, single range,
and multiple ranges. Single-item selection provides users with an exclusive choice. Single-range and multiple-range
selection provide users with nonexclusive choices.

Single Item

You can enable users to select a single item by clicking it. The item gets keyboard focus. The prior selection, if any, is
deselected. In the following figure, the user has selected Pepperoni.

Figure 153 Single-Item Selection in a List

Single Range of Items

You can enable users to select a single item or a range of items. Users select an item by clicking it. The item gets
keyboard focus and becomes the anchor point of the selection. Users extend the selection by moving the pointer to
another item and Shift-clicking. In the following figure, the user first clicked Sausage and then Shift-clicked Pineapple.

Figure 154 Range of Selected Items in a List

Design Guidelines: Lists, Tables, and Trees

http://java.sun.com/products/jlf/dg/higp.htm (2 sur 13) [05/06/2000 14:17:53]

Multiple Ranges of Items

You can enable users to select a single item, a range of items, or multiple ranges of items (also known as
"discontinuous," "discontiguous," or "disjoint" ranges). Users select a single item by clicking it and extend the selection
by Shift-clicking. To start another range, users Control-click an item. That item gets keyboard focus and becomes the
anchor point of the new range. In addition, the selection of the item is toggled--if the item was initially selected, it is
deselected, and vice versa. Shift-clicking extends the new range.

In the following figure, the user selected the first range by clicking Bell Pepper and then Shift-clicking Mushroom. The
user selected additional ranges by Control-clicking Pepperoni and Sausage.

Figure 155 Multiple Ranges of Selected Items in a List

Tables
A table organizes related information into a series of rows and columns. Each field in the table is called a "cell." By
default, a cell contains a text field, but you can replace it with graphics and other components, such as a checkbox or
combo box. The cell with keyboard focus has an inner border, which is drawn in the primary 1 color in the application's
color theme.

The following figure illustrates the use of a table to display the records of employees in a company database. The cell
with the value 377 is selected and has keyboard focus.

Figure 156 Table in a Scroll Pane

Design Guidelines: Lists, Tables, and Trees

http://java.sun.com/products/jlf/dg/higp.htm (3 sur 13) [05/06/2000 14:17:53]

The background color of a cell depends on whether the cell is selected, whether the cell is editable, and the background
color of the table. The following table shows how a cell gets its background color.

Table 11 Background Color of Table Cells

Type of Cell Background Color Example

An unselected cell (editable or
noneditable)

The background color of the table,
which is white by default.

A selected cell that is editable and
currently has keyboard focus

White. The inner border is drawn in
the primary 1 color to indicate that
the cell has keyboard focus. (For
information on color themes in the
Java look and feel, see Colors.)

Any other selected cell The primary 3 color, which is light
blue in the default color theme.

Users can select and edit a cell if the component in that cell supports editing. For example, if a cell contains a text field,
users can type, cut, copy, and paste text. For more information on editing text in a table, see Editable Text Fields. For
the keyboard operations that are appropriate for tables, see Table 26.

Table Appearance
The JFC provides several options that enable you to define the appearance of your table. You can turn on the display of
horizontal and vertical lines that define the table cells, as shown in Figure 156. You can set the horizontal and vertical
padding around the content of a cell. You can also set the width of the columns.

When resizing a table vertically, make sure that it always displays a whole number of lines.

Table Scrolling
You can provide scrolling of your table by placing the table inside a scroll pane. A table has column headers only when
it is in a scroll pane. For information on scrolling, see Scroll Panes.

Design Guidelines: Lists, Tables, and Trees

http://java.sun.com/products/jlf/dg/higp.htm (4 sur 13) [05/06/2000 14:17:53]

Column Reordering
You can enable users to rearrange the columns in the table. When users drag the column header to the right or left, the
entire column moves. Releasing the mouse button places the column at the new location.

The following figure shows the Last Name column being dragged to the right. In this case, the column is selected
(although users can also drag an unselected column).

Figure 157 Reordering Columns by Dragging a Column Header

Column Resizing
You can enable users to resize the columns in a table. Users drag the right border of the column header to the right to
make the column wider, and to the left to make the column narrower. When users resize a column, you must decide
whether to change the width of the entire table or adjust the other columns so the overall width is preserved. The
JFC-supplied resize options are described in the following table.

Table 12 Table Resize Options

The original table. The double arrow
shows the west resize pointer before
the columns are resized.

Resize next
Resizes the columns on either side of
the border being moved. One column
becomes bigger, while the other
becomes smaller.

Resize subsequent
Resizes the column whose border
was moved and all columns to its
right. This option is the default
option.

Design Guidelines: Lists, Tables, and Trees

http://java.sun.com/products/jlf/dg/higp.htm (5 sur 13) [05/06/2000 14:17:53]

Resize last
Resizes the column whose border
was moved and the last (rightmost)
column.

Resize all
Resizes all other columns,
distributing the remaining space
proportionately.

Resize off
Resizes the column whose border
was moved, and makes the table
wider or narrower to adjust the space
added or removed from the column.
This is the only option that changes
the overall width of the table.

Row Sorting
You can give users the ability to sort the rows in a table by clicking the column headers. An email application, which
displays a list of messages in a table, is well suited for row sorting. As shown in the following figure, users can sort the
messages by date, sender, or subject. The header of the From column appears in bold to indicate that the messages are
currently sorted alphabetically by sender.

Figure 158 Row Sorting in an Email Application

Provide a visual indicator for the table column that currently determines the sort order. For example, put the
column header text in bold.

If your application has a menu bar, provide row sorting as a set of menu items as well (for example, include "Sort
by Sender" in the View menu).

Row sorting is not included with the table component. However, the JFC contains sample code that can be used
to implement row sorting. See The Java Tutorial for more information.

Design Guidelines: Lists, Tables, and Trees

http://java.sun.com/products/jlf/dg/higp.htm (6 sur 13) [05/06/2000 14:17:53]

Selection Models for Tables
When designing a table, you must decide which objects (cells, rows, or columns) users can select. The JFC provides 24
models for selecting objects in tables, but they are not all distinct.

The following nine selection models are recommended for use in the Java look and feel:

No selection❍

Single cell❍

Single range of cells❍

Single row❍

Single range of rows❍

Multiple ranges of rows❍

Single column❍

Single range of columns❍

Multiple ranges of columns❍

No Selection

You can turn off selection in a table. Nothing is selected when users click in a cell.

SIngle Cell

You can enable users to select a cell by clicking it. The cell gets keyboard focus, which is indicated by an inner border.
Any previous selection is deselected.

In the following figure, the cell containing 377 is selected and has keyboard focus. The cell cannot be edited, as
indicated by the primary 3 background color.

Figure 159 Single-Cell Selection

Range of Cells

You can enable users to select a single cell or a rectangular range of cells. Users select a cell by clicking it. That cell
gets keyboard focus and becomes the anchor point of the selection. Users extend the selection by moving the pointer to
a new cell and Shift-clicking. Users can also select a range of cells by dragging through the range.

In the following figure, the user has selected the range by clicking Sophia and then Shift-clicking 1273. The cell
containing Sophia is editable, as indicated by its white background.

Figure 160 Range of Selected Cells

Design Guidelines: Lists, Tables, and Trees

http://java.sun.com/products/jlf/dg/higp.htm (7 sur 13) [05/06/2000 14:17:53]

In range selection, the selection always extends from the cell with the anchor point to the cell where the user
Shift-clicked. If users move the pointer within the selection and Shift-click, the selection becomes smaller. For
example, if the user Shift-clicks Stewart in the preceding figure, the selection is reduced to four cells (Sophia, Amann,
Samuel, and Stewart).

Single Row

You can enable users to select an entire row by clicking any cell in the row. The clicked cell gets keyboard focus,
which is indicated by an inner border. Any previous selection is deselected.

In the following figure, the user has clicked the cell containing 811. This cell is not editable, as indicated by its
background color.

Figure 161 Single-Row Selection

Single Range of Rows

You can enable users to select one row or a range of rows. Users select a row by clicking any cell in the row. The cell
that has been clicked gets keyboard focus and becomes the anchor point of the selection. Users extend the selection by
moving the pointer to a new row and Shift-clicking. Users can also select a range of rows by dragging through the
range.

In the following figure, the user has clicked Amann and then Shift-clicked Dole. The cell containing Amann is editable,
as indicated by its white background.

Figure 162 Range of Selected Rows

Design Guidelines: Lists, Tables, and Trees

http://java.sun.com/products/jlf/dg/higp.htm (8 sur 13) [05/06/2000 14:17:53]

In range selection, the selection always extends from the row with the anchor point to the row where the user has
Shift-clicked. If users Shift-click within an existing selection, the selection becomes smaller. For example, if the user
Shift-clicks Stewart in the preceding figure, the selection is reduced to the two rows containing Amann and Stewart.

Multiple Ranges of Rows

You can enable users to select a single row, a range of rows, or multiple row ranges (also known as "discontinuous,"
"discontiguous," or "disjoint" ranges). Users select a single row by clicking any cell in the row and extend the selection
by Shift-clicking. To start another range, users Control-click any cell in a row. The cell gets keyboard focus and
becomes the anchor point of the new range. The selection of the row toggles as follows:

If the row is not already selected, it is selected. A subsequent Shift-click selects all rows from the anchor point
to the row where the user has Shift-clicked.

❍

If the row is within an existing selection, the row is deselected. A subsequent Shift-click deselects all rows from
the anchor point to the row where the user has Shift-clicked.

❍

Users can also select another range by dragging through the range while holding down the Control key.

In the following figure, the user has selected the first range by clicking Winter and then Shift-clicking Amann. The user
has created another range by Control-clicking Mary and then Shift-clicking Roscoe. The cell containing Mary has
keyboard focus and is editable.

Figure 163 Multiple Ranges of Selected Rows

Design Guidelines: Lists, Tables, and Trees

http://java.sun.com/products/jlf/dg/higp.htm (9 sur 13) [05/06/2000 14:17:53]

Multiple-range selection is well suited for an email application that uses a table to display message headers, as shown
in Figure 158. Users can select one or more message headers (especially useful for deleting messages).

Single Column Only

You can enable users to select an entire column by clicking any cell in the column. The cell that was clicked gets
keyboard focus, which is indicated by an inner border. Any previous selection is deselected.

In the following figure, the user has clicked Amann in the Last Name column. The white background indicates that the
cell can be edited.

Figure 164 Single-Column Selection

Single Range of Columns

You can enable users to select one column or a range of columns. Users select a column by clicking any cell in the
column. The cell that was clicked gets keyboard focus and becomes the anchor point of the selection. Users extend the
selection by moving the pointer to a new column and Shift-clicking. Users can also select a range of columns by
dragging through the range.

In the following figure, the user has clicked 1273 and then Shift-clicked Amann. The cell containing 1273 cannot be
edited, as indicated by its background color.

Design Guidelines: Lists, Tables, and Trees

http://java.sun.com/products/jlf/dg/higp.htm (10 sur 13) [05/06/2000 14:17:53]

Figure 165 Range of Selected Columns

In range selection, the selection always extends from the column with the anchor point to the column where the user
has Shift-clicked. If users Shift-click within an existing selection, the selection becomes smaller.

Multiple Ranges of Columns

You can enable users to select a single column, a range of columns, or multiple-column ranges (also known as
"discontinuous," "discontiguous," or "disjoint" ranges). Users select a single column by clicking any cell in the column
and extend the selection by Shift-clicking. To start another range, users Control-click any cell in the column. The cell
gets keyboard focus and becomes the anchor point of the range. The selection of the column toggles as follows:

If the column is not already selected, it is selected. A subsequent Shift-click selects all columns from the anchor
point to the column where the user Shift-clicked.

❍

If the column is within an existing selection, the column is deselected. A subsequent Shift-click deselects all
columns from the anchor point to the column where the user Shift-clicked.

❍

Users can also select another range by dragging through the range while holding down the Control key.

In the following figure, the user has clicked Peter and then Shift-clicked Amann. The user has selected another range
by Control-clicking Krakatoa, which has keyboard focus and can be edited, as indicated by its white background.

Figure 166 Multiple Ranges of Selected Columns

Tree Views

Design Guidelines: Lists, Tables, and Trees

http://java.sun.com/products/jlf/dg/higp.htm (11 sur 13) [05/06/2000 14:17:53]

A tree view represents a set of hierarchical data in the form of an indented outline, which users can expand and
collapse. Tree views are useful for displaying data such as the folders and files in a file system or the table of contents
in a help system.

A tree view consists of nodes. The top-level node, from which all other nodes branch, is the root node. Nodes that
might have subnodes are called "containers." All other nodes are called "leaves." The default icon for a container is a
folder, and the default icon for a leaf is a file. Each node is accompanied by text.

Turners appear next to each container in the tree view. The turner points right when the container is collapsed and
down when the container is expanded.

In the following figure, the Projects, Fire station, First floor, and Landscaping nodes are expanded containers; all the
other containers are collapsed. Landscaping is a container without subnodes. Communications, Garage, and Shop are
leaves. The turner, container, and leaf graphics shown in this figure are the default graphics provided by the JFC.

Figure 167 Tree View With Top-Level Lines

Users can click the right-pointing turner to expand a container so that its contents are visible in the tree view. The
turner rotates to point downward. Clicking the downward-pointing turner collapses a container so that its contents are
no longer visible. For the keyboard operations that are appropriate for tree views, see Table 32.

In most tree views, display the second level of the hierarchy as your highest level. Your outline will be easier to
use if you do not display the root node.

Display turners for all containers in the tree view, including the containers at the highest level. Turners remind
users that they can expand and collapse the node.

Setting the rootVisible property of the tree view to false turns off the display of the root node.

Setting the showsRootHandles of the tree view to true turns on the display of turners for the highest-level
containers.

Lines in Tree Views
The JFC provides you three options for including lines in a tree view. The first option is not to include any lines. The
second option is to draw lines that separate the top-level nodes, as shown in Figure 167. The third option is to draw
lines that define the hierarchical relationships of the nodes, as shown in the following figure.

Figure 168 Tree View With Hierarchy Lines

Design Guidelines: Lists, Tables, and Trees

http://java.sun.com/products/jlf/dg/higp.htm (12 sur 13) [05/06/2000 14:17:54]

The client property JTree.lineStyle can be set to None to display no lines, to Horizontal to display top-level
lines, and to Angled to display hierarchy lines.

Graphics in Tree Views
You can substitute your own graphics for the JFC-supplied container and leaf node graphics. For example, if your
hierarchy represents the clients and servers in a network, you might include graphic representations of the clients and
servers. In Figure 168, a custom music graphic is used for the leaf nodes. You might also use separate graphics to show
when a container is expanded and when it is collapsed.

Editing in Tree Views
You can enable users to edit the text in a tree view. When editing is enabled, users can change text using the same
editing commands that they use for text fields. These commands are described in Editable Text Fields.

Setting the editable property to true enables editing of all nodes in the tree.

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: Lists, Tables, and Trees

http://java.sun.com/products/jlf/dg/higp.htm (13 sur 13) [05/06/2000 14:17:54]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

A: Keyboard Navigation,
Activation, and Selection

This appendix defines the keyboard operations that enable users to navigate through, activate, or
select the JFC user interface components. (Navigating means to move the input focus from one
user interface component to another; activating refers to operating the component; selecting
means to choose one or more components, typically for a subsequent action.) For an overview of
these concepts, see Keyboard Navigation and Activation.

In general, navigating between components uses these keys:

Tab. Moves keyboard focus to the next component or to the first member of the next
group of components.

❍

Ctrl-Tab. Moves keyboard focus to the next component or to the first member of a group
of components when the current component accepts a tab (as in text fields, tables, and
tabbed panes).

❍

Shift-Tab. Moves keyboard focus to the previous component or to the first component in
the previous group of components.

❍

Arrow keys. Move keyboard focus within the individual components of a group of
components--for example, within menu items in a menu or within tabs in a tabbed pane.

❍

This appendix presents the JFC-supplied keyboard navigation, activation, and selection operations
in a series of tables, arranged alphabetically by component. The left column of each table
describes an action (for example, moving focus to the left) and the right column describes its
keyboard operation (for example, left arrow key).

Some actions in the table list several possible keyboard operations, separated by a comma. For
example, both Home and Ctrl-Home move focus to the beginning of a list. Multiple operations
take into account the differences between the Microsoft Windows and CDE operating
environments. If you are using an environment other than the Microsoft Windows or CDE
operating environment, implement the keyboard operation that is most appropriate for your
environment.

Some of the keyboard operations described in the following tables might be temporarily
incomplete or not implemented. However, these key sequences should be reserved for future
versions of the JFC and the Java 2 platform.

Checkboxes
The following table lists the keyboard operation for checkboxes. For more information on this
component, see Checkboxes.

Design Guidelines: Keyboard Nav., Activation, and Selection

http://java.sun.com/products/jlf/dg/appendix.htm (1 sur 14) [05/06/2000 14:17:00]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Table 13 Keyboard Operation for Checkboxes

Action Keyboard Operation

Selects or deselects checkbox Spacebar

Combo Boxes
The following table lists the keyboard operations for combo boxes. For details on this component,
see Combo Boxes.

Table 14 Keyboard Operations for Combo Boxes

Action Keyboard Operation

Posts associated list Spacebar, down arrow,
Alt-down arrow

Moves highlight within list when menu
is posted. Selects highlighted item Up arrow, down arrow

Closes list, maintaining latest selection Enter, Return, spacebar,
Escape

Command Buttons
The following table lists the keyboard operations for command buttons. For more information on
this component, see Command Buttons.

Table 15 Keyboard Operations for Command Buttons

Action Keyboard Operation

Activates command button Spacebar

Activates default button (does not
require keyboard focus) Enter, Return

Activates Cancel button (does not
require keyboard focus) Escape

Design Guidelines: Keyboard Nav., Activation, and Selection

http://java.sun.com/products/jlf/dg/appendix.htm (2 sur 14) [05/06/2000 14:17:00]

Desktop Panes and Internal Frames
The following table lists the keyboard operations for desktop panes and internal frames. For
details on internal frames and desktop panes, see Working With Multiple Document Interfaces.

Table 16 Keyboard Operations for Desktop Panes and Internal Frames

Action Keyboard Operation

Opens internal frame Ctrl-F5

Closes internal frame Ctrl-F4

Moves internal frame Ctrl-F7

Resizes internal frame Ctrl-F8

Minimizes internal frame Ctrl-F9

Navigates first between open internal
frames, then among minimized
internal frames

Ctrl-Esc, Ctrl-Tab, Shift-Esc,
Shift-Tab

Opens minimized internal frame that
has keyboard focus Ctrl-F5, Enter, Return

Navigates among associated windows
on the desktop pane Ctrl-F6, Shift-Ctrl-F6

Navigates between associated
windows when an internal frame
creates a secondary window

Ctrl-F6, Shift-Ctrl-F6

Displays desktop contextual menu Ctrl-spacebar

Dialog Boxes
The following table lists the keyboard operations for dialog boxes, alert boxes, and utility
windows. For comprehensive treatment of dialog boxes and alert boxes, see Chapter 8. For a
discussion of utility windows, see Utility Windows.

Table 17 Keyboard Operations for Dialog Boxes

Action Keyboard Operation

Navigates into dialog box Alt-F6

Navigates out of dialog box Alt-F6

Design Guidelines: Keyboard Nav., Activation, and Selection

http://java.sun.com/products/jlf/dg/appendix.htm (3 sur 14) [05/06/2000 14:17:00]

Activates Cancel button Escape

Activates default command button Enter, Return

HTML Editor Kits
HTML editor kits use the navigation, selection, and activation sequences described in Table 27,
plus the two listed here. For details on the appearance and behavior of this component, see HTML
Editor Kit.

Table 18 Keyboard Operations for HTML Panes

Action Keyboard Operation

Navigates to link and other focusable
elements

Tab, Shift-Tab, Ctrl-Tab,
Shift-Ctrl-Tab

Activates link Enter, Return, spacebar

Lists
The actions listed in the following table assume multiple selection in lists. For more information
on the appearance, behavior, and selection of this component, see Lists.

Table 19 Keyboard Operations for Lists

Action Keyboard Operation

Moves focus up one row or line Up arrow

Moves focus down one row or line Down arrow

Moves focus up one view minus one
line, giving focus to first line in the
view

Page Up

Moves focus down one view minus
one line, giving focus to first line in
the view

Page Down

Moves focus to beginning of list Home, Ctrl-Home

Moves focus to end of list End, Ctrl-End

Selects all items in list Ctrl-A, Ctrl-/

Design Guidelines: Keyboard Nav., Activation, and Selection

http://java.sun.com/products/jlf/dg/appendix.htm (4 sur 14) [05/06/2000 14:17:00]

Deselects all Ctrl-/

Makes a selection (and deselects any
previous selection) Spacebar

Toggles selection (and does not affect
previous selections) Ctrl-spacebar

Extends selection Shift-spacebar

Extends selection down one item Shift-down arrow

Extends selection up one item Shift-up arrow

Extends selection to beginning of list Shift-Home

Extends selection to end of list Shift-End

Extends selection up one view Shift-PgUp

Extends selection down one view Shift-PgDn

Menus
The keyboard operations in this table apply to menu bars, menus, drop-down menus, submenus,
contextual menus, menu items, radio button menu items, and checkbox menu items. For a
discussion of menus, see Chapter 9.

Table 20 Keyboard Operations for Menus

Action Keyboard Operation

Posts current menu Enter, Return, spacebar, arrow keys

Dismisses menu without taking action
and returns focus to last component
that had focus

Escape

Moves focus to menu bar and posts
first menu F10

Navigates within menus Arrow keys

Navigates between titles in menu bar Arrow keys

Activates a menu item, dismisses
menu, and goes to last window item
with focus

Enter, Return, spacebar

Displays contextual menu Shift-F10

Design Guidelines: Keyboard Nav., Activation, and Selection

http://java.sun.com/products/jlf/dg/appendix.htm (5 sur 14) [05/06/2000 14:17:00]

Dismisses contextual menu Escape

Navigates within contextual menu Arrow keys

Activates highlighted item in
contextual menu and dismisses menu Enter, Return, spacebar

Radio Buttons
The following table lists the keyboard operation for radio buttons. For a discussion of the
appearance and behavior of this component, see Radio Buttons.

Table 21 Keyboard Operation for Radio Buttons

Action Keyboard Operation

Selects radio button Spacebar

Scrollbars
Users can operate scrollbars from the keyboard when keyboard focus is anywhere in the scroll
pane that contains the scrollbar. For a discussion of the appearance and behavior of this
component, see Scrollbars.

Table 22 Keyboard Operations for Scrollbars

Action Keyboard Operation

Moves view up one line Up arrow

Moves view down one line Down arrow

Moves up one view Page Up

Moves down one view Page Down

Moves to beginning of data Ctrl-Home

Moves to end of data Ctrl-End

Moves right one view minus one line Ctrl-PgDn

Moves left one view Ctrl-Pg Up

Design Guidelines: Keyboard Nav., Activation, and Selection

http://java.sun.com/products/jlf/dg/appendix.htm (6 sur 14) [05/06/2000 14:17:00]

Sliders
The following table lists the keyboard operations for sliders. For details on this component, see
Sliders.

Table 23 Keyboard Operations for Sliders

Action Keyboard Operation

Changes value of slider Arrow keys

Moves to left/top value Home

Moves to right/bottom value End

Jumps in left/top direction
(approximately 20% of the scale) Page Up, Ctrl-PgUp

Jumps in right/bottom direction
(approximately 20% of the scale) Page Down, Ctrl-PgDn

Split Panes
The following table lists the keyboard operations for split panes. After users enter a split pane,
pressing Tab cycles the focus to the components within the split pane. For a description of the
appearance and behavior of this component, see Split Panes.

Table 24 Keyboard Operations for Split Panes

Action Keyboard Operation

Navigates between split panes and
gives focus to last element that had
focus

Tab, F6

Gives focus to splitter bar F8

Changes location of splitter bar in
splitter pane Arrow keys, Home, End

Tabbed Panes
The following table lists the keyboard operations for tabbed panes. For a description of the

Design Guidelines: Keyboard Nav., Activation, and Selection

http://java.sun.com/products/jlf/dg/appendix.htm (7 sur 14) [05/06/2000 14:17:00]

appearance and behavior of this component, see Tabbed Panes. When a tabbed pane initially gets
focus, the focus goes to one of the tabs, and not to one of the content panes.

Table 25 Keyboard Operations for Tabbed Panes

Action Keyboard Operation

Navigates through tabs Arrow keys

Moves from tab to its associated
content pane Ctrl-down arrow

Moves from content pane to its
associated tab Ctrl-up arrow

Moves to next or previous content
pane Ctrl-PgDn or Ctrl-PgUp

Tables
The following table lists the keyboard operations for tables. For a description of the appearance
and behavior of this component, see Tables.

Table 26 Keyboard Operations for Tables

Action Keyboard Operations

Moves focus up one cell Shift-Return

Moves focus down one cell Return

Moves focus left one cell Shift-Tab

Moves focus right one cell Tab

Deselects current selection and moves
focus up one cell Up arrow

Deselects current selection and moves
focus down one cell Down arrow

Scrolls up one view and gives focus to
first visible cell in the current column Page Up

Scrolls down one view and gives focus
to first visible cell in the current
column

Page Down

Scrolls left one view and gives focus to
first visible cell in the current row Ctrl-PgUp

Design Guidelines: Keyboard Nav., Activation, and Selection

http://java.sun.com/products/jlf/dg/appendix.htm (8 sur 14) [05/06/2000 14:17:00]

Scrolls right one view and gives focus
to first visible cell in the current row Ctrl-PgDn

Moves focus and view to first cell in
the current row Home

Moves focus and view to last cell in
the current row End

Moves focus and view to first cell in
the current column Ctrl-Home

Moves focus and view to last cell in
the current column Ctrl-End

Allows editing in a cell without
overwriting the information F2

Resets cell to the state it was in before
it was edited Escape

Selects entire table Ctrl-A

Extends selection up one row Shift-up arrow

Extends selection down one row Shift-down arrow

Extends selection left one column Shift-left arrow

Extends selection right one column Shift-down arrow

Extends selection to beginning of row Shift-Home

Extends selection to end of row Shift-End

Extends selection to beginning of
column Ctrl-Shift-Home

Extends selection to end of column Ctrl-Shift-End

Extends selection up one view Shift-PgUp

Extends selection down one view Shift-PgDn

Extends selection left one view Ctrl-Shift-PgUp

Extends selection right one view Ctrl-Shift-PgDn

Text Areas and Default and Styled Text Editor Kits
The following table lists the keyboard operations for text areas and the default and styled text
editor kits. For details on the appearance and behavior of these components, see Text Areas,

Design Guidelines: Keyboard Nav., Activation, and Selection

http://java.sun.com/products/jlf/dg/appendix.htm (9 sur 14) [05/06/2000 14:17:01]

Default Editor Kit, and Styled Text Editor Kit.

Table 27 Keyboard Operations for Text Areas and Default and Styled Text Editor
Kits

Action Keyboard Operation

Moves insertion point up one line Up arrow

Moves insertion point down one line Down arrow

Moves insertion point to the left one
component or character Left arrow

Moves insertion point to the right one
component or character Right arrow

Moves up one view Page Up

Moves down one view Page Down

Moves left one view Ctrl-PgUp

Moves right one view Ctrl-PgDn

Moves to beginning of line Home

Moves to end of row or line End

Moves to beginning of data Ctrl-Home

Moves to end of data Ctrl-End

Moves to next word Ctrl-right arrow

Moves to previous word Ctrl-left arrow

Selects all Ctrl-A, Ctrl-/

Deselects all Ctrl-\

Extends selection up Shift-up arrow

Extends selection down Shift-down arrow

Extends selection left Shift-left arrow

Extends selection right Shift-right arrow

Extends selection up one view Shift-PgUp

Extends selection down one view Shift-PgDn

Extends selection to the left one view Ctrl-Shift-PgUp

Extends selection to the right one view Ctrl-Shift-PgDn

Design Guidelines: Keyboard Nav., Activation, and Selection

http://java.sun.com/products/jlf/dg/appendix.htm (10 sur 14) [05/06/2000 14:17:01]

Extends selection to beginning of line Shift-Home

Extends selection to end of line Shift-End

Extends selection to beginning of data Ctrl-Shift-Home

Extends selection to end of data Ctrl-Shift-End

Extends selection to next word Ctrl-Shift-right arrow

Extends selection to previous word Ctrl-Shift-left arrow

Text Fields
The following table lists the keyboard operations for text fields. For details on this component, see
Text Fields.

Table 28 Keyboard Operations for Text Fields

Action Keyboard Operation

Moves insertion point one character to
the right Right arrow

Moves insertion point one character to
the left Left arrow

Moves insertion point to beginning of
next word Ctrl-right arrow

Moves insertion point to beginning of
previous word Ctrl-left arrow

Moves insertion point to beginning of
field Home

Moves insertion point to end of field End

Submits text entry Enter, Return

Extends selection to beginning of line Shift-Home

Extends selection to end of line Shift-End

Extends selection one character to the
left Shift-left arrow

Extends selection one character to the
right Shift-right arrow

Extends selection to next word Shift-Ctrl-right arrow

Design Guidelines: Keyboard Nav., Activation, and Selection

http://java.sun.com/products/jlf/dg/appendix.htm (11 sur 14) [05/06/2000 14:17:01]

Extends selection to previous word Shift-Ctrl-left arrow

Toggle Buttons
The following table lists the keyboard operation for toggle buttons. For details on this component,
see Toggle Buttons.

Table 29 Keyboard Operation for Toggle Buttons

Action Keyboard Operation

Toggles button on or off Spacebar

Tool Tips
The following table lists the keyboard operations for tool tips. For details on this component, see
Tool Tips.

Table 30 Keyboard Operations for Tool Tips

Action Keyboard Operation

Displays tool tip Ctrl-F1

Removes tool tip Escape, Ctrl-F1

Toolbars
The following table lists the keyboard operations for toolbars. For details on the appearance and
behavior of this component, see Toolbars.

Table 31 Keyboard Operations for Toolbars

Action Keyboard Operation

Navigates within toolbar Arrow keys

Activates toolbar Spacebar

Design Guidelines: Keyboard Nav., Activation, and Selection

http://java.sun.com/products/jlf/dg/appendix.htm (12 sur 14) [05/06/2000 14:17:01]

Tree Views
The following table lists the keyboard operations for tree views. For details on the appearance and
behavior of this component, see Tree Views.

Table 32 Keyboard Operations for Tree Views

Action Keyboard Operation

Expands current node Right arrow

Collapses current node Left arrow

Moves focus up one node Up arrow

Moves focus down one node Down arrow

Moves focus to first node in tree Home

Moves focus to last node in tree End

Moves up one view Page Up

Moves down one view Page Down

Moves left one view Ctrl-PgUp

Moves right one view Ctrl-PgDn

Selects all nodes in tree Ctrl-A, Ctrl-/

Deselects all Ctrl-\

Extends selection down Shift-down arrow

Extends selection up Shift-up arrow

Extends selection to beginning of tree Shift-Home

Extends selection to end of tree Shift-End

Extends selection up one view Shift-PgUp

Extends selection down one view Shift-PgDn

Extends selection right one view Ctrl-Shift-PgDn

Extends selection left one view Ctrl-Shift-PgUp

Design Guidelines: Keyboard Nav., Activation, and Selection

http://java.sun.com/products/jlf/dg/appendix.htm (13 sur 14) [05/06/2000 14:17:01]

java.sun.com : Design Guidelines Previous | Next | Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: Keyboard Nav., Activation, and Selection

http://java.sun.com/products/jlf/dg/appendix.htm (14 sur 14) [05/06/2000 14:17:01]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Errata
Errors corrected in Web Version 1.0.1 (July 1999) and 2nd Printing (August 1999)

Page xxvi. Second paragaraph in the section on Design for Multiple Platforms. Change "McFarland,
Aland" to "McFarland, Alan"

Page 35. Last sentence before Figure 20. Change "Japanese" to "Chinese"

Page 35. Caption for Figure 30. Change "Japanese" to "Chinese"

Page 37. Last sentence of first paragraph. Change "26 Juli 1987" to "26. Juli 1987"

Page 175. First sentence of paragraph before Figure 155. Change "and then Shift-clicking Pineapple" to
"and then Shift-clicking Mushroom"

Errors corrected in Web Version 1.0.2 (December 1999)

Page 76. First sentence of cross platform guideline at bottom of page. Change "bar may not include" to
"bar might not include"

Page 192. Combobox table. Replace 2nd, 3rd, and 4th items with the following two items:
Moves highlight within list when menu is posted. Selects highlighted item - Up arrow, down arrow
Closes list, maintaining lastest selection - Enter, Return, spacebar, Escape

Page 192. Glossary entry for MIME. Change "assign applications interpret" to "assign applications to
interpret"

Figures 9, 10, 32, 34, 75, 76, 111, 116, 117, 119, 120, 123, 125, 126, and 148. Windows title bars should
not contain a "What's This?" button.

Figures 44 and 77. Default Close button should not have a mnemonic.

Figure 59. Don't Save button should have a mnemonic.

java.sun.com : Design Guidelines Contents | Index | Search

Copyright 1999 Sun Microsystems, Inc. All Rights Reserved.

Design Guidelines: Errata

http://java.sun.com/products/jlf/dg/errata.html [05/06/2000 14:19:19]

http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html
http://java.sun.com/
http://java.sun.com/products/jlf/dg/search.html

Java Look and Feel Design Guidelines
Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road,
Palo Alto, California 94303 U.S.A. All rights reserved.

This product or documentation is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or documentation may be reproduced in
any form by any means without prior written authorization of Sun and its licensors, if any. Third-party
software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, JavaOS, JavaHelp, Java 2D, HotJava, JavaBeans, Java
Plug-in, Java Development Kit, JDK, PersonalJava, Java Foundation Classes, JavaScript, JavaStation,
Java virtual machine, the Java Coffee Cup logo, Solaris, and Write Once, Run Anywhere are trademarks
or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

The OPEN LOOK and Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its
users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the
concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive
license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun's written license agreements.

U.S. Government approval required when exporting the product.

DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY KIND OF IMPLIED OR
EXPRESS WARRANTY OF NON-INFRINGEMENT OR THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road,
Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent
l'utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne
peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et
écrite de Sun et de ses bailleurs de licence, s'il y en a. Le logiciel détenu par des tiers, et qui comprend la
technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, JavaOS, JavaHelp, Java 2D, HotJava, JavaBeans, Java
Plug-in, Java Development Kit, JDK, PersonalJava, Java Foundation Classes, JavaScript, JavaStation,
Java virtual machine, Java Coffee Cup logo, Solaris, et Write Once, Run Anywhere sont des marques de
fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour
ses utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le
développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de
l'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d'utilisation graphique
Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface d'utilisation
graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun. L'accord du
gouvernement américain est requis avant l'exportation du produit.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS,
DÉCLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT

Java Look and Feel Design Guidelines

http://java.sun.com/products/jlf/dg/notice.html (1 sur 2) [05/06/2000 14:19:03]

http://java.sun.com/

EXCLUES DANS LA MESURE AUTORISÉE PAR LA LOI APPLICABLE, Y COMPRIS
NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE À LA QUALITÉ MARCHANDE, À
L'APTITUDE À UNE UTILISATION PARTICULÈRE OU À L'ABSENCE DE CONTREFAÇON.

java.sun.com : Design Guidelines

Java Look and Feel Design Guidelines

http://java.sun.com/products/jlf/dg/notice.html (2 sur 2) [05/06/2000 14:19:03]

http://java.sun.com/

	sun.com
	Java Look and Feel Design Guidelines
	Design Guidelines: Preface
	Design Guidelines: Colophon
	Design Guidelines: Contents
	Design Guidelines: Index
	Design Guidelines: Glossary
	Design Guidelines: Contents
	Design Guidelines: The Java Look and Feel
	Design Guidelines: The Java Foundation Classes
	Design Guidelines: Design Considerations
	Design Guidelines: Visual Design
	Design Guidelines: Application Graphics
	Design Guidelines: Behavior
	Design Guidelines: Windows, Panes, and Frames
	Design Guidelines: Dialog Boxes
	Design Guidelines: Menus and Toolbars
	Design Guidelines: Basic Controls
	Design Guidelines: Text Components
	Design Guidelines: Lists, Tables, and Trees
	Design Guidelines: Keyboard Nav., Activation, and Selection
	Design Guidelines: Errata
	Java Look and Feel Design Guidelines

